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PREFACE

PHILOSOPHY AND GOALS

The purpose of the third edition of this book isto provide a basis for understanding
the characteristics, operation, and limitations of semiconductor devices. In order to
gainthisunderstanding, it isessential to have athorough knowledge of the physics of
the semiconductor material. The goal of this book isto bring together quantum me-
chanics, the quantum theory of solids, semiconductor material physics. and semicon-
ductor device physics. All of these components are vital to the understanding of both
the operation of present day devicesand any future development in the field.

The amount of physics presented in this text is greater than what is covered in
many introductory semiconductor device books. Although this coverage is more ex-
tensive, the author has found that once the basic introductory and material physics
have been thoroughly covered. the physicsof the semiconductor devicefollowsquite
naturally and can he covered fairly quickly and efficiently. The emphasis on the un-
derlying physics will also be a benefit in understanding and perhaps in developing
new semiconductor devices.

Since the objective of this text is to provide an introduction to the theory of
semiconductor devices, there is agreat deal of advanced theory that is not consid-
ered. In addition. fabrication processes are not described in detail. There area few
references and general discussions about processing techniques such as diffusion
and ion implantation, but only where the results of this processing have direct im-
pact on device characteristics.

PREREQUISITES

This bookisintended for junior and senior undergraduates. The prerequisites for un-
derstanding the material are college mathematics. up to and including differential
equations, and college physics, including an introduction to modern physics and
electrostatics. Prior completion of an introductory course in electronic circuits is
helpful, but not essential.

ORGANIZATION

The text begins with the introductory physics, moves on to the semiconductor mate-
rid physics,and then covers the physics of semiconductor devices. Chapter 1 presents
an introduction to the crystal structure of solids, leading to the ideal single-crystal
semiconductor material. Chapters 2 and 3 introduce quantum mechanics and the
quantum theory of solids, which together provide the necessary basic physics.
Chapters 4 through6 cover thesemiconductor material physics. Chapter4 presents
the physics of the semiconductor in thermal equilibrium; Chapter 5 treats the transport



phenomena of the charge carriersin a semiconductor. The nonequilibrium excess car-
rier characteristics are then devel oped in Chaptcr 6. Understanding the behavior of ex-
cesscarriers in asemiconductor isvita tothegoal of understanding thedevice physics.

The physicsof thebasic semiconductor devicesisdevel oped in Chapters 7 through
13. Chaptcer 7 treats the el ectrostatics of the basic pn junction. and Chapter 8 coversthe
current-voltage characteristics of the pn junction. Metal-semiconductorjunctions, both
rectifying and nonrectifying, and semiconductor heterojunctions are considered in
Chapter 9, while Chapter 10 treats the bipolar transistor. The physics of the metal-
oxide-semiconductor field-effect transistor is presented in Chapters || and 12. and
Chapter 13 coversthe junction field-effect transistor. Once the physics of the pn junc-
tion is developed, the chapters dealing with the three basic transistors may be covered
in any order — thesechapters are written so as not to depend on one another. Chapter 14
considers optical devices and finally Chapter 15 covers power semiconductor devices.

USE OF THE BOOK

Thetext is intended for a one-semester course at the junior or senior level. As with
most textbooks, there is more material than can be conveniently covered in one
semester; this allowseach instructor some flexibility in designing the course to hislher
own specific needs. Two possible orders of presentation are discussed later in a sepa-
rate section in this preface. However, the text isnot an encyclopedia. Sectionsin each
chapter that can be skipped without loss of continuity are identified by an asterisk in
both the table of contents and in the chapter itself. These sections, althoughi mportant
tothe development of semiconductor device physics, can he postponed to alater time.

The material in the text has been used extensively in a course that is required
for junior-level electrical engineering students at the University of New Mexico.
Slightly lessthan half of the semester isdevoted to the first six chapters; the remain-
der of the semester is devoted to the pn junction, the bipolar transistor. and the metal-
oxide-semiconductor field-effect transistor. A few other special topics may be briefly
considered near the end of the semester.

Although the bipolar transistor isdiscussed in Chapter 10 beforethe MOSFET or
JFET, each chapter dealing with one of the three basic types of transistors is written
to stand alone. Any one of the transistor types may be covered first.

NOTESTO THE READER

This book introduces the physics of semiconductor materials and devices. Although
many electrical engineering students are more comfortable building electronic cir-
cuits or writing computer programs than studying the underlying principles of semi-
conductor devices, the material presented here is vital to an understanding of the
limitations of electronic devices, such as the microprocessor.

Mathematics is used extensively throughout the hook. This may at times seem
tedious, but the end result isan understanding that will not otherwise occur. Although
some of the mathematical models used to describe physical processes may seem
abstract, they have withstood the test of time in their ability to describe and predict
these physical processes.



Thereaderisencouraged to continually refer to the preview sectionsso that theob-
jective of the chapter and the purposesof each topic can be kept in mind. This constant
review isespecially important in the first five chapters, dealing with basic physics.

Thereader must keep in mind that, although some sections may be skipped without
loss of continuity, many instructors will choose to cover these topics. The fact that sec-
tions are marked with an asterisk does not minimize the importance of these subjects.

It isaso important that the reader keep in mind that there may be questions still
unanswered at the end of acourse. Although the author dislikesthe phrase. "it can be
shown that.. .,” there are some concepts used here that rely on derivations beyond
the scope of the text. This hook is intended as an introduction to the subject. Those
questionsremaining unanswered at the end of the course, the reader isencouraged to
keep"in adesk drawer." Then, during the next course in this area of concentration,
the reader can take out these questions and search for the answers.

ORDER OF PRESENTATION

Each instructor has a personal preference for the order in which the course material
is presented. Listed below are two possible scenarios. The first case, called the clas-
sical approach, covers the bipolar transistor before the MOS transistor. However,
becausethe MOS transistor topic isleft until the end of the semester. time constraints
may shortchange the amount of classtime devoted to this important topic.

The second method of presentation listed, called the nonclassical approach, dis-
cusses the MOS transistor before the bipolar transistor. Two advantages to this ap-
proach arethat the MOS transistor will not get shortchanged in terms of time devoted
to the topic and, since a*'real device" is discussed earlier in the semester, the reader
may have more motivation to continue studying this course material. A possible
disadvantage to this approach is that the reader may be somewhat intimidated by
jumping from Chapter 7 to Chapter | |. However. the material in Chapters 11 and 1?
is written so that this jump can be made.

Unfortunately, because of time constraints, every topic in every chapter cannot
be covered in a one-semester course. The remaining topics must be left for asecond-
semester course or for further study by the reader.

Classical approach

Chapter 1 Crystd structure
Chapters 2, 3 Selected ropics from quantum

mechanics and theory of solids
Chapter 4 Semiconductor physics
Chapter 5 Transport phenomena
Chapter 6 Sdected topics from nonequilibrium characteristics
Chepters7, 8 The m junction and diode
Chapter 9 A brief discussion of the Schottky diode
Chapter 10 The bipolar transistor

Chepters1l, 12 The MOS transistor




Nonclassical approach

Chapter 1 Crystal structure

Chapters 2, 3 Sdlected topics from quantum
mechanicsand theory of solids

Chapter 4 Semiconductor physics

Chapter 5 Trangport phenomena

Chapter 7 The pn junction

Chaptersii, 12 TheMOS transistor

Chapter 6 Sdlected topics from nonequilibrium characteristics

Chapter 8 The pn junction diode

Chapter 9 A hrief discussion of the Schottky diode

Chaoter 10 The binolar trangistor

FEATURESOF THE THIRD EDITION

B Preview section: A preview section introduces each chapter. This preview
links the chapter to previous chapters and states the chapter's goals, i.e., what
the reader should gain from the chapter.

B Exumples: An extensive number of worked examples are used throughout the
text to reinforce the theoretical concepts being developed. These examples
contain all the detailsof the analysis or design, so the reader does not have to
fill in missing steps.

B Test your understanding: Exercise or drill problemsare included throughout
each chapter. These problems are generally placed immediately after an
example problem, rather than at the end of a long section. so that readers can
immediately test their understanding of the material just covered. Answers are
given for each drill problem so readers do not have to search for an answer at
the end of the book. These exercise problems will reinforce readers' grasp of
the material before they move on to the next section.

B Summary section: A summary section, in bullet form, follows the text of each
chapter. Thissection summarizes the overall results derived in the chapter and
reviews the basic concepts devel oped.

B Glossary of importunt terms: A glossary of important terms followsthe
Summary section of each chapter. This section defines and summarizes the
most important termsdiscussed in the chapter.

8 Checkpoint: A checkpoint section followsthe Glossary section. This section
states the goals that should have been met and states the abilities the reader
should have gained. The Checkpoints will help assess progress before moving
on to the next chapter.

B Review questions: Alist of review questions is included at the end of each
chapter. These questions serve as a self-test to help the reader determine how
well the concepts developed in the chapter have been mastered.

B End-of-chupterproblems A large number of problems are given at the end of
each chapter, organized according to the subject of each section in the chapter



body. A larger number of problems have been included than in the second
edition. Design-oriented or open-ended problems are included at theend in a
Summary and Review section.

B Computer simulation:  Computer simulation problems are included in many
end-of-chapter problems. Computer simulation has not been directly
incorporated into the text. However, a website has been established that
considers computer simulation using MATLAB. This website contains
computer simulations of material considered in most chapters. These computer
simulations enhance the theoretical material presented. There also are exercise
or drill problems that a reader may consider.

B Reading list:  Areading list finishes up each chapter. The references, that are
a an advanced level compared with that of thistext, areindicated by an
asterisk.

B Answersio selected problems:  Answers to selected problems are given in the
last appendix. Knowing the answer to a problem isan aid and a reinforcement
in problem solving.

ICONS
—_ Computer Simulations

Design Problems and Examples

SUPPLEMENTS
Thishook is supported by the following supplements:

B Solutions Manua available to instructors in paper form and on the website.
B Power Point slides of important figures are available on the website.
B Computer simulations are available on the website.
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PR OL OGUE

Semiconductor sand the
| ntegrated Circuit

PREVIEW

e often hear that we are living in the information age. Large amounts of
W information can be obtained viathe Internet, for example, and can also be

obtained quickly over long distances via satellite communication sys-
tems. The development of the transistor and the integrated circuit ({IC) has lead to
these remarkable capabilities. The IC permeatesalmost every facet of our daily lives,
including such things as the compact disk player, the fax machine, laser scanners at
the grocery store, and the cellular telephone. One of the most dramatic examples of
IC technology isthedigital computer — arelatively small laptop computer today has
more computing capability than the equipment used to send a man to the moon afew
years ago. The semiconductor electronics field continues to be a fast-changing one.
with thousands of technical papers published each year. ®

HISTORY

The semiconductor device has afairly long history, athough the greatest explosion
of IC technology has occured during the last two or three decades.' The metal -
semiconductor contact dates back to the early work of Rraun in 1874, who discov-
ered the asymmetric nature of electrical conduction between metal contacts and
semiconductors, such as copper, iron, and lead sulfide. These devices were used as

"This brief introduction isintended to give a flavor of the history of the semicenductor device and
integrated circuit. Thousands of engineers and scientistshave made significant contributions to the
development of semiconductor €l ectronics-the few events and names mentioned here are not meant
to imply that these are theonly significantevents or people involved in the semiconductor history.



detectorsin early experiments on radio. In 1906, Pickard took out a patent for a point
contact detector using silicon and, in 1907. Pierce published rectification character-
isticsof diodes made by sputtering metals onto a variety of semiconductors.

By 1935. selenium rectifiers and silicon point contact diodes were available for
use as radio detectors. With the development of radar. the need for detector diodes
and mixersincreased. Methods of achieving high-purity silicon and germanium were
developed during thistime. A significant advance in our understanding of the metal—
semiconductor contacr was aided by developments in the semiconductor physics.
Perhaps most important during this period was Bethe’s thermionic-emission theory
in 1942, according to which the current is determined by the process of emission of
electronsinto the metal rather than by drift or diffusion.

Another big breakthrough came in December 1947 when the first transistor was
constructed and tested a Bell Telephone Laboratories by William Shockley, John
Bardeen, and Walter Brattain. Thistirst transistor was a point contacr device and used
polycrystallinegermanium. The transistor effect was soon demonstrated in silicon as
well. A significant improvement occurred at the end of 1949 when single-crystal
material was used rather than rhe polycrystalline material. The single crystal yields
uniform and improved properties throughout the whole semiconductor material.

The next significant step in the development of the transistor was the use of the
diffusion processto form the necessary junctions. This process allowed better control
of the transistor characteristics and yielded higher-frequency devices. The diffused
mesatransistor was commercially available in germanium in 1957 and in silicon in
1958. The diffusion process also allowed many transistors to be fabricated on asin-
glesilicon dlice. so the cost of these devices decreased.

THEINTEGRATED CIRCUIT (IC)

Up to this point, each component in an electronic circuit had ro he individually con-
nected by wires. In September 1958. Jack Kiiby of Texas Instruments demonstrated
the first integrated circuit, which was fabricated in germanium. At about the same
time, Robert Noyce of Fairchild Semiconductor introduced the integrated circuit in
silicon using a planar technology. The tirst circuit used bipolar transistors. Practical
MOS transistors were then developed in the mid-'60s. The MOS technol ogies, espe-
cially CMOS, have become a major focusfor IC design and development. Silicon is
the main semiconductor material. Gatlium arsenide and other ¢compound semicon-
ductorsare used for special applications requiring very high frequency devices and
for optical devices.

Since that first IC, circuit design has become more sophisticated, and the inte-
grated circuit more complex. A single silicon chip may be on the order of 1 square
centimeter and contain over a million transistors. Some 1Cs may have more than a
hundred terminals, while an individual transistor has only three. An IC can contain
the arithmetic, logic. and memory functions on a single semiconductor chip—the
primary example of this type of IC is the microprocessor. Intense research on silicon
processing and increased automation in design and manufacturing have led to lower
costs and higher fabrication yields.



FABRICATION

Theintegrated circuit isadirect result of the development of various processing tech-
niques needed to fabricate the transistor and interconnect lines on the single chip.
Thetotal collection of these processesfor making an IC is called arechnology. The
following few paragraphs provide an introduction to a few of these processes. This
introduction is intended to provide the reader with some of the basic terminology
used in processing.

Thermal Oxidation A major reason for the success of silicon ICs isthefact that an
excellent native oxide, Si(,, can be formed on the surface of silicon. This oxide is
used asagate insulator in the MOSFET and is also used as an insulator, known asthe
field oxide, between devices. Metal interconnect lines that connect various devices
can be placed on top of the field oxide. Most other semiconductors do not form na-
tive oxides that are of sufficient quality to be used in device fabrication.

Silicon will oxidizeat room temperature in air forming athin native oxide of ap-
proximately 25 A thick. However, most oxidationsare done at elevated temperatures
since the basic process requires that oxygen diffuse through the existing oxide to the
silicon surface where a reaction can occur A schematic of the oxidation process
isshown in Figure 0.1. Oxygen diffuses across a stagnant gas layer directly adjacent
to the oxide surface and then diffuses through the existing oxide layer to the silicon
surface where the reaction between O, and Si forms §i()». Because of this reaction,
silicon is actually consumed from the surface of the silicon. The amount of silicon
consumed is approximately 44 percent of the thicknessof the final oxide.

Photomasks and Photolithography The actual circuitry on cach chip is created
through the use ol photomasks and photolithography. The photomask is a physical
representation of adevice or a portion of a device. Opaque regions on the mask are
made of an ultraviolet-light-absorbing material. A photosensitive layer, called pho-
toresist, isfirst spread over the surface of the semiconductor. The photoresist is an
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Figure 0.1 | Schematic of the oxidation
process.
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Figure 0.2 | Schematic showing the use of a photomask

organic polymer that undergoes chemical change when exposed to ultraviolet light.
The photoresist is exposed to ultraviolet light through the photomask as indicated in
Figure 0.2. The photoresist is thcn developed in achemical solution. The devel oper
is used to remove the unwanted portions of the photoresist and generate the appro-
pricte patterns on the silicon. The photomasks and photolithography process is
critical in that it determines how small the devices can he made. Instead of using
ultraviolet light, electrons and x-rays can also be used to expose the photoresist.

Etching After the photoresist pattern is formed, the remaining photoresist can be
used as a mask, so that the material not covered hy the photoresist can be etched.
Plasmaetching is now the standard process used in IC fabrication. Typically. an etch
gassuch aschlorofluorocarbonsareinjected into alow-pressure chamber. A plasmais
created by applying u radio-frequency voltage between cathode and anode terminals.
Thesilicon wafer is placed on the cathode. Positively charged ionsin the plasma are
accelerated toward the cathode and bombard the wafer normal to the surface, The
actual chemical and physical reaction at the surface is complex. but the net result is
thet silicon can he etched anisotropically in very selected regions of the wafer. If pho-
toresistis applied on the surtace of silicon dioxide. then the silicon dioxide can also
beetched in asimilar way.

Diffusion A thermal processthat is used extensively in IC fabrication isdiffusion.
Diffusionis the process hy which specific types of "impurity" atoms can be intro-
duced into the silicon material. This doping process changes the conductivity type of
the silicon so that pn junctions can be formed. (The pn junction is a basic building
block of semiconductor devices.) Silicon wafers are oxidized to form a layer of sili-
con dioxide and windows are opened in the oxide in selected areas using photolitho-
graphy and etching as just described.

The wafers are then placed in a high-temperature furnace (about 1100 C) and
dopant atoms such as boron or phosphorus are introduced. The dopant atoms gradu-
dly diffuse or move into the silicon duc 1o a density gradient. Since the diffusion
processrequires a gradient in the concentration of atoms, the final concentration of



diffused atoms isnonlinear. asshown in Figure 0.3. When the wafer isremoved from
the furnace and the wafer temperature return:, to room temperature, the diffusion co-
efficient of the dopant atoms is essentially zero so that the dopant atoms are then
fixed in the silicon material.

Ion Implantation A fabrication process that is an alternative to high-temperature
diffusion is ion implantation. A beam of dopant ions is accelerated to a high energy
and is directed at the surface of a semiconductor. As the ions enter the silicon, they
collide with silicon atoms and lose energy and finally come to rest at some depth
within the crystal. Since the collision process is statistical in nature, thereis adistri-
bution in the depth of penetration of the dopant ions. Figure 0.4 shows such an ex-
ample of the implaatation of boron into silicon at a particular energy.

Two advantages of the ion implantation process compared to diffusion are
(1) the ion implantation process is a low temperature process and (2) very well de-
fined doping layers can be achieved. Photoresist layersor layersof oxide can he used
to block the penetration of dopant atoms so that ion implantation can occur in very
selected regions of the silicon.
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One disadvantage of ion implantation is that the silicon crystal is damaged
by the penetrating dopant atoms because of collisions between the incident dopant
atoms and the host silicon atoms. However, most of the damage can he removed by
thermal annealing the silicon at an elevated temperature. The thermal annealing tem-
perature, however, is normally much less that the diffusion processtemperature.

Metallization, Bonding, and Packaging After the semiconductor devices have
been fabricated by the processing steps discussed. they need to be connected to each
other toform the circuit. Metal films are generally deposited by a vapor deposition
technique and the actua interconnect lines are formed using photolithography and
etching. In general, a protective layer of silicon nitride is finally deposited over the
entirechip.

Theindividual integrated circuit chips are separated by scribing and breaking the
wafer. The integratedcircuit chipisthen tnounted in apackage. Lead bondersarefinally
used to attach gold or aluminum wires between the chip and package terminals.

Summary: Simplified Fabrication of a pn Junction Figure 0.5 shows the basic
stepsinfomung a pn junction. These stepsinvolve some of the processing described
in the previous paragraphs.
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The Crygal Structure of Solids

PREVIEW

ductor materials and devices. Theelectrical properties of solids are therefore

of primary interest. The semiconductor isin general asingle-crystal material.
The electrical properties of a single-crystal material are determined not only by the
chemical composition but also by the arrangement of atoms in the solid; this being
true, a brief study of the crystal structure of solids is warranted. The tormation, or
growth, of the single-crystal material is an important part of semiconductor technol-
ogy. A short discussion of several growth techniques isincluded in this chapter to
provide the reader with some of the terminology that describes semiconductor device
structures. This introductory chapter provides the necessary bhackground in single-
crystal materials and crystal growth for the basic understanding of the electrical
properties of semiconductor materials and devices. B

T his text deals with the electrical properties and characteristics of semicon-

1.1/ SEMICONDUCTOR MATERIALS

Semiconductors are agroup of materials having conductivities between those of met-
as and insulators. Two general classifications of semiconductors are the elemental
semiconductor materials, found in group IV of the periodic table, and the compound
semiconductor materials, most of which are formed from special combinations of
group IIT and group V elements. Table 1.1 shows a portion of the periodic table in
which the more common semiconductors are found and Table 1.2 lists a few of the
semiconductor materials. (Semiconductorscan also be formed from combinations of
groupIl and group VI elements. but in general these will not beconsidered in thistext.)

The elemental materials, those that are composed of single species of atoms, are
silicon and germanium. Silicon is by far the most common semiconductor used in in-
tegrated circuits and will be emphasized to a great extent.
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Table 1.1{ A portion Table12 | A list of some semiconductor

of the periodic table materials

Hi v \ Elemental semiconductors

B C S Silicon

Al Si P Ge Germanium

Ic;']a Ge é‘s Compound semiconductors
AIP Aluminurn phosphide
AlAs Aluminum arsenide
GaP Gallium phosphidr
GaAs Gallium arsenide
InP Indium phosphide

Thetwo-element, or Ainary, compoundssuch asgallium arsenide or gallium phos-
phide are formed by combining one group III and one group V element. Gallium
arsenideisoneof the morecommon of the compound semiconductors. Itsgood optical
properties make it useful in optical devices. GaAsisalso used in specialized applica-
tionsin which, forexample, high speed isrequired.

We can also form a three-element, or rernary, compound semiconductor. An ex-
ample is Al,Ga,_.As, in which the subscript x indicates the fraction of the lower
atomic number element component. More complex semiconductors can also be
formed that provide flexibility when choosing material properties.

1.21 TYPESOF SOLIDS

Amorphous, polycrystalline, and single crystal are the three general types of solids.
Each type ischaracterized by the size of an ordered region within the material. An or-
dered region isaspatial volume in which atomsor molecules have a regular geomet-
ric arrangement or periodicity. Amorphous materials have order only within a few
atomic or molecular dimensions, while polycrystalline materials have a high degree

Figure1.1 | Schematics of three general types o crystals: (a) amorphous, (b) polycrystalline,
(c) Snglecrystal.



of order over many atomic or molecular dimensions. These ordered regions. or
single-crystd regions, vary in size and orientation with respect to one another. The
single-crystal regions are called grains and are separated from one another by grain
boundaries. Single-crystal materials, ideally, have a high degree of order, or regular
geometric periodicity, throughout the entire volume of the material. The advantage
of asingle-crystal materia isthat. in general, its electrical properties are superior to
those of a nonsingle-crystal material, since grain boundaries tend to degrade the
electrical characteristics. Two-dimensional representations of amorphous, polycrys-
talline, and single-crystal materials are shown in Figure 1.1.

131 SPACE LATTICES

Our primary concern will be the single crystal with its regular geometric periodicity
in the atomic arrangement. A representative unit, or group of atoms, is repeated at
regular intervalsin each of the three dimensions to form the single crystal. The peri-
odic arrangement of atomsin the crystal is called the lattice.

1.3.1 Primitiveand Unit Cdl

We can represent a particular atomic array by a dot that is called a lattice paint.
Figure 1.2 shows an infinite two-dimensional array of lattice points. The simplest
means of repeating an atomic array is by translation. Each lattice point in Figure 1.2
can be trandated adistance a; in one direction and a distance b, in a second nonco-
linear direction to generate the two-dimensiunal lattice. A third noncolinear transla-
tion will produce the three-dimensional lattice. The trandlation directions need not
be perpendicular.

Since the three-dimensional lattice is a periodic repetition of a group of atoms,
we do not need to consider theentire lattice, but only afundamental unit that is being
repeated. Aunit cell isasmall volume of the crystal that can be used to reproduce the
entirecrystal. Aunit cell is not a unique entity. Figure 1.3 shows several possible unit
cellsin atwo-dimensional lattice.

Figure 1.2 | Two-dimensiond Figure 1.3 Two-dimensional representation of asingle-crystal
representation of asingle-crystd lattice. | attice showing various possible unit cells.
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Figure 14 | A generalized
primitive unit cell.

The unit ccll A can be translated in directionsa: and #-, the unit ¢cell B can be
translated in directions a4 and &5, and the entire two-dimensional lattice can be con-
structed by the tranglations of either of these unit cells. The unit cellsC and D in Fig-
ure 1.3 can also be used to construct the entire lattice by using the appropriate trans-
lations. This discussion of two-dimensional unit cells can easily be extended to three
dimensions to describe a real single-crystal material.

Aprirnitive cell is the smallest unit cell that can be repeated to form the lattice.
In many cases, it is more convenient to use a unit cell that is not a primitive cell. Unit
cells may be chosen that have orthogonal sides, for example, whereas the sides of a
primitive cell may be nonorthogonal.

A generalized three-dimensional unit cell is shown in Figure 1.4. The relation-
ship between this cell and the lattice is characterized by three vectors &, 6, and 2,
which need not be perpendicular and which may or may not beequal in length. Every
equivalent lattice point in the three-dimensional crystal can hefound using the vector

wherep, g, and s are integers. Since the location of the origin isarbitrary, we will let
p. g, and s be positive integers for simplicity.

13.2 Basic Crystal Structures

Before we discuss the semiconductor crystal, let us consider three crystal structures
and determine some of the basic characteristics of these crystals. Figure 1.5 shows
the simple cubic, body-centered cubic, and face-centered cubic structures. For these
simple structures, we may choose unit cells such that the general vectors z, 6, and &
are perpendicular to each other and the lengths are equal. The simple cubic (se¢) struc-
ture has an atom located at each corner: the hod?-centered cubic {(bee) structure has
an additional atom at the center of thecube; and the face-centered cubic (fcc) structure
has additional atoms on each face plane.

By knowing the crystal structure of a material and its lattice dimensions, we can
determine several characteristics of the crystal. For example, we can determine the
volume density of atoms.



Figurel5| Three lattice types: (a) simple cuhic. (b) body-centered cubic. (c) face-centered cuhic.

Objective

To find the volume density of atomsin acrystal.

Consider a single-crystal material that is a body-centered cuhic with a lattice constant
a=5A=5x 10~% cm. A corner atom is shared by eight unit cells which meet at each corner
so that each comer atom effectively contributes one-eighth of its volume to each unit cell. The
eight comer atomsthen contributean cquivalent of one atom to the unit cell. If weadd thebody-
centered atom to the comer atoms, each unit celt contains an equivalent of two atoms.

® Solution
The volume density of atoms is then found as

2atoms

Densty = (5 105y

= 1.6 x 10** atoms per cm'

B Comment

The volume density of atoms just calculated represents the order of magnitude of density for
mos materids. The actual density is afunction of the crystal type and crystal structure since
the packing density —number of atomns per unit cell—depends on crystal structure.

TEST YOUR UNDERSTANDING

EL1 Thelatticeconstant of a face-centered-cubic structure is4.75 A. Determine the vol-
ume density of atoms. {,_wa (] > ¢/'¢ 'suy)

EL2 The volumedensity of atoms for asimple cubic lattice is3 X 10?° cm™~?, Assume that
the atoms are hard spheres with each atom touching its nearest neighbor. Determine
the lattice constant and the radium of the atom. (¥ 191 = +"¥ 7Tt = Uz suy)

133 Crydal Planesand Miller Indices

Since real crystals are not infinitely large, they eventually terminate a a surface.
Semiconductor devices are fabricated at or near a surface, SO the surface properties

EXAMPLE 1.1
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may influence the device chnracteristics. We would like to be able to describe these
surfaces in terms of the lattice. Surfaces, or planes through the crystal, can be de-
scribed by first considering the interceptsof the plane alongthez, &, and & axes used
to describe the lattice.

EXAMPLE 1.2

Objective

To describe the plane shown in Figure 1.6. (The lattice points in Figure 1.6 are shown along
the, 5, and? axes only.)

Figure 1.6 1 A representative crystal
lattice plane.

Solution
From Equation {1.1), the intercepts of the plane correspond top = 3,4 = 2, and s = |. Now
write the reciprocals of the intercepts, which gives

Multiply by the lowest common denominator, which in this case is 6. to obtain (2, 3, 6). The
plane in Figure 1.6 is then referred to as the (236) plane. The integers are referred to as the
Miller indices. We will refer to ageneral plane as the (#kf) plane.

m Comment
We can show that the same three Miller indices are obtained for any planethat is parallel to the
one shown in Figure 1.6. Any parallel plane isentirely equivalent to any other

Three planes that are commonly considered in a cubic crystal are shown in Fig-
ure 1.7. The planein Figure 1.7a is parallel to the # and  axes so the intercepts are
givenasp = 1,4 = 00, and s = oo, Taking the reciprocal, we obtain the Miller in-
dicesas(l, 0, 0), so the plane shown in Figure 1.7a is referred to as the (100) plane.
Again, any planeparallel totheoneshowninFigure1.7a and separated by an integral



(b)

Figure 17 | Threelattice planes: (a) (100) plane. (b} (110) plane. (<) (111) plane.

number of lattice constantsisequivalent and is referred to as the (100) plane. One ad-
vantageto taking the reciprocal of the interceptsto obtain the Miller indicesis that the
useof infinity isavoided when describing a planethat is parallel to an axis. If we were
to describea plane passing through the origin of our system, we would obtain infin-
ity as one or more of the Miller indices after taking the reciprocal of the intercepts.
However, thelocation of the origin of our system isentirely arbitrary and so, by trans-
lating the origin to another equival ent lattice point. we can avoid the use of infinity in
the set of Miller indices.

For the simple cubic structure, the body-centered cubic. and the face-centered
cubic, thereisahigh degree of symmetry. The axescan be rotated by 90" in each of the
three dimensionsand each lattice point can again bedescribed by Equation (1.1) as

Each face plane of the cubic structure shown in Figure 1.7a is entirely equivalent.
These planes are grouped together and are referred to as the { 100} set of planes.

We may also consider the planes shown in Figures 1.7b and 1.7c. Theintercepts
of the planeshown in Figure l.7barep = 1,q = |,and s = co. The Miller indices
are found by taking the reciprocal of these intercepts and, as a result, this plane is
referredto asthe (110} plane. In asimilar way, the plane shown in Figure 1.7c isre-
feredtoasthe (111) plane.

One characteristic of a crystal that can be determined is the distance between
nearest equivalent parallel planes. Another characteristic is the surface concentration
of atoms, number per square centimeter (#/cm®), that are cut by a particular plane.
Again, asingle-crystal semiconductor is not infinitely large and must terminate at
some surface. The surface density of atoms may be important, for example, in deter-
mining how another material, such asan insulator, will "*fit" on the surface of a semi-
conductor material.
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EXAMPLE 1.3

Objective

Tocalculate the surface density of atoms on a particular plane in acrystal.

Consider the body-centered cubic structure and the (110) plane shown in Figure 1.8a.
Assume the atoms can be represented as hard spheres with the closest atoms touching each
other. Assume the lattice constant isa; = 5A. Figure 1.8b shows how the atoms are cut by the
(110) plane.

The atom at each corner isshared by four similar equivalent lattice planes. so each corner
atom effectively contributes one-fourth of its area 1o this lattice plane as indicated in the fig-
ure. The four corner atoms then effectively contribute one atom to this lattice plane. The atom
in the center is completely enclosed in the lattice plane. There is no other equivalent plane that
cuts the center atom and the comer atoms, so theentire center atom is included in the number
of atoms in the crystal plane. The lattice plane in Figure 1.8b. then. contains two atoms.

Figure 18 | (a) The (110) plane in a body-centered cubic and (b) the atoms cut by the
(110) plane in a body-centered cubic.

W Solution
We find the surface density by dividing the number of lattice atoms by the surface area, or in
this case

2atoms 2

Surface density =
@)@ v2) (5 x 107%)2(v2)

which is

B Comment
The surface density oi atoms isafunction of the panicular crystal planein the lattice and gen-
erally varier from one crystal plane to another



TEST YOUR UNDERSTANDING

E13 Determine the distance between nearest (110) planesin asimplecubic latticewith a
|attice congtant of «y = 4.83A. (¥ Th's 'SUV)

E14 Thelattice congtant of a face-centered-cubicstructureis 4.75 A. Calculate the surface
dengty of atomsfor (a) a (100) plane and (&) a{110) plane.
[, wo 01 %29, _w> 0T x 98'8(e) suy]

Inaddition to describing crystal planesin alattice, we may want todescribea par-
ticulardirectionin thecrystal. Thedirection can beexpressed asa set of threc integers
which arethe components of a vector in that direction. For example, the body diago-
nd in asimplecubic lattice iscomposed of vector components I. 1, |. The body diag-
ona isthen described asthe[ I I1]direction. The brackets are used to designatedirec-
tion as distinct from the parentheses used for the crystal planes. The three basic
directionsand the associated crystal planesfor the simple cubic structure areshownin
Figure 1.9. Notethat in the simple cubic | attices, the [#k{] direction is perpendicular to
the (hkf) plane. This perpendicularity may not be true in noncubic lattices.

1.3.4 TheDiamond Structure

As dready stated, silicon isthe most common semiconductor material. Silicon is re-
ferred to as a group 'V element and has a diamond crystal structure. Germanium is
also agroup IV element and has the same diamond structure. A unit cell of the dia-
mond structure, shown in Figure 1.10, is more complicated than the simple cubic
structuresthat we have considered up to this point.

We may begin to understand the diamond lattice by considering the tetrahedral
structureshown in Figure I.11. Thisstructure is basically a body-centered cubic with

Figure19 | Threelattice directionsand planes: (a) (100) plane and [100] directiun, (b} ¢110) plane and 1] direction,
(o iy planeand 111} direciion.
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Figure1.11 | The tetrahedral
gtructureof closest neighbors
Figure1.10| The diamond structure. in the diamond lattice.

Figure1.12 | Portions of the diamond lattice: () bottom half and (b) top half

four of the comer atoms missing. Every atom in the tetrahedral structure has four
nearest neighbors and it i s this structure which is the basic building block of the dia-
mond lattice.

There are several waysto visualizethe diamond structure. One way to gain afur-
ther understanding of the diamond lattice isby considering Figure |.12. Figure |.12a
shows two body-centercd cubic, or tetrahedral, structures diagonally adjacent to each
other. The shaded circles represent atoms in the lattice that are generated when the
structure is translated to the right or left, one lattice constant, a. Figure 1.12b repre-
sents the top half of the diamond structure. The top half again consists of two tetra-
hedral structures joined diagonally, but which are at 90" with respect to the bottom-
half diagonal. An important characteristic of the diamond lattice is that any atom
within the diamond structure will have four nearest neighboring atoms. We will note
this characteristic again in our discussion of atomic bonding in the next section.



1.4 Atomic Bonding

Figure 1.14 | The tetrahedra
structureof closest neighborsin
Figure 1131 The zincblende (sphalerite) lattice of GaAs. the zincblende lattice

Thediamond structurerefersto the particular lattice in which all atomsareof the
same species, such as silicon or germanium. The rincblende (sphalerite) structure
differsfrom the diamond structure only in that there are two different types of atoms
in the lattice. Compound semiconductors, such as gallium arsenide, have the zinc-
blende structure shown in Figure 1.13. The important feature of both the diamond
and the zincblende structures is that the atoms are joined together to form a tetrahe-
dron. Figure 1.14 shows the basic tetrahedral structure of GaAs in which each Ga
aom hasfour nearest As neighbors and each Asatom hasfour nearest Ga neighbors.
Thisfigureal so begins to show the interpenetration of two sublattices that can be used
to generate the diamond or zincblende lattice.

TEST YOUR UNDERSTANDING

F1.5 Thelaticecongtant of silicon is5.43A. Calculatethe volumedensity of silicon
aoms (_w2 .0 *x S'suy)

141 ATOMIC BONDING

e have been considering various single-crystal structures. The question arises asto
why one particular crystal structureis favored over another for a particular assembly
o atoms. Afundamental law of nature is that the total energy of a system in thermal
equilibrium tends to reach a minimum value. The interaction that occurs between
atomstoform asolid and to reach the minimum total energy depends on the type of
aom or atoms involved. The type of bond, or interaction, between atoms, then, de-
pends on the particular atom or atoms in the crystal. If there is not a strong bond be-
tween atoms, they will not " stick together' to create a solid.
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The interaction between atoms can be described by quantum mechanics. Al-
though an introduction to quantum mechanics is presented in the next chapter, the
guantum-mechanical description of the atomic bonding interaction is still beyond the
scopeof thistext. Wecan neverthel ess obtain aqualitative understanding of how vas-
ious atoms interact by considering the valence, or outermost, electrons of an atom.

The atoms at the two extremes of the periodic table (excepting the inert ele-
ments) tend to lose or gain valence electrons, thus forming ions. These ions then es-
sentially have complete outer energy shells. The elements in group 1 of the periodic
table tend to lose their one electron and become positively charged. while the ele-
ments in group VI tend to gain an electron and become negatively charged. These
oppositely charged ions then experience a coulomb attraction and foim a bond re-
ferred to as an ionic kond. Tf the ions were to get too close, a repulsive force would
become dominant, so an equilibrium distance results between these two ions. In a
crystal, negatively charged ionstend to be surrounded by positively charged ionsand
positively charged ions tend to he surrounded by negatively charged ions, so a peri-
odic array of the atoms isformed to create the lattice. A classic example of ionic
bonding is sodium chloride.

Theinteraction of atomstendsto form closed valence shells such as we see in
ionic bonding. Another atomic bond that tends to achieve closed-valence energy
shells is covalent bonding, an example of which isfound in the hydrogen molecule.
A hydrogen atom has one electron and needs one more electron to compl ete the low-
est energy shell. A schematic of two noninteracting hydrogen atoms, and the hydro-
gen molecule with the covalent bonding, are shown in Figure 1.15. Covalent bond-
ing results in electrons being shared between atoms, so that in effect the valence
energy shell of each atomisfull.

Atoms in group IV of the periodic table, such as silicon and germanium, also
tend to form covalent honds. Each of these elements has four valence electrons and
needs four more electrons to compl ete the valence energy shell. If asilicon atom, for
example, hasfour nearest neighbors, with each neighbor atom contributing one va-
lence electron to be shared. then the center atom will in effect have eight elecirons in
its outer shell. Figure 1.16a schematically shows live noninteracting silicon atoms
with thefour valence el ectrons around each atom. A two-dimensional representation

Figure 1.15 ! Represcntation of @ ®)
(a) hydrogen valenceelectrons

and (b} covaent bondingin a Figure 1.16 | Representation of {(a) slicon valence
hydrogen molecule, electronsand (b) covalent bondingin the silicon crystal.
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of the covalent bonding in silicon is shown in Figure 1.16b. The center atom has
eight shared valence electrons.

A significant difference between the covalent bonding of hydrogen and of sili-
con is that, when the hydrogen molecule is formed, it has no additional electrons to
form additional covalent bonds, while the outer silicon atoms always have valence
electrons available for additional covalent bonding. The silicon array may then be
formed into an infinite crystal, with each silicon atom having four nearest neighbors
and eight shared electrons. The four nearest neighbors in silicon forming the covalent
bond correspond to the tetrahedral structure and the diamond lattice, which were
shown in Figures 1.11 and 1.10, respectively. Atomic bonding and crystal structure
areobvioudy directly related.

The third major atomic bonding scheme is referred to as merallic bonding.
Group | elements have one valence cleclron. If two sodium atoms (Z = 11), for ex-
ample. are brought into close proximity, the valence electrons interact in a way sim-
ilar to that in covalent bonding. When a third sodium atom is brought into close prox-
imity with the first two, the valence electrons can also interact and continue to form
abond. Solid sodium has a body-centered cubic structure, so each atom has eight
nearest neighbors with each atom sharing many valence electrons. We may think of
the positive metallic ions as being surrounded by a sea of negative electrons, the solid
being held together by the electrostatic forces. This description gives a qualitative
picture of the metallic bond.

A fourth type of atomic bond. called the Van der Waals bond, is the weakest of
the chemical bonds. A hydrogen fluoride (HF) molecule, for example, is formed by
anionic bond. The effective center of the positive charge of the moleculeis not the
same as the effective center of the negative charge. This nonsymmetry in the charge
disgtribution resultsin asmall electric dipole that can interact with the dipoles of other
HF molecules. With these weak interactions, solids formed by the Van der Waals
bondshavearelatively low melting temperature— infact, most of these materials are
in gaseous form at room temperature.

*1.L5| IMPERFECTIONSAND IMPURITIES
IN SOLIDS

Up to this point, we have been considering an ideal single-crystal structure. In areal
crystal, thelattice is not perfect, hut contains imperfections or defects; that is, the per-
fect geometricperiodicity isdisrupted in some manner. Imperfections tend to alter the
electrical properties of a material and, in some cases, electrical parameters can be
dominated by these defects or impurities.

151 Imperfectionsin Solids

Ore type of imperfection that all crystals have in common is atomic thermal vibra-
tion. Aperfect single crystal contains atoms at particular lattice sites, the atoms sep-
arated from each other by a distance we have assumed to be constant. The atoms in a

*| ndicates sections that can be Skippad without loss of continuity.
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Vacancy kg

Interstitial

Figure 1.17 | Two-dimensional representation of a single-crystal lattice showing (a) a vacancy defect
and {b) an interstitial defect.

crystal, however, have a certain thermal energy, which is a function of temperature.
The thermal energy causes the atoms to vibrate in a random manner about an egui-
librinm lattice point. Thisrandom thermal motion causes the distance between atoms
torandomly fluctuate, slightly disrupting the perfect geometric arrangement of atoms.
Thisimperfection, called |attice vibrations, affectssome electrical parameters, aswe
will seelater in our discussion of semiconductor material characteristics.

Another type of defectiscalled a point defect. There are several of thistype that
we need to consider. Again, in an ideal single-crystal lattice, the atoms are arranged
in a perfect periodic arrangement. However, in area crystal, an atom may be missing
from a particul ar lattice site. Thisdefect isreferred to as avacancy, itisschematically
shown in Figure 1.17a. In another situation, an atom may be located between lattice
sites. This defect is referred to as an interstitial and is schematically shown in Fig-
ure 1.17b. In the case of vacancy and interstitial defects, not only is the perfect geo-
metric arrangement of atoms broken, but also the ideal chemical bonding between
atomsis disrupted, which tends to change the electrical properties of the material. A
vacancy and interstitial may be in close enough proximity lo exhibit an interaction
between the two point defects. This vacancy-interstitial defect, also known as a
Frenkel defect, producesdifferent effects than the simple vacancy or interstitial.

The point defects involve single atoms or single-atom locations. In forming
single-crystal materials, more complex defects may occur. A line defect. for example,
occurs when an entire row of atoms is missing from its normal lattice site. This de-
fect isreferred to as aline dislocation and is shown in Figure 1.18. As with a point
defect, alinedislocation disrupts both the normal geometric periodicity of the lattice
and the ideal atomic bonds in the crystal. Thisdislocation can also alter the electrical
properties of the material, usually in a more unpredictable manner than the simple
point defects.

Other complex dislocations can also occur in it crystal lattice. However. thisin-
troductory discussion isintended only to present afew of the basic types of defect,
and to show that areal crystal is not necessarily a perfect lattice structure. The effect
of theseimperfectionson the electrical properties of a semiconductor will be consid-
ered in later chapters.
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Figurel18 | A two-
dimensiona representation
of alinedislocation.

Figure 119 | Two-dimensional representation of asingle-crystal lattice showing (a) asubgtitutiona impurity
ad (b) an intergitital impurity.

152 Impuritiesin Solids

Foreign atoms, or impurity atoms, may be present in acrystal lattice. Impurity atoms
ey be located at normal lattice sites, in which case they are called substitutional im-
purities. Impurity atoms may also be located between normal sites, in which case
they are calledinterstitial impurities. Both these impurities are lattice defectsand are
schematically shown in Figure 1.19. Some impurities, such as oxygenin silicon, tend
to heessentially inert; however, other impurities, such as gold or phosphorus in sili-
con, can drastically alter the electrical properties of the material.

In Chapter 4 we will see that, by adding controlled amounts of particular impu-
rity atoms, the electrical characteristics of asemiconductor material can be favorably
atered. The technique of adding impurity atoms to a semiconductor material in order
to changeitsconductivity is called doping. There are two general methodsof doping:
impurity diffusion and ion implantation.

Theactual diffusion process depends to some extent on the material but, in gen-
era, impurity diffusion occurs when a semiconductor crystal is placed in a high-
temperature (= 1000°C) gaseous atmosphere containing the desired impurity atom.
At thishigh temperature, many of the crystal atoms can randomly move in and out of
their single-crystal lattice sites. Vacancies may be created by this random motion so
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that impurity atoms can move through the lattice by hopping from one vacancy to an-
other. Impurity diffusion is the process by which impurity particles move from are-
gion of high concentration near the surface, toa region of lower concentration within
thecrystal. When the temperature decreases, theimpurity atoms become permanently
frozen into the substitutional lattice sites. Diffusion of various impurities into selected
regions of a semiconductor allows us to fabricate complex electronic circuitsin a
single semiconductor crystal.

lon implantation generally takes place at a lower temperature than diffusion. A
beam of impurity ions is accelerated to kinetic energies in the range of 50 keV or
greater and then directed to the surface of the semiconductor. The high-energy impu-
rity ions enter the crystal and come to rest at some average depth from the surface.
One advantage of ion implantation is that controlled numbers of impurity atoms can
be introduced into specific regions of the crystal. A disadvantage of thistechniqueis
that the incident impurity atoms collide with the crystal atoms. causing lattice-
displacement damage. However, most of the lattice damage can he removed by ther-
mal annealing, in which the temperature of thecrystal israised for a short time. Ther-
mal annealingis arequired step after implantation.

*1.6 | GROWTH OF SEMICONDUCTOR
MATERIALS

The success in fabricating very large scale integrated (VLSI) circuits isaresult, to a
large extent, of the development of and improvement in the formation or growth of
pure single-crystal semiconductor materials. Semiconductors are some of the purest
materials. Silicon, for example, has concentrations of most impurities of less than
1 part in 10 billion. The high purity requirement means that extreme care is necessary
inthe growth and the treatment of the material at each step of the fabrication process.
The mechanics and kinetics of crystal growth are extremely complex and will be de-
scribed in only very general terms in this text. However, ageneral knowledge of the
growth techniques and terminology is valuable.

1.6.1 GrowthfromaMéet

A common technique for growing single-crystal materials is called the Czochraiski
method. In this technique, a small piece of single-crystal material, known as a seed,
is brought into contact with the surface of the same material in liquid phase, and then
slowly pulled from the melt. Asthe seed is slowly pulled, solidificationoccurs along
theplane between the solid-liquid interface. Usually thecrystal isal sorotated slowly
asitisbeing pulled, to provide a slight stirring action to the melt, resulting in a more
uniform temperature. Controlled amounts of specific impurity atoms, such as boren
or phosphorus, may be added to the melt so that the grown semiconductor crystal is
intentionally doped with the impurity atom. Figure 1.20 shows a schematic of the
Czochralski growth processand a silicon ingot or boule grown by this process.

*Indicatessections that can be skipped without loss of cOntinuity
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Figurel.20 | (a) Mode of acrystal puller and (b) photograph of a silicon wafer with an
may of integrated circuits. The circuits are tested on the wafer then sawed apan into chips
that are mounted info packages. (Photo courtesy of Intel Corporation.)
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Some impurities may be present in the ingot that are undesirabte. Zone refining
is acommon technique for purifying material. A high-temperature coil. or r-f induc-
tion coil, isslowly passed along the length of the boule. The temperature induced by
the cail is high enough so that athin layer of liquid isformed. At the solid-liquid in-
terface, there is a distrihution of impurities between the two phases. The parameter
that describes this distrihution is called the segregation coefficient: the ratio of the
concentration of impurities in the solid to the concentration in the liquid. 1f the seg-
regation coefficient is 0.1, for example, the concentration of impurities in the liquid
isafactor of 10 greater than that in the solid. As the liquid zone moves through the
material. the impurities are driven along with the liquid. After several passes of the
r-f coil, most impurities are at the end of the bar, which can then be cut off. The mov-
ing molten zone, or the zone-refining technique, can result in considerable purification.

After the semiconductor is grown, the boule is mechanically trimmed to the
proper diameter and a Ra is ground over the entire length of the boule to denote the
crystal orientation. The Ra isperpendicular tothe[110] direction or indicatesthe(110}
plane. (See Figure 1.20b.) Thisthen allowstheindividual chips to befabricated along
given crystal planessothat the chips can he sawed apan moreeasily. The boule isthen
sliced into wafers. The wafer must he thick enough to mechanically support itself. A
mechanical two-sided lapping operation produces a Rat wafer of uniform thickness.
Sincethelapping procedure can |leave a surface damaged andcontaminated by the me-
chanical operation, the surface must be removed by chemical etching. Thefinal stepis
polishing. This provides asmooth surface on which devicesmay befabricated or fur-
ther growth processesmay be carried out. Thisfinai semiconductor wafer iscalled the
substrate material.

16.2 Epitaxial Growth

A common and versatile growth technique that is used extensively in device and in-
tegrated circuit fabrication isepitaxial growth. Epitaxial growth isaprocess whereby
athin, single-crystal layer of material isgrown on the surface of asingle-crystal sub-
strate. In the epitaxial process, the single-crystal substrate acts as the seed, although
the process takes place far below the melting temperature. When an epitaxial layer is
grown on asubstrate of the same material, the process is termed homoepitaxy. Grow-
ing silicon on asilicon substrate is one example of a homoepitaxy process. At pre-
sent, a great deal of work is being done with heteroepitaxy. In a heteroepitaxy
process, although the substrate and epitaxial materials are not the same, the two crys-
tal structures should be very similar if single-crystal growth is to he obtained and if
a large number of defects are to be avoided at the epitaxial—substrate interface.
Growing epitaxial layers of the ternary alloy AlGaAs on a GaAs substrate is one ex-
ample of a heteroepitaxy process.

One epitaxia growth technique that has been used extensively is called chemi-
cal vapor-phase deposition (CVD).Silicon epitaxial layers, for example, are grown
on silicon substrates by the controlled deposition of silicon atoms onto the surface
from achemical vapor containing silicon. In one method, silicon tetrachloride reacts
with hydrogen at the surface of a heated substrate. The silicon atoms are released in



the reaction and can he deposited onto the substrate, while the other chemical reac-
tant, HCI, isin gaseous form and is swept out of the reactor. A sharp demarcation be-
tween the impurity doping in the suhstrate and in the epitaxial layer can be achieved
using the CVD process. This technique allows great flexibility in the fabrication of
semiconductor devices.

Liquid-phase epiraxy is another epitaxial growth technique. A compound of the
semiconductor with another element may have a melting temperature lower than that
of the semiconductor itself. The semiconductor substrate is held in the liquid com-
pound and, since the temperature of the melt is lower than the melting temperature of
the substrate, the substrate does not melt. Asthe solution is slowly cooled, a single-
crystal semiconductor layer grows on the seed crystal. This technique, which occurs
at alower temperature than the Czochralski method, is useful in growing group 111-v
compound semiconductors.

A versatile techniquefor growing epitaxial layersisthe molecular beam epitaxy
(MBE) process. Asubstrate isheld in vacuum at atemperature normally in the range
of 400 to 800°C, a relatively low temperature compared with many semiconductor-
processing steps. Semiconductor and dopant atoms are then evaporated onto the sur-
face of the substrate. In this technique, the doping can he precisely controlled result-
ing in very complex doping profiles. Complex ternary compounds, such as AlGaAs,
can be grown on substrates, such as GaAs, where abrupt changes in the crystal com-
position are desired. Many layers of various types of epitaxial compositions can be
grown on a substrate in this manner. These structures are extremely beneficial in op-
tical devicessuch as laser diodes.

17 1 SUMMARY

m A few of the most common semiconductor (materidswere listed. Silicon is the most
common semiconductor material.

B Thepropertiesof semiconductors and other materials are determined to alarge extent
by the single-crystal lattice structure. The unit cell isa small volume of the crystal that
is used to reproduce the entire crystal. Three basic unit cells are the simplc cuhic. hody-
centered cubic. and face-centered cubic.

B Silicon hasthediamond crystal structure. Atomsare formed in a tetrahedral contigura
tion with four nearest neighbor atoms. The binary semiconductors have a zincblende
|lattice, thet is basically the came as the diamond |attice.

B Millerindicesare used to describe planer in acrystal lattice. These planes may be used
to describe the surface of a semicnnductor material. The Miller indices are also used to
describedirectionsin acrystal.

Imperfectionsdo exist in semiconductor materials. A few of these imperfections are
vacancies, substitutiunal impuritics, and interstitial impurities. Small amounts of con-
trolled substitutional impurities can favorably alter semiconductor properties as we will
seein later chapters.

Abrief description of semiconductor growth methods was given. Bulk growth produces
the darting semiconductor material or suhctrate. Epitaxial growth can be used to control
the surface properties of a semiconductor Most semiconductor devices are fabricated

in the epitaxial layer.



CHAPTER 1 The Crystd Structure d Solids

GLOSSARY OF IMPORTANT TERMS

binary semiconductor A two-element compound semiconductor, such as gallium arsenide
(GaAs).
covalent bonding The bonding between atomsin which valence electrons are shared.

diamond lattice The atomic crystal structure of silicon, for example, in which each atom
has four nearest neighhors in a tetrahedral configuration.

doping The process of adding specific types of atoms to a semiconductor to favorably alter
the electrical characteristics.

elemental semiconductor A semiconductor composed of a single species of atom, such as
silicon or germanium.

epitaxial layer A thin, single-crystal layer of material formed on the surface of a substrate.

ion implantation One particular process of doping a semiconductor.

lattice The periodic arrangement of atoms in acrystal.

Miller indices The set of integers used to describe acrystal plane.

primitive cell The smallest unit cell that can be repcated to form alattice.

substrate A semiconductor wafer or other material used as the starling material for further
semiconductor processing. such as epitaxial growth or diffusion.

ternary semiconductor A three-element compound semiconductor. such as auminum gal-
lium arsenide (AlGaAs).

unit cell A smal volume of a crystal that can be used to reproduce the entirecrystal.

zincblende lattice A lattice structure identical to the diamond lattice except that there arc
two types of atoms instead of one.

CHECKPOINT
After studying this chapter, the reader should hare the ahility to:

Determine the volume density of atoms for various lattice structures.
Determine the Milter indices of a crystal-lattice plane.

B Sketch alattice plane riven the Miller indices.
Determine the surface density of atoms on agiven crystat-lattice plane.
Understand and describe variousdefects in a single-crystal lattice.

REVIEW QUESTIONS

1 List twoelemental semiconductor materials and two compound semiconductor
materials.

2. Sketch three lattice structures: (a} simple cubic, (4} body-centered cubic, and
(¢) face-centered cubic.
3. Describe the procedure for finding the volume density of atomsin acrystal.
Describe the procedure for obtaining the Miller indices that describe a plane in a crystal.
5. What is meant by asubstitutional impurity in acrystal? What is meant by an intcrstitial
impurity'?

E



PROBLEMS

Section 1.3 Space L attices

110

Determinethe number of atoms per unit cell in a (a} {ace-centered cubic,
(b) body-centered cubic, and (c¢) diamond |attice.

(a) Thelattice constant of GaAs is5.65 A. Determine the number of Ga atoms
and As atoms per cm®. (h) Determine the volume density of germanium atoms in a
germanium semiconductor. The lattice constant of germanium is 5.65 A.

Assume that each atom is ahard sphere with the surface of each atom in contact with
the surface of its nearest neighbor. Determine the percentage of total unit cell volume
that isoccupied in (a)asimple cubic lattice, (b) aface-centered cubic lattice,

(c) abody-centered cubic lattice, and (d) a diamond lattice.

A materia, with avolume of | cm', iscomposed of an fcc lattice with alattice
constant of 2.5 mm. The"atoms"” in this material are actually coffee beans. Assume
the coffee beans are hard spheres with each bean touching its nearest neighbor.
Determinethe volume of coffee after the coffee beans have been ground. (Assume
100 percent packing density of the ground coffee.)

If the lattice constant of silicon is5.41 A, calculate (a) the distance from the center of
one silicon atom to the center of its nearest neighbor, (h) the number density of silicon
atoms (#per cm?), and (¢} the mass density (grams per em™} of silicon.

A crystal iscomposed of two elements, A and B. The basic crystal structure is abody-
centered cubic with clements A at each of the corners and element B in the center. The
effectiveradius of element A is 1.02 A, Assume the elements arc hard spheres with the
surfaceof each A-type atom in contact with the surface of its nearest A-type neighhor.
Calculate (a) the maximum radius of the B-type atom that will fitinto this structure,
and (b) the volume density (#/cm™) of both the A-type atoms and the B-type atoms.

Thecrysta structure of sodium chloride (NaCl) is asimple cubic with the Naand C}
atomsalternating positions. Each Na atom is then surrounded by six C1 atoms and
likewiseeach Cl atom is surrounded by six Na atoms. (a) Sketch the atoms in a (100)
plane. (b) Assume the atoms arc hard spheres with nearest neighbors touching. The
effectiveradius of Nais .0 A and the effective radius of Cl is 1.8 A. Determine the
lattice constant. (c) Calculate the volume density of Naand C1 atoms. (d) Calculate
the mass density of NaCl.

{a) A materia iscomposed of two types of stoms. Atom A has an effective radius of
2.2 A and atom B hasan effective radiusof 1.8 A. Thelattice isabce with atoms A at
the comers and atom B in the center. Determine the lattice constant and the volume den-
sities of A atoms and B atoms. (b) Repeat part (a) with atoms B at the corners and atom
Ain thecenter (¢)What comparison can be made of the materials in pans (a) and (#)?

Consider the materials described in Problem 1.8 in pans (&) and (b). For each case,
caculate the surface density of A atoms and B atoms in the (110) plane. What corn
parison can be made of the two materials?

(a)The crystal structure of a particular material consists of asingle atom in the center
of acube. Thelattice constant isa, and the diameter of the atom is a;. Determine the
volumedensity of atoms and the surface density of atomsin the (110) plane.

(b) Compare the results of part (a) to the results for the case of the simple cubic struc-
tureshown in Figure 1.5a with the samelattice constant.
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(a)

Figure1.21 | Figure for Problem 1.12.
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Consider a three-dimensional cubic lattice with alattice constant equal 100. (a)
Sketch thefollowing planes: (#) (100), (i) (110}, (iii) {310), and (iv) (230). (&) Sketch
the following directions: (i) [100], (ii) [110]. (i) [310], and (iv) 1230].

For a simple cubic lattice, determine the Miller indices for the planes shown in
Figure 1.21.

The lattice constant of a simple cubic cell is 5.63 A. Calculate the distance between
the nearest parallel (@) (100), (k) (110), and {c) (111) planes.

The lauice constant of asingle crystal is 4.50 A. Calculate the surface density of
atoms {# per cm”) on the following planes: (/) (100), (i) (110), (i) (111) for each of
the following lattice structures: («) simple cubic, (h) body-centered cubic, and

{(c) face-centered cubic.

Determine the surface density of atomsfor silicon on the (a) (100) plane, (#} {110)
plane, and {¢) (}11) plane.

Consider aface-centered cubic lattice. Assume the aloms are hard spheres with the
surfaces of the nearest neighbors touching. Assume the radius of the atom is 2.25 A.
{«) Calculate the volume density of atoms in the crystal. {#) Calculate the distance
between nearest (110) planes. (c) Calculate the surfacedensity of atoms on the
(110) plane.

Section 1.4 Atomic Bonding

117
118

Calculate the density of valence electronsin silicon

The structure of GaAs is the zincblende lattice. The lattice constant is5.65 A.
Calculate the density of valence electrons in GaAs.
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119 (a) If 2 X 10" boron atoms per cm' are added to silicon as a substitutional impurity,
determine what percentage of the silicon atoms are displaced in the single crystal
|attice. (5) Repeat pall {«) for 10'° boron atoms per cm®.

120 (@) Phosphorus atoms, at a concentration of 5 x 10'* cm™*, are added to a pure
sampledt silicon. Assume the phosphorus atoms are distributed homogeneously
throughout the silicon. What is the fraction by weight of phosphorus?{#) If boron
atoms, at aconcentration of 10" em™*, are added to the material in part
(a), determinethefraction by weight of boron.

121 If2 x 16" gold atoms per cm® are added to silicon as a substitutional impurity and
aredistributed uniformly throughout the semiconductor, determine the distance
between gold atoms in terms of the silicon lattice constant. (Assumethe gold atoms
aredistributedin a rectangular or cubic array.)
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CHAP

| ntroduction to Quantum

PREVIEW

istics of semiconductor devices. Ideally, we would like to begin discussing

these devices immediately. However, in order to understand the current—
voltage characteristics, we need some knowledge of the electron behavior in acrys-
tal when the electron is subjected to various potential functions.

The motion of large objects, such as planets and satellites, can be predicted to a
high degree of accuracy using classical theoretical physics based on Newton's laws
of motion. But certain experimental results, involving electrons and high-frequency
electromagnetic waves, appear to he inconsistent with classical physics. However,
these experimental results can be predicted by the principles of quantum mechanics.
The quantum mechanical wave theory is the basis for the theory of semiconductor
physics.

We are ultimately interested in semiconductor materials whose electrical prop-
erties arc directly related to the behavior of electrons in the crystal lattice. The be-
havior and characteristics of these electrons can be described by the formulation of
guantum mechanics called wave mechanics. Theessential elementsof this wave me-
chanics, using Schrodinger's wave equation, are presented in this chapter.

Thegoal of thischapter isto provide a brief introduction to quantum mechanics
so that readers gain an understanding of and become comfortable with the analysis
techniques. Thisintroductory material formsthe basis of semiconductor physics..

T he goal of thistext is to help readers understand the operation and character-



2.1 Prindplesof Quantum Mechanics

2.11 PRINCIPLES OF QUANTUM MECHANICS

Beforewedelveinto the mathematicsof quantum mechanics. there are three principles
we need to consider: the principle of energy quanta, the wave—particle duality princi-
ple, and the uncertainty principle.

211 Energy Quanta

One experiment that demonstrates an inconsistency between experimental results
and the classical theory of light is called the photoelectric effect. If monochromatic
lightisincident on aclean surface of a material, then under certain conditions, elec-
trons (photoel ectrons) are emitted from the surface. According to classical physics.
if the intengity of thelight is large enough, the work function of the material will be
overcome and an electron will be emitted from the surface independent of the inci-
dent frequency. This result is not observed. The observed effect is that, at a constant
incident intensity, the maximum kinetic energy of the photoelectron varies linearly
with frequency with alimiting frequency v == 1y, below which no photoelectron is
produced. Thisresult isshown in Figure 2.1. If the incident intensity variesat acon-
stant frequency, the rate of photoelectron emission changes, but the maximum ki-
netic energy remains the same.

Planck postulated in 1900 that thermal radiation is emitted from a heated sur-
face in discrete packets of energy called guanta. The energy of these quanta is
givenby E = hv, where v isthe frequency of the radiation and # is aconstant now
known as Planck’s constant {# = 6.625 X J-s). Then in 1905, Einstein inter-
preted the photoelectric results by suggesting that the energy in alight waveisalso
contained in discrete packets or bundles. The particle-like packet of energy is
called aphoton, whose energy is also given by E = hv. A photon with sufficient
energy, then, can knock an electron from the surface of the material. The minimum
energy required to remove an electron is called the workfunction of the material

Incident Photodectron
monochromatic kinetic
light energy = T 55
! s
1 £
Materid ! g0
, %, Frequency, »
4
(a) (b)

Figure 211 (3) The photodectriceffect and ¢h} the maximurmykinetic energy of
the photodectronas a function of incident frequency.



CHAPTER 2 Introduction to Quantum Mechanics

and any excess photon energy goes into the kinetic energy of the photoelectron.
Thisresult was confirmed experimentally asdemonstrated in Figure 2.1. The pho-
toelectric effect shows the discrete nature of the photon and demonstrates the
particle-like behavior of the photon.

The maximum kinetic energy of the photoelectron can be written as

where kv is the incident photon energy and hvg is the minimum energy, or work
function, required to remove an electron from the surface.

EXAMPLE 2.1

Objective

To calculatethe photon energy correspondingto a particular wavelength.
Consider an x-ray with awavelengthof » = 0.708 x 107% cm.

W Solution
The energy is

This value of energy may be given in the more common unit of electron-volt (see Appendix F).
We have

B Comment
The reciprocal relation between photon energy and wavelength is demonstrated: A large m-
ergy correspondsto ashort wavelength.

2.1.2 Wave-Particle Duality

We have seen in the last section that light waves, in the photoelectric effect, behave
asif they are particles. The particle-like behavior of electromagnetic waves was also
instrumental in the explanation of the Compton effect. In this experiment. an x-ray
beam was incident on asolid. A portion of the x-ray beam was deflected and the fre-
quency of the deflected wave had shifted compared to the incident wave. The ob-
served change in frequency and the deflected angle corresponded exactly to the ex-
pected results of a*billiard ball" collision between an x-ray guanta, or photon, and
an electron in which both energy and momentum are conserved.

In 1924. de Broglie postulated the existence of matter waves. He suggested that
since waves exhibit particle-like behavior, then panicles should he expected to
show wave-like properties. The hypothesis of de Broglie was the existence of a
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wave—particle duality principle. The momentum of a photon is given by

where A isthe wavelength of the light wave. Then, de Broglie hypothesized that the
wavelength of a particle can be expressed as

wherepisthe momentum of the particle and A isknown asthe de Broglie wavelength
o the matter wave.

The wave nature of electrons has been tested in several ways. In one experiment
by Davisson and Germer in 1927, electrons from a heated filament were accelerated
a normal incidenceonto a single crystal of nickel. A detector measured the scattered
electrons as a function of angle. Figure 2.2 shows the experimental setup and
Figure 2.3 showsthe results. The existence of a peak in the density of scattered elec-
trons can be explained as a constructive interference of waves scattered by the peri-
odicatoms in the planes of the nickel crystal. The angular distribution is very similar
to an interference pattern produced by light diffracted from a grating.

In order to gain some appreciation of the frequenciesand wavelengths involved
in the wave-particle duality principle. Figure 2.4 shows the electromagnetic
frequency spectrum. We see that a wavelength of 72.7 A obtained in the next exam-
pleisin the ultraviolet range. Typically, we will be considering wavelengthsin the

Azimuthal l |

Electron beam ‘
- - I | A

Scattered
electrons
Figure 2.3 Scattered dectron flux asa

Figure2.2 i Experimental arrangement of the Davisson- function of scattering angle for the
Germer experiment. Davisson—Germer experiment.

Sample

Incident electron beam
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Figure 24 1 The electromagnetic frequency spectrum

ultraviolet and visible range. These wavel engths are very short compared to the usual
radio spectrum range.

EXAMPLE22 | Objective

To calculate the de Broglie wavelength of a panicle.
Concider an electron traveling at a velocity of 107 em/sec = L0° mis.

W Solution
The momentum is given by

Then, the de Broglie wavelength is

m Comment
This calculation shows the order of magnitude of the de Broglie wavelength for a*typical”
electron.

In some cases electromagnetic waves behave as if they are particles (photons)
and sometimes particles behave as if they are waves. This wave—particle duality
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principleof quantum mechanics applies primarily to small particles such aselectrons,
but it has also been shown to apply to protons and neutrons. For very large particles,
we can show that the relevant equations reduce to those of classical mechanics. The
wave-paticle duality principle is the basis on which we will use wave theory to de-
scribe the motion and behavior of electrons in acrystal.

TEST YOUR UNDERSTANDING

E2.1 Deeminetheenergy of a photon having wavelengthsof (a)A = 10.000A and (b)
A= 104, [A2 OV X T 1301 4 OF X 66 1 (@) A2 FTTIO[ 401 % 661 (2} 'SUV]

E2.2 () FAnd the momentum and energy of a particlewith massof 5 x 10 kgand a
de Broglie wavdlength of 180 A. () An dectron has a kinetic energy of 20 meV.
Determine the de Broglie wavelength. [V £°98 = ¥ 'S/W-EY o 0] X p9° L = d (4)
AR 01 X 9F'840 | 101 X §¢71 = 3 *S/w-3Y ,, 0 x 89'¢ = ¢ (1} suy]

213 TheUncertainty Principle

The Heisenberg uncertainty principle, given in 1927, also applies primarily to very
small particles, and states that we cannot describe with absolute accuracy the hchav-
ior of these subatomic particles. The uncertainty principle describes a fundamental
relationship between conjugate variables, including position and momentum and also
energy and time.

The firststatement of the uncertainty principle isthat it is impossibte to simulta-
neoudy describe with absolute accuracy the position and momentum of a particle. If
the uncertainty in the momentum is Ap and the uncertainty in the postion is Ax, then
the uncenainty principle is stated as'

where #i is defined as i = #/2x = 1.054 x 107* Js and is called a modified
Planck’s constant. This statement may be generalized to include angular position and
angular momentum.

The second statement of the uncertainty principle is that it is impossible to si-
multaneoudly describe with absolute accuracy the energy of a particle and the instant
of time the particlehas thisenergy. Again. if the uncertainty in the energy isgiven by
AE and the uncertainty in the time is given by Ar, then the uncertainty principle is
stated as

One way to visualize the uncenainty principle is to consider the simultaneous
measurement of position and momentum, and the simultaneous measurement of en-
ergy and time. Theuncertainty principleimplies that these simultaneous measurements

'In sume texts, theuncenainty principle is a6 as Ap Ax = #/2. We are interested here in the order of
magnitude and will not be concerned with small differences.



CHAPTER 2 Introduction to Quantum Mechanics

are in error to a certain extent. However, the modified Planck’s constant # is very
small; the uncertainty principle is only significant for subatomic particles. We must
keep in mind neverthel ess that the uncertainty principleisafundamental statementand
does not deal only with measurements.

One consequenceof the uncertainty principle isthat we cannot. for example. de-
termine the exact position of an electron. We will, instead, detecrmine the probabifity
of finding an electron at a particular position. In later chapters, we will develop a
probability density function that will allow us to determine the probability that an
electron hasa particular energy. So in describing electron behavior, we will he deal-
ing with probability functions.

TEST YOUR UNDERSTANDING

E2.3 Theuncertainty in position of an éectron is 12 A. Determine the minimum
uncertainty in momentum and alse the corresponding uncertainly in kinetic energy.
(A2 C9T0°0 = AV "SW-3Y o _0f X 6L'§ = dV 'Suy)

E2.4 An eectron's energy is measured with an uncertainty of 1.2 eV, What is the minimum
uncertainty in time over which the energy is measured' (s o, -0t X 6°¢ = IV 'Suy)

2.21 SCHRODINGER'S WAVE EQUATION

The various experimental results involving electromagnetic waves and particles.
which could not beexplained by classical laws of physics, showed that arevised for-
mulation of mechanics was required. Schrodinger, in 1926. provided a formulation
caled wave mecharics, which incorporated the principles of quanta introduced by
Planck, and thewave—particleduality principle introduced by de Broglie. Based on the
wave—particle duality principle. we will describethe motion of electrons in a crystal
by wave theory. Thiswavetheory is described by Schrodinger's wave equation.

2.2.1 TheWaveEquation

The one-dimensional, nonrelativistic Schrodinger's wave equation is given by

where W (x, 1) isthe wave function, V(x} is the potential function assumed to he in-
dependent of time, m isthe massof the particle, and j istheimaginary constant o/ —1.
There are theoretical argumentsthat justify theform of Schrodinger's wave equation.
hut the equation is a basic postulate of quantum mechanics. The wave function
W(x ) will be used to describe the behavior of the system and, mathematically,
W(x, ) can be acomplex quantity.

We may determine the time-dependent portion of the wave function and the
position-dependent, or time-independent, portion of the wave function by using the
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techniqueof separation of variables. Assumethat the wave function can he writtenin
theform

where(x) isafunction of the position x only and ¢ (¢} isafunction of timer only.
Subdtituting thisform of the solution into Schrodinger's wave equation, we obtain

If wedivide by thetotal wave function. Equation (2.8) becomes

Sincethe left side of Equation (2.9)isafunctionof positionx only and the right side
o the equation is a function of time ¢ only, each side of this equation must he equal
to aconstant. We will denote this separation of variables constant by 7.

The time-dependent portion of Equation (2.9) is then written as

where again the parameter » is called a separation constant. The solution of Equa-
tion (2.10) can be written in the form

Theformof thissolution is theclassical exponential form of a sinusoidal wave where
n/h is the radian frequency w. We have that £ = hv or E = hw/2x. Then
w = n/h = E/k so that the separation constant is equal to the total energy E of the
particle.

The time-independent portion of Schrodinger's wave equation can now he writ-
ten from Equation (2.9) as

where the separation constant is the total energy E of the particle. Equation (2.12)
may he written as

whereagain misthemass of the particle, V{x) isthe potential experienced by the par-
ticle, and E is the total energy of the particle. This time-independent Schrodinger's
wave equation can also be justitied on the basis of the classical wave equation as
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shown in Appendix E. The pseudo-derivation in the appendix is a simple approach
but shows the plausibility of the time-independent Schrodinger's equation.

2.2.2 Physical Meaning of the Wave Function

We are ultimately trying to use the wave function W (x, t} to describe the behavior of
an electronin acrystal. Thefunction W(x, ¢) isawave function. soit is reasonable to
ask what the relation is between the function and the electron. The total wave func-
tion is the product of the position-dependent, or time-independent, function and the
time-dependent function. We have from Equation (2.7) that

Since the total wave function ¥{x, ¢} isa complex function. it cannot by itself repre-
sent areal physical quantity.

Max Born postulated in 1926 that thefunction | W (x, r}]° dx isthe probability of
finding the particle between x and x + dx at agiventime, or that | ¥ (x, £)|* isa prob-
ability density function. We have that

where W*(x, ¢} is the complex conjugate function. Therefore
oy, 1) = Y (x) - et EME

Then the product of the total wave function and its complex conjugate is given by

Therefore, we have that
WG D = Yoy x0 = [y (x)f (2.17)

isthe probability density function and is independent of time. One mgjor difference
between classical and quantum mechanics is that in classical mechanics, the posi-
tion of a particle or body can be determined precisely, whereas in quantum mechan-
ics, the position of aparticlrisfoundintermsof aprobability. We will determine the
probability density function for several examples, and, since this property is inde-
pendent of time. we will, in general, only be concerned with the time-independent
wave function.

2.2.3 Boundary Conditions

Since the function |W(x, #}|” represents the probability density function, then for a
single particle. we must have that
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The probability of finding the particle somewhere is certain. Equation (2.18) allows
us to normalize the wave function and is one boundary condition that is used to de-
termine some wave function coefficients.

The remaining boundary conditionsimposed on the wave function and its deriva-
tive are postulates. However. we may state the boundary conditions and present argu-
mentsthat justify why they must be imposed. The wave function and itsfirstderivative
must havethefollowing properties if the total energy Eand the potential V (x) arefinite
everywhere.

Condition1. 4 {x) must befinite, single-valued, and continuous.
Condition2. d(x)/dx must be finite, single-valued, and continuous.

Since |y {x)|* isaprobability density, then v (x) must befinite and single-valued.
If the probability density were to become infinite at some point in space, then the
probability of finding the particle at this position would be certain and the uncer-
tainty principle would be violated. If the total energy E and the potential V(x) are
finite everywhere, then from Equation (2.13), the second derivative must be finite,
which implies that the first derivative must be continuous. The first derivative is
related to the particle momentum, which must be finite and single-valued. Finaly, a
finitefirst derivative implies that the function itself must he continuous. In some of
the specificexamples that we will consider, the potentia function will become infi-
nitein particular regions of space. For these cases. the first derivative will not nec-
essarily be continuous, but the remaining boundary conditions will still hold.

2.3 APPLICATIONS OF SCHRODINGER'S WAVE
EQUATION

We will now apply Schrodinger's wave equation in several examples using various
potentid functions. These examples will demonstrate the techniques used in the so-
lution of Schrodinger's differential equation and the results of these examples will
providean indication of the electron hehavior under these various potentials. We will
utilize the resulting concepts later in the discussion of semiconductor properties.

231 Electronin Free Space

As afirstexampleof applying the Schrodinger's wave equation, consider the motion
of an electron in free space. If there is no force acting on the particle, then the poten-
tid function V(x) will be constant and we must have E > V(x). Assume, for sim-
plicity, that the potential function V{x) = (} for dl x. Then, the time-independent
wave equation can he written from Equation (2.13) as

The solution to this differential equation can be written in the form
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Recall that the time-dependent portion of the solution is
V() = e E/M (2.21)

Then the total solution for the wave function is given by
Et) (2.22)

Thiswave function solution is a traveling wave, which means that a particle moving
infree spaceisrepresented by atraveling wave. The first term, with the coefficient A.
isawave traveling in the +x direction, while the second term, with the coefficient B.
isawavetraveling in the x  direction. The value of these coefficients will he deter-
mined from boundary conditions. We will again see the traveling-wave solution for
an electron in acrystal or semiconductor material.

Assume, for a moment, that we have a particle traveling in the +x direction.
which will be described by the +.x traveling wave. The coefficient B = 0. We can
write the traveling-wave solution in the form

where k isawave number and is

The parameter A is the wavelength and, comparing Equation (2.23) with Equa-
tion (2.22), the wavelength is given by

From de Broglie's wave—particle duality principle, the wavelength is also given by

A free particle with a well-defined energy will also have a well-defined wavelength
and momentum.

The probability density functionisW (x, r)¥*(x, r} = AA*, which is aconstanr
independent of position. A free particle with awell-defined momentum can be found
anywhere with equal probahility. This result isin agreement with the Heisenberg un-
certainty principle in that a precise momentum implies an undefined position.

A localized free particle is defined by a wave packet, formed by a superposition
of wave functions with different momentum or k values. We will not consider the
wave packet here.

2.3.2 ThelnfinitePotential Wdl

The problem of aparticle in theinfinite potential well isaclassic example of a bound
particle. The potential V{x) as a function of position for this problem is shown in
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Figure 2.5 | Potentia function of the infinite
potentia well.

Figure 2.5. The particle is assumed to exist in region 1I so the particle is contained
within afiniteregion o space. The time-independent Schrodinger's waveequation is
again given by Equation (2.13) as

whereE is the total energy of the particle. If Eis finite, the wave function must be
zero, or (x) = O, in both regions | and If1. A particle cannot penetrate these in-
finite potentia barriers, so the probability of finding the particlein regions | and
[l iszero.

Thetime-independent Schrodinger's wave equation in region I1, where V. = 0.
becomes

A particularform of solution to thisequation is given by
Pix) = A cos Kx + AzsinKx (2.28)

where

One boundary condition is that the wave function +r{x} must be continuous so
that
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Applying the houndary condition at x = 0, wemust havethat A; = 0. Atx = a, we
have

Yix=a)=0= A,sinKa (2.31)

This equation is valid if Ka = nm. where the parameter n is a positive integer, or
n=1,2,3..... Theparameter » is referred to as a quantum number. We can write

Negative values of » simply introduce a negative sign in the wave function and yield
redundant solutions for the probability density function. Wc cannot physically dis-
tinguish any difference between +# and —» solutions. Because of this redundancy,
negative values of n are not considered.

The coefficient 4, can befound from the normalization boundary condition that
was given by Equation (2.18) as - ¥ (x)y*(x) dx = | If weassume that the wave
function solution (x) isareal function, then vr{x) = #*(x). Substituting the wave
function into Equation (2.18), we have

Evaluating thisintegral gives’

Finally. the time-independent wave solution isgiven by

)

This solution represents the electron in the intinite potential well and is a stand-
ing wave solution. The free electron was represented by a traveling wave. and now
the bound particle is represented by a standing wave.

The parameter K in the wave solution was defined by Equations (2.29) and
(2.32). Equating these two expressions for K. we obtain

—

A more thorough analysis shows that |Az|> = 2/a, so solutions lor the coefficient Az include ++/2/a,
~/Zfa,+j/Z]a, — j/2/a, or any complex number whose magnitudeis +/2/a. Since the wave
function itself has no physical meaning, the choice of which coefficient to use isimmaterial: They all
produce the same probability density function,
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The tota energy can then be written as

| 22 2 |
en'm wheren = 1,2,3,... (2.37)

For the particlein the infinite potential well. the wavefunction is now given by

p—

wherethe constant K must have discrete values, implying that the total energy of the
particlecan only have discrete values. This result means that the energy o the parti-
cleis quantized. That is, the energy of the particle can only have particular discrete
values. The quantization of the particle energy is contrary to results from classical
physics, which would allow the particle to have continuous energy values. The dis-
crete energies lead to quantum states that will be considered in more detail in this
and later chapters. The quantization of the energy of a bound particleis an extremely
important result.

Objective

Tocdculatethefirg three energy levelsof an eectron in an infinite potentia well
Condider an dectron in an infinite potential well of width 5 A.

1 Solution
Ham Equetion (2.37) we have

1 Comment
Thiscdculaionshows the order of magnitude of the energy levels of a bound electron.

EXAMPLE 2.3

Figure 2.6a shows the first four allowed energies for the particle in the infinite
potentid well, and Figures 2.6% and 2.6¢ show the corresponding wave functionsand
probability functions. We may note that as the energy increases, the probability of
findingthe particleat any given value of x becomes more uniform.
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Figure2.6 | Paniclein an infinitepotentia well: (a) Four lowest discreteenergy levels.

(b) Corresponding wave functions. (c) Corresponding probability functions.
(From Pierret [9].)

TEST YOUR UNDERSTANDING

E2.5 The wicth of the infinite potential well in Example 2.3isdoubled to 10 A, Calculate
the firgt threeenergy levelsin terms of electron volts for an electron.
(AP BE'E AR (ST ‘AP OLEQ 'SUY)

E26 Thelowest energy of a paticlein an infinite potential well with awidth of 100 A is
0.025eV. What is the mass of the panicle? (33 ,_01 x L' 'suy)

2.3.3 TheStep Potential Function

Consider now astep potential functionasshownin Figure2.7. In the previous section.
we considered a particle being confined between two potential barriers. In this exam-
ple, we will assumethat a flux of particles isincident on the potential barrier. We will
assume that the particles are traveling in the +x direction and that they originated at
X = —oo, A particularly interesting result is obtained for the case when the total
energy of the particle isless than the barrier height, or £ < ¥j.

Weagain need to consider the time-independent wave equation in each of the two
regions. This general equation was given in Equation (2.13) as 8%y (x)/dx>+
2m/R*(E — V(x)»¥(x) = 0. The wave equation in region |, in which V = 0, is
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Inci degisiikiiad s

Vﬂ'__

Region 1 Region II

x=0

Figure2.7 | The step potentia function.

The genera solution to this equation can be written in theform
() = A/ F g /K (x = 0) (2.40)
where the constant Ky is

Thefirstterm in Equation (2.40) is a traveling wave in the +x direction that repre-
sents the incident wave, and the second term is atraveling wave in the —x direction
thet represents a reflected wave. As in the case of a free particle, the incident and
reflected particlesare represented by traveling waves.

For the incident wave, A, - A; isthe probability density function of the incident
panicles. If we multiply this probability density function by the incident velocity,
then v; - Ay - A} is the flux of incident particles in units of #/cm’-s. Likewise, the
quantity v, . By . B} isthe Hux of thereflected particles, where v, is the velocity of
the reflected wave. (The parameters v, and v, in these terms are actually the magni-
tudes of the velocity only.)

In region 11, the potential isV = V. If we assumethat E < V¥, then the differ-
ential equation describing the wave functionin region 11.can be written as

The generd solution may then be written in the form
Va(x) = Are X | Bret e (x 2 0) (2.43)
where

One boundary condition is that the wave function v (x) must remain finite,
which meansthat the coefficient B, = 0. The wave function is now given by
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The wavefunction at X = O must be continuous so that
Y (0) = ¥ (0) (2.46)
Then from Equations (2.40), (2.45), and (2.46), we obtain

Since the potential function is everywhere finite, the first derivative of the wave
function must also be continuous so that

Using Equations (2.40), (2.43), and (2.48), we obtain

We can solve Equations (2.47) and (2.49) to determine the coefficients B, and

A, interms of the incident wave coefficient A,. The results are

and

The reflected probability density function is given by

We can define a reflection coefficient, 8, as the ratio of the reflected flux to the
incident flux, which is written as

where; and v, aretheincident and reflected velocities. respectively. of the particles.
Inregion |, V =0 sothat E = T, where T is the kinetic energy of the particle. The
kinetic energy is given by

so that the constant X', from Equation (2.41), may be written as
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Theincident velocity can then be written as

Sincethe reflected particle also existsin region I, the reflected velocity (magnitude)
isgiven by

The incident and reflected velocities (magnitudes) are equal. The reflection coeffi-
cient isthen

Subgtituting the expression from Equation (2.51) into Equation (2.57), we obtain

Theresult of R = | implies that al of the particlesincident on the potential bar-
rier for E < Vj are eventually reflected. Particles are not absorbed or transmitted
through the potential barrier. Thisresult is entirely consistent with classical physics
and one might ask why we should consider this problem in terms of quantum me-
chanics. The interesting result is in terms of what happens in region 11.

Thewavesolutionin region 11wasgiven by Equation (2.45) asyr{x) = Aze~%°,
The coefficient Az from Equation (2.47) is A» = A + B,, which we derived from
the boundary conditions. For thecase of E < Vg, the coefficient A, isnot zero. If A»
is nat zero, then the probability density function 12 (x) . ¥ (x} of the particle being
found in region 11 is not equal to zero. This result implies that there is a finite pro-
bability thar the incident particle will penetrate the potential barrier and exist in
region II. The probability of a particle penetrating the potentiul burrier is another
difference between classical and quantum mechanics: The guantum mechanical pen-
etration is classically not allowed. Although there is afinite probability that the par-
tide may penetratethe barrier, since the reflection coefficient in region | is unity, the
particlein region II must eventually turn around and move back into region 1.

Objective

To calculate the penetration depth of a panicle impinging on apotential barricr.
Consder anincident electronthat istraveling at avelocity of | x 10° m/s inregion|.

Solution
With V(x) = 0, thetotd energy isaso equa to the kinetic energy o that

EXAMPLE 2.4
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Now, assume that the potential barrier at x = O istwice as large as the total energy of theinci-
dent particle, or that ¥y, = 2E. The wave function solution in region II is yrs{x) = Aze™ %",
where the constant &5 isgivenby K, = /2m(Vy — E)/R.

In this example, we want to determine the distance x = d at which the wave function
magnitude has decayed to ¢~! of itsvalueat x = 0. Then, for this case, we have K»d = 1 or

The distance is then given by

or

® Comment

This penetration distance ¢orresponds to approximately two lattice constants of silicon. The
numbers used in thisexample are rather arbitrary. We used a distance at which the wave func-
tion decayed to e ! of itsinitial value. We could have arbitrarily used ¢=>. for example, but
the results give an indication of the magnitude of penetration depth.

The case when the total energy of a particle, which isincident on the potential
barrier, is greater than the barrier height, or E = V), isleft as an exercise at the end
of the chapter.

TEST YOUR UNDERSTANDING

E2.7 The probability of finding a panicle at adistanced in region If compared to that at
x = 0 isgiven by exp (—2K:d). Consider an electron traveling in region | at a veloc-
ity of 10 m/s incident on a potential barrier whose height is 3 times the kinetic
energy of theelectron. Find the probability of finding the electron a adistance ¢
compared to x = 0 wheredis{«) 10 A and (5 100 A into the potential barrier.
[yuaorad o0l X €8 2(q) quaorad 77 g (v) 'suy]

2.34 ThePotential Barrier

We now want to consider the potential barrier function, which isshown in Figure 2.8.
Themoreinteresting problem, again, i sinthecasewhen thetotal energy of an incident
particle is E < Vj. Again assume that we have a flux of incident particles originating
on the negative X axis traveling in the +x direction. As before, we need to solve
Schrodinger's time-independent wave equation in each of the three regions. The



2.3 Applications of Schrodinger's Wave Equation

Figure 2.81 The potential barrier function.

solutionsof thewaveequation in regions |, I1, and ITI are given, respectively, as

Yi(x) = A/t T Be~ikix (2.59a)
U (x) = Are®? | Bre=F (2.59b)
Wa(x) = Azel ¥t BiemiK {2.59¢)
whae
ad

The coefficient 82 in Equation (2.59¢) represents a negative traveling wave in
region 111. However, once a particle getsinto region I11, there are no potential changes
to cause areflection; therefore, the coefficient By must be zero. We must keep both
exponentid terms in Equation (2.59b} since the potential barrier width is finite; that
is, neither term will become unbounded. We have four boundary relations for the
boundariesat x = 0 and x = a corresponding to the wave function and itsfirst deriv-
ative being continuous. We can solve for the four coefficients By, A, B, and A; in
terms of A;. The wave solutionsin the three regions are shown in Figure 2.9.

One particular parameter of interest is the transmission coefficient, in this case
defined astheratio of the transmitted fluxin region I1i to the incident flux in region I.
Then the transmission coefficient T is
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] ]

x=0 x=aua

Figure 2.9 1 The wave functionsthrough the potential barrier.

where v, and v; are the velocities of the transmitted and incident particles, respec-
tively. Since the potential V = 0 in both regions | and I11, the incident and transmit-
ted velocities are equal. The transmission coefficient may be determined by solving
the boundary condition equations. For thespecial case when £ <« V5, wefind that

Equation (2.62)implies that there is a firite probability thar a particle imping-
ing a potential barrier will penerrate the barrier and will appear in region HI This
phenomenon is called tunneling and it, roo, contradicts classical mechanics. We will
see later how this quantum mechanical tunneling phenomenon can be applied to
semiconductor device characteristics, such asin the tunnel diode.

EXAMPLE 2.5

Objective

To calculatethe probability of an electron tunneling through a potentid harrier.
Consider an dectron with an energy of 2 ¢V impinging an a potentid barrier with v, =
20V and a width of 3 A.

W Solution
Equation (2.62) is the tunneling probability. The factor K3 is

Then
T = 16(0.13(1 — 0.1 exp[-2(2.17 x 10'")(3 x 107'")]
and finaly
7=317x 167



2.4 Extensicns d the Wave Theory to Atoms

B Comment

The tunndling probability may appear to be a smdl vaue, but the value is nut zero. If a
large number of particles impinge on a potential barrier, a significant number can penetrate
the barrier.

TEST YOUR UNDERSTANDING

E28 Edimate the tunneling probability of an electron tunneling through a rectangular
barrier with abarrier height of ¥y = 1V and abarrier width of 15 A. Theelectron
enargy is0.20eV. (501 X 9L = L 'SUY)

E29 Forarectangular potentid barrier with a height of vy = 2 ¢V and an electron with
an energy o 0.25 ¢V, plot the tunneling probability versusbarrier width over the
range?2 < a < 20 A, Use alog scale for the tunneling probability.

E2.10 A certain Semiconductor device requires a tunneling probability of T = 10-7 for an
eectron tunneling through arectangular barrier with a barrier height of Vi, = 0.4 eV,
Thedectron energy is 0.04 ¢V. Determinethe mximum barricr width.

(Yool = v suy)

Additional applications of Schrodinger's wave cquation with various one-
dimensiona potential functions are found in problems at the end of the chapter. Sev-
era of these potential functionsrepresent quantum well structures that are found in
modern semiconductor devices.

*2.4 |EXTENSIONSOF THE WAVE THEORY
TO ATOMS

Sofar in this chapter. we have considered several one-dimensional potential energy
functions and solved Schrodinger's time-independent wave equation to obtain the
probability function of finding a particle at various positions. Consider now the cne-
electron,or hydrogen, atom potential function. Wewill only briefly consider the math-
ematical detailsand wave function solutions, but the resulis are extremely interesting
and important.

241 TheOneElectronAtom

The nucleus is a heavy, positively charged proton and the electron is a light. nega-
tively charged particle that, in the classical Bohr theory, is revolving around the nu-
cleus. The potential function is due to the coulomb attraction between the proton and
electron and is given by

where e is the magnitude of the electronic charge and ¢y is the permittivity of free
gpace. This potential function, although spherically symmetric, leads to a three-
dimensiona problem in spherical coordinates.

*Indicatessectionsthat can be skipped without l0ssof continuity.
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We may generalize the time-independent Schrodinger's wave equation to three
dimensions by writing

where V? is the Laplacian operator and must be written in spherical coordinates for
this case. The parameter my isthe rest mass of the electron.’ In spherical coordinates,
Schrodinger's wave equation may be written as

1 3%y : ;&(sinQ-%)
— ‘
9 G2 ap? | risind . 34
r?sin- g ¢ (2.65)
+ 2m0
Ik
Thesolution to Equation (2.65) can be determined by the separation-of-variables
technique. We will assume that the solution to the time-independent wave equation
can be writien in the form

(E-Viny =0

where R. O, and &, arefunctionsonly of r.H, and ¢, respectively. Substituting this
form of solution into Equation {2.65), we will obtain

We may note that the second term in Equation (2.67) is a function of ¢ only,
while al the other terms are functionsof either r or #. We may then write that

wherem is a separation of variables constant? The solution to Equation (2.68) is of
theform

P = p/md (269)

Since the wave function must be single-valued. we impose the condition that m is an
integer, or

m=0,£1, £2, 43, ... (2.70)

"The mass should be the rest mass of the two-panicle systen:, hut since the proton mass is much greater
than the electron mass, the equivalent mass reduces to that of the electron.

*Where m means the separation-of-variables constant developed historically. That meaning will be
retained here even though there may be some confusion with the electron mass. In general, the mass
parameter will be used in conjunction with a subscript.



2.4 Extensions of the Wave Theory to Atoms

Incorporating the separation-of-variables constant we can further separate the
varidblesBand r and generate two additional separation-of-variables constants landn.
Theseparation-of-variablesconstants n. {. and m are known as guanrtum numbers and
aerdated by

Each set of quantum numbers corresponds to a quantum state which the electron may
occupy.
Theelectron energy may be written in theform

wherer isthe principal quantum number. The negative energy indicates that the elec-
tron is bound to the nucleus and we again see that the energy of the bound electron is
quantized. If the energy were to become positive, then the electron would no longer he
abound panicleand the total energy would no longer be quantized. Since the parame-
tern in Equation (2.72) is an integer, the total energy of the electron can take on only
discrete vaues. The quantized energy is again a result of the particle being bound in a
finite region o space.

TEST YOUR UNDERSTANDING
E211 Cdculaethelowest energy (in eectron volts) of an eectronin ahydrogen atom

(A2grgl— = 17 suy)
The solution of the wave equation may be designated by wheren, |, and
mare again the various quantum numbers. For the lowest energy state, » = |.1 =0,

and m = 0, and the wave function is given by

Thisfunction isspherically symmetric, and the parameter ag isgiven by

and isequd to the Bohr radius.

Theradid probability density function, or the probability of finding the electron
a aparticular distance from the nucleus, is proportiona to the product Yrion - ¥y
and dso to the differential volume of the shell around the nucleus. The probability
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Figure2.10| The radid probability density function for the one-eectron aom in the
(a) lowest energy state and (b next-higher energy date.
(From Eisberg and Resnick [4].)

density functionfor the lowest energy state is plotted in Figure 2. 1(}a. The most prob-
able distance from the nucleus is at r = ag, which is the same as the Bohr thcory.
Considering this spherically symmetric probability function, we may now begin to
conceive the concept of an electron cloud, or energy shell, surrounding the nucleus
rather than a discrete particle orbiting around the nucleus.

The radial probability density function for the next higher, spherically symmet-
ric wave function, corresponding ton =2,/ =0. and m =0, is shown in Fig-
ure 2.10b. Thisfigure shows the idea of the next-higher energy shell of the electron.
The second energy shell is at a greater radius from the nucleus than the first energy
shell. As indicated in the figure, though, there is still a small probability that the
electron will exist at the smaller radius. For thecaseof n = 2 and | = I. there are
three possible states corresponding to the three allowed values of the quantum num-
berm. These wave functionsare no longer spherically symmetric.

Although we have not gone into a great deal of mathematical detail for the one-
electron atom, threeresults areimportant for the further analysis of semiconductor ma-
terials. The first is the solution of Schrodinger's wave equation, which again yields
electron probability functions, asit did for the simpler potential functions. In develop-
ing the physics of semiconductor materials in later chapters, we will also be consider-
ing electron probability functions. The second result is the quantization of allowed en-
ergy levels for the hound electron. The third is the concept of quantum numbers and
quantum states, which evolved from the separation-of-variables technique. We will
consider this concept again in the next section and in later chapters when we deal with
the semiconductor material physics.

242 ThePeriodicTable

Theinitial portion of the periodic table of elements may he determined by using the
results of the one-electron atom plus two additional concepts. The tirst concept
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2.51SUMMARY

N Weconsidered some of the basic concepts of quantum mechanics, which can be used to
describe the behavior of electrons under various potential functions. The understanding
of electron behavior iscrucial in understanding semiconductor physics.

M The wave-particle duality principle isan important element in quantum mechanics.
Particles can have wave-like behavior and waves can have particle-like behavior.

M Schrodinger's wave equation formsthe basis for describing and predicting the behavior
of electrons.

W Man Born postulated that |4 (x)I° is a probability density function.

W Aresult of applying Schrodinger's wave equation to abound panicleis that the energy
of the bound particle is guantized.

M A result of applying Schrodinger's wave equation to an electron incident on a potential
barrier is that there is a tinite probability of surneling.

W The basic structure of the periodic table is predicted by applying Schrodinger's wave
equation to the one-efectron atom.

GLOSSARY OF IMPORTANT TERMS

de Bruglie wavelength  The wavelength of a particle given as the ratio of Planck’s constant
to momentum.

Heisenberg uncertainty principle The principle that states that we cannot describe with
absolute accuracy the relationship between setsof conjugate variables that describe the br-
havior of particles, such as momentum and position.

Pauli exclusion principle The principle that states that no two electrons can occupy the
same quantum state.

photon  The particle-like packet of electromagnetic energy.

quanta The particle-like packet of thermal radiation.

quantized energies The allowed discrete energy levels that bound panicles may occupy.

quantum numbers A set of numbers that describes the quantum state of a particle, such as
an electron in an atom.

quantumstate A particular state of an electron that may he described, for example, by a st
of quantum numbers.

tunneling  The quantum mechanical phenomenon by which a particle may penetrate through
a thin potential barrier.

wave-particle duality  The characteristic by which electromagnetic waves sometimes ex-
hibit particle-like behavior and particles sometimes exhibit wave-like behavior.

CHECKPOINT

After studying this chapter, the reader should have the ability to:

B Dijscussthe principle of energy quanta, the wave—particle duality principle, and the
uncertainty principle.

B Apply Schrodinger's wave equation and boundary conditions to problems with various
potential functions.

B Determine quantized energy levels of bound particles.
Determine the approximate tunneling probability of a particle incident on a potential
barrier.



REVIEW QUESTIONS

MO oA wWwN

State the wave—particleduality principle and state the relationship between momentum
and wavelength.

What is the physical meaning of Schrodinger's wave function?

What is meant by a probability density function?

Lig the boundary conditions for solutions to Schrodinger's wave equation.

What is meant by quantized energy levels?

Describethe concept of tunneling.

List the quantum nuembers of the one-electron atom and discuss how they were developed

PROBLEMS

21

2.2

2.3
24

The classical wave eguation for a two-wire transmission lineisgiven by

2V {x, /x> = LC. 8 V(x., t)/3t*. One pussible solution isgiven hy V(x, 1) =
(sinkx). (sincwr) where K = nar/a and @ = K /+/LC. Sketch, on the same graph.
thefunction ¥ {x, t) asafunction of xfor0 < x < @ and#» = 1 when (i) w =0,
(it =m/2, (i) wt =7, (iVyor =37/2, and W)yt =2,

Thefunction V(x.1) = cos (2w x /+ — et} isalso asolution to the classical wave
equation. Sketch on the same graph the function ¥ (x, ¢} as a fuaction of x for
0<x < 3x when: () @ = 0, (i) et == 0.257. Gify et = 057, (iv) et = 0.757, and
Wet=nx.

Repeat Problem 2.2 for the function V(x, 1) = cos (2rx /2 T wt).

Determine the phase velocities of the traveling waves described in Problems 2.2
and 2.3.

Section2.1  Principlesof Quantum M echanics

25

26

2.7

Thework function of a material refers to the minimum energy required to remove an
electron from the material. Assume that the work function of gold 15 4.90 eV and that

o cesumis 1.90eV. Calculate the maximum wavelength of light for the photoelectric

emission of electrons for gold and cesium.

Calculatethe de Broglie wavelength, A = &/p. for: (a) An electron with kinetic en-
ergy of {i) 1.0V, and (ii) 100 eV. {#) A proton with kinetic energy oi 1.0 ¢V. (c)A
singly ionized tungsten atom with kinetic encrgy of 1.0 e¥. (¢) A 2000-kg truck trav-
eling at 20 my/s.

According to classical physics, the average energy of an electron in an electron gasat
therma equilibrium is 34T /2. Determine, for T = 300 K, the average electron energy

(ineV), average electron momentum, and the de Broglie wavelength.

¥1.8 An electron and a photon have the same energy. At what value of energy (ineV) will

29

the wavelength of the photon he 1¢ rimesthat of the electron?

{@) An electron is moving with a velocity of 2 X 10% cin/s. Determine the electron en-
ergy (in eV), momentum, and de Broglie wavelength (in A). (&) The de Broglic wave-

length of an electron is 125 A. Determine the electron energy (in ¢V), momentum,
and velocity.

210 Hisdesiredto produce x-ray radiation with awavelength of | A. (a)Through what

potential voltagedifference must the electron be accelerated in vacuum so that it can,
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21

212

2.13
2.14

215

upon colliding with a target. generate such a photon! (Assumethat al of the
electron's energy istransferred to the photon.) {#) What is the de Broglie wavelength
of the electron in part («) just before it hits the target'!

When the uncertainty principleis considered, itis not possible to locate a photon in
space more precisely than about one wavelength. Consider a photon with wavelength
A =1 um, What is the uncertainty in the photon's (¢) mementum and (k} energy?
The uncertainty in positionis 12 A for a particle of mass5 x 102 kg. Determine the
minimum uncertainty in (&) the momentum of the panicle and () the kinetic energy
of the particle.

Repeat Problem 2.12for a particle of mass5 x 107 kg.

An automobile has a mass of 1500 kg. What is the uncertainty in the velocity (in
miles per hour) when its center of massis|ocated with an uncertainty no greater than

| em!l

(2) The uncertainty in the position of an electron is no greater than | A. Determine the
minimum uncertainty in its momentumn. (b) The electron’'s energy is measured with an
uncertainty no greater than 1 eV. Determine the minimuni uncertainty in the time aver
which the measurement is made.

Section 2.2 Schrodinger's Wave Equation

2.16

217

2.18

219

Assume that ¥, (x, 7} and ¥, (x, t) are solutions of the one-dingensional time-
dependent Schrodinger's wave equation. (n) Show that ¥, + sasolution. (&) Is
€@, - W, asolution of the Schrodinger’s equation in general'! Why or why not?
Considerthe wave function W (x, t) = A(sin wx)e /' for —1 5 x < +I.
Determine A so that fjl W (x O dx =1

Consider the wave function W (x, £) = A(sin nx)e /" for 0 = x < |. Determine
A sothat f) |W(x 07 dx = |

The solution to Schrodinger's wave equation for a particular situation is given by
Wix) = e” /% Determine the probability of finding the particle between the
following limits: (@) O < x < ay/4, (Pyag/4 = x < ag/2, and (€) 0 < x < ay.

Section 2.3 Applicationsof Schrodinger's Wave Equation

2.20

221

222

2.23

224

An electron in free space is described by a plane wave given by W (x, ) = Ae/*—o0
wherek = 1.5 x 10° m~' andw = 1.5 X 10'? rad/s. (&) Determine the phase
velocity of the plane wave. (b) Calculate the wavelength, momentum, and kinetic
energy (in eV) of theelectron.

An electron is traveling in the negative x direction with a kinetic energy of 0.015 eV.
Write the equation of a plane wave that describes thic particle.

An electron is hound in aone-dimensional infinite potential well with a width of

100 A, Determine the electron energy levelsforn = 1. 2. 3.

A one-dimensional infinite potential well with a width of 12 A contains an electron.
(@) Calculate the first two energy levels that the electron may occupy. (&) If an
electron drops from the second energy level to the first, what is the wavelength of &
photon that might be emitted"

Consider a panicle with mass of 10 mg in an infinite potential well 1.0 cm wide. {(a} If
theenergy of the particle is 10 ml. calculate the value of » for that state. {5) What is
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2.26

Incident panicles

x=0 +x ——-

Figure211 | Potential function Figure 2.12 | Potential
for Problem 2.26. function for Problem 2.30

the kinetic energy of the {»n + ) state? (¢} Would quantum effects be observable for
this particle?

Calculatethe lowest energy level for a neutron in anucleus, by treating it as if it were
in an infinite potential well of width equal to 10~'* m. Compare this with the lowest
energy level for an electron in the same infinite potential well.

Consider the particlein theinfinite potential well as shown in Figure 2.11. Derive and
sketch the wave functions corresponding to the four lowest energy levels. (Dxo not
normalize the wavefunctions.)

*2,27 Consider athree-dimensional infinite potential well. The potential function is given

'228

229

2.30

231

by Vix}=0for0 < x <a.0 <y <a.0<z<a, and Vix) = oc elsewhere. Start
with Schrodinger's wave eguation, use the separation of variables technique, and
show that the energy is quantized and is given by

wheren, =1,2,3,....0,=1.2,3,.. .0, =1,2,3. ...
Consider afree electron bound within a two-dimensional infinite potential well
definedby V=0for0 < x < 25A,0 <y <50 A, and V = oo clsewhere.
Determine the expression for the allowed electron energies.

Describeany similarities and any differences to the results of the one-dimensional
infinite potential well.
Congder a proton in aone-dimensional inhnite potential well shown in Figure 2.5.
() Derive the expression for the allowed energy states of the proton. (b)Calculate the
energy difference(in units of eV) between the lowest possible energy and the next
higher energy state fur (i)a = 4 A, and (/i) a = 0.5cm.
For the step potential function shown in Figure 2.12, assume that £ > ¥, and that
particles areincident from the +-x direction traveling in the ~.x direction. (aY Write
the wave solutionsfor each region. {#) Derive expressions for the transmission and
reflection coefficients.
Consider the penetration of astep potential function of height 2.4 ¢V by an electron
whoseenergy is 2.1 eV. Determine the relative probability of finding the electron at
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2.32

2.33

2.34

*2.35

*2.36

*2.37

thedistance (a) 12 A beyond the barrier, and (h)48 A beyond the barrier, compared to
the probability of finding the incident panicle at the barrier edge.

Evaluate the transmission coefficient for an electron of energy 2.2 ¢V impinging on a
potential barrier of height 6.0 eV and thickness 10" m. Repeat the calculation for a
barrier thickness of 10=" m. Assume that Equation (2.62) is valid.

(a) Estimate the tunneling probability of a particle with an effective mass of 0.067 my
(an electron in gallium arsenide), wherem, isthe mass of an electron, tunneling
through a rectangular potential barrier of height V, = 0.8 ¢V and width 15 A. The
panicle kinetic energy is0.20 eV. (&) Repeat pan (a)if the effective mass of the
panicle is 1.08 m, (an electron in silicon).

A proton attempts to penetrate a rectangular potential barrier of height 10 MeV and
thickness 10 ¥ m. The panicle has atotal energy of 3 MeV. Calculate the probability
that the particle will penetrate the potential barrier. Assume that Equation (2.62) is
valid.

An electron with energy £ isincident on a rectangular potential barrier as shown in
Figure 2.8. The potential harrier isof width a and height ¥, > E. (2) Write the form
of the wave function in each of the three regions. (b) For this geometry, determine
what coefficient in the wave function solutions is zero. (r)Derive the expression for
the transmission coefficient for the electron (tunneling probability). (d) Sketch the
wave function for the electron in each region.

A potential function is shown in Figure 2.13 with incident particlescoming from —ac
with atotal energy E > V,. The constants k are defined as

Assume aspecial case for which kxa = 2rm, n = 1, 2. 3,.... Derive the expres-
sion, in terms of the conslants, &, . k». and k3, for the transmission coefficient. The
transmission coefficient is defined as the ratio of the flux of particles in region 1II to
theincident flux in region 1.

Consider the one-dimensional potential function shown in Figure2.14. Assumethe
tota! energy of anelectron is E < V. (&) Write the wave solutions that apply in each

Figure2.13! Potential function for Figure2.14| Potential function for
Problem 2.36. Problem 2.37.



region.{b} Writethe set of equations that result from applying the boundary conditions.
(c) Show explicitly why, or why not. the energy levels of theelectron are quantized.

Section 24 Extensionsof the Wave Theory to Atoms

.38

2.39

240

241

Calculate the energy of the electron in the hydrogen atom (in units of e V) for the first
four allowed energy levels.

Show that the most probable value of the radius r for the 1s electron in a hydrogen
atom isequa to the Bohr radius a,.

Show that the wave function for i,45 given by Equation (2.73) isasolution to the
differential equation given by Equation (2.64).

What property do H. Li, Na, and K have in common?
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| ntroduction to the Quantum
Theory of Solids

PREVIEW

tion to determine the behavior of electrons in the presence of various potential

functions. Wefound that oneimportant characteristic of an electron bound toan
atom or bound within afinite space isthat the electron can take on only discrete val-
ues of energy; that is, the energies are quantized. We also discussed the Pauli exclu-
sion principle, which stated that only one electron is allowed to occupy any given
guantum state. In this chapter, we will generalize these concepts to the electronin a
crystal lattice.

Oneof our goalsis todetermine theelectrical properties of a semiconductor ma-
terial, which we will then use to develop the current-voltage characteristics of semi-
conductor devices. Toward this end, we have twe tasks in this chapter: to determine
the properties of electronsin acrystal lattice, and to determine the statistical charac-
teristicsof the very large number of electrons in acrystal.

To start, we will expand the concept of discrete allowed electron energies that
occur in asingleatom to a band of allowed electron energiesin a single-crystal solid.
First we will qualitatively discuss the feasibility of the allowed energy bands in a
crystal and then we will develop a morerigorous mathematical derivation of thisthe-
ory using Schrodinger's wave equation. Thisenergy band theory isabasic principle
of semiconductor material physics and can also be used to explain differences in
electrical characteristics between metals, insulators, and semiconductors.

Since current in a solid is due to the net flowof charge, it is important to deter-
minethe response of an electron in the crystal toan applied external force, such as an
electricfield. The movement of an electron in alatticeisdifferent than that of an elec-
tron in free space. We will develop a concept allowing us to relate the quantum me-
chanical behavior of electrons in a crystal to classical Newtonian mechanics. This

I n the last chapter, we applied quantum mechanics and Schrodinger's wave equa-



3. 1 Allowed and Forbidden Energy Bands

andyssleadsto a parameter called the electron effective mass. As part of thisdevel-
opment, we will find that we can define a new particle in a semiconductor called a
hole. Themotion of both electrons and holesgives riseto currentsin asemiconductor.

Because the number of electrons in a semiconductor is very large, it is impossi-
beto follow the motion of each individual particle. We will develop the statistical
behavior of electronsin a crystal, noting that the Pauli exclusion principle isan im-
portant factor in determining the statistical law the electrons must follow. The result-
ing probability function will determine the distribution of electrons among the avail-
ableenergy states. The energy band theory and the probability function will be used
extensively in the next chapter, when we develop the theory of the semiconductor in
equilibrium. W

311ALLOWED AND FORBIDDEN ENERGY BANDS

In the last chapter, we treated the one-electron, or hydrogen, atom. That analysis
showed that the energy of the bound electron is quantized: Only discrete values of
electron energy are allowed. The radial probability density for the electron was also
determined. Thisfunction gives the probability of finding the electron at a particular
distance from the nucleus and shows that the electron is not localized at a given
radius. e can extrapolate these single-atom results to acrystal and qualitatively de-
rive the concepts of allowed and forbidden energy bands. We can then apply quan-
tum mechanicsand Schrodinger's wave equation to the problem of an electron in a
sngle crystal. We find that the electronic energy states occur in hands of allowed
states thet are separated by forbidden energy bands.

3.11 Formationof Energy Bands

Figure 3.1a shows the radial probability density function for the lowest electron
energy dtate of the single, noninteracting hydrogen atom, and Figure 3.1b shows the
same probability curves for two atoms that are in close proximity to each other. The
wavefunctionsof thetwo atom electrons overlap, which meansthat the two electrons

Figure 31 | (@) Probability density function of an isolated hydrogen atom. (by Overlapping probability density
functionsaf two adjacent hydrogen atoms. (¢) The splitting of the» = | state.
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will interact. Thisinteraction or perturbation results in the discrete quantized energy
level splitting into two discrete energy levels, schematically shown in Figure 3.1c.
The splitting of the discrete state into two states is consistent with the Pauli exclusion
principle.

A simple analogy of the splitting of energy levels by interacting particles is the
following. Two identical race cars and drivers arefar apart on a race track. Thereis
no interaction between the cars, so they both must provide the same power to
achieve a given speed. However, if onecar pulls up close behind the other car, there
isan interaction called draft. The second car will be pulled to an extent by the lead
car. Thelead car will therefore require more power to achieve the same speed, since
it is pulling the second car and the second car will require less power since it is
being pulled by the lead car. So there is a " splitting" of power (energy) of the two
interacting race cars. (Keep in mind not to take analogies too literally.)

Now, if we somehow start with a regular periodic arrangement of hydrogen-
type atomsthat areinitially very far apart, and begin pushing the atomstogether, the
initial quantized energy level will split into a band of discrete energy levels. Thisef-
fect is shown schematically in Figure 3.2, where the parameter r, represents the
equilibrium interatomic distance in the crystal. At the equilibrium interatomic dis
tance, there isa band of allowed energies, but within the allowed band, the energies
are at discrete levels. The Pauli exclusion principle states that the joining of aoms
to form a system (crystal) does not alter the total number of quantum states regard-
less of size. However, since no two electrons can have the same quantum number.
the discrete energy must split into a band of energiesin order that each electron can
occupy adistinct quantum state.

We have seen previously that, at any energy level, the number of allowed quan-
tum states isrelatively small. In order to accommodate all of the electronsin acrys
tal, then, we must have many energy levels within the allowed band. Asan example,
suppose that we have a system with 10! one-electron atoms and also suppose that,
at the equilibrium interatomic distance, the width of the allowed energy band is | eV.
For simplicity, we assume that each electron in the system occupies a different en-
ergy level and, if thediscreteenergy states are equidistant, then the energy level sare
separated by 107'? eV. Thisenergy difference isextremely small, sothat for all prac-
tical purposes, we have a quasi-continuousenergy distribution through the alowed

o |

o Interatomic distance =

Figure 3.21 The splitting of an energy
state into aband o alowed energies.
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energy band. The fact that 1071° eV is a very small difference between two energy
statescan be seen from the following example.

Objective

To cdculate the changein kinetic energy of an electron when the velocity changes by a small
vadue

Consider an electron traveling at avelocity of 107 crm/s. Assume the velocity increases by
avalue of | cifs. Theincreasein kinetic energy is given by

Le v: = 1, T Av. Then
v =y F A" = vl +2u Au T (A
But Av « v;, SO we have that

8 Solution
Subdtituting the number into this equation, we obtain

AE = (9.11 x 107H){10°)(0.01) = 9.11 x 1
which mey be converted to unitsof electron voltsas

m Comment

A change in velocity of | cm/s compared with 107 cm/s results in a change in energy of
57 x 107% eV, whichis orders of magnitude larger than the change in energy of 10~ eV be-
twean energy statesin the ailowed energy hand. Thisexample serves to demonstrate that a dif-
ferencein adjacent energy statesof 10~'? eV isindeed very small, so that the discrete energies
within an allowed band mav be treated as a quasi-continuous distribution.

EXAMPLE 3.1

Consider again a regular periodic arrangement of atoms, in which c¢ach atom
now contains more then one electron. Suppose the atom in this imaginary crystal
containselectrons up through the # = 3 energy level. If the atoms are initially very
farapart, theelectronsin adjacent atomswill not interact and will occupy thediscrete
energy levels. If these atoms are brought closer together, the outermost electronsin
then = 3energy shell will begin tointeract initially, so that this discrete energy level
will splitinto a band of allowed energies. If the atoms continue to move closer to-
gether, theelectrons in then = 2 shell may begin tointeract and will also split into a
band of allowed energies. Finally, if the atoms become sufficiently closetogether, the
innermostelectronsinthen = | level may interact. sothat thisenergy level may also
split into a band of allowed energies. The splitting of these discrete energy levelsis
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o Interatomic distance —

Figure 3.3 Schematic showing the splitting of three energy states
into alowed bands of energies.

4N states

6N states

- “,; \ 4N stat
== \\ six allowed levels states

2N states
at same energy

2N electrons
Two allowed levels
at same energy

n=| P

2 electrons n=3

(a)

Figure 34 | (a) Schematic of an isolated silicon atom. (b} The splittingef the 3s and 3p states of Slicon into the
dlowed and forbidden energy bands.
{From Shockley [51.)

qualitatively shown in Figure 3.3. If the equilibrium interatomic distanceis ry. then
we have bands of allowed energies that the el ectrons may occupy separated by bands
of forbidden energies. This energy-band splitting and the formation of allowed and
forbidden bands is the energy-band theory of single-crystal materials.

The actual hand splitting in a crystal is much more complicated than indicated
in Figure 3.3. A schematic representation of anisolated silicon atom is shown in Fig-
ure 3.4a. Ten of the fourteen silicon atom electrons occupy deep-lying energy levels
closetothe nucleus. Thefour remaining valenceelectrons arerel atively weakly bound
and aretheelectrons involved in chemical reactions. Figure 3.4b showsthe hand split-
ting of silicon. We need only consider the n = 3level for the valence electrons, since
thefirst twoenergy shellsare completely full and are tightly bound to the nucleus. The
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3s date corresponds to n = 3 and | = 0 and contains two quantum states per atom.
Thisstate will contain two electrons at T = ( K. The 3p state correspondston = 3
ad | = 1 and contains six quantum states per atom. This state will contain the re-
maning twoelectronsin the individual silicon atom.

As the interatomicdistance decreases, the 3s and 3p states interact and overlap.
At the equilibrium interatomic distance, the bands have again split. hut now four
guantum states per atom are in the lower band and four quantum states per atom arein
the upper band. At absolute zero degrees, electrons are in the lowest energy state, so
thet dl statesin the lower band (the valence band) will he full and all statesin the
upper bend (theconduction band) will be empty. The bandgap energy £, between the
top d the valence band and the bottom of the conduction hand is the width of the for-
bidden energy band.

Wehavediscussed qualitatively how and why bands of allowed and forbidden en-
egesareformedin acrystal. The formation of theseenergy bands isdirectly related
tothee ectrica characteristics of thecrystal, aswe will seelater in our discussion.

*3.1.2 TheKronig-Penney Model

In the previous section, we discussed qualitatively the spitting of allowed electron
energiesas atoms are hrought together to forma crystal. The concept of allowed and
forbiddenenergy bands can bc developed more rigorously by considering quantum
mechanicsand Schrodinger's wave equation. It may be easy for the reader to "get
logt" in the following derivation, but the result forms the basis for the energy-band
theory of semiconductors.

The potential function of asingle, noninteracting, one-electron atom is shownin
Figure 3.5a. Also indicated on the figure are the discrete energy levels allowed for
theel ectron. Figure 3.5b shows the same type of potential function for the case when
several goms are in close proximity arranged in a one-dimensional array. The po-
tentid functions of adjacent atoms overlap, and the net potential function for this
caxe is shown in Figure 3.5¢c. It is this potential function we would need to usein
Schrodinger's wave equation to model aone-dimensional single-crystal material.

The solution to Schrodinger's wave equation, for this one-dimensional single-
crydd lattice, is made more tractable by considering a simpler potential function.
Figure 3.6 is the one-dimensional Kronig—Penncy model of the periodic potential
function,which is used to represent a one-dimensional single-crystal lattice. We need
to solve Schrodinger's wave equation in each region. Aswith previous quantum me-
chanical problems, the more interesting solution occurs for the case when E < Vj,
which corresponds to a particle being bound within the crystal. The electrons are
contained in the potential wells, but we have the possibility of tunneling between
wels The Kronig—Penney model is an idealized periodic potential representing a
one-dimensond single crystal. but the results will illustrate many of the important
featuresaf the quantum behavior of electrons in a periodic lattice.

To obtain the solution to Schrodinger's wave equation, we make use of a math-
ematica theorem by Bloch. The theorem states that all one-electron wave functions,

*Indicates sections that can he skipped without luss of continuity
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Atom
(a)

Atom Atom Atom Atom
(c)

Figure 3.5 | (a) Potential function of asingle isolated

atom. (b) Overlapping potential functions of adjacent

atoms. (c) Net potential function of a one-dimensional
single crystal.

Figure 3.6 1 The one-dimensional periodic potential
function of the Kronig-Penney model.
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for problemsinvolving periodically varying potential energy functions, must be of
the form

Wi(x) = ulx)elt~ 3.0

The parameter k is called a constant of motion and will be considered in more de-
tal as we develop the theory. The function u(x) is a periodic function with period
{ath).

We stated in Chapter 2 that the total solution to the wave equation is the product
d the time-independentsol ution and the time-dependent solution, or

which may be written as
W(x, t) = u(x)el kx—E/mn (3.3)

This traveling-wave solution represents the motion of an electron in a single-crystal
materid. The amplitude of the traveling wave isa periodic function and the parame-
ta k isasoreferred to as a wave number.

We can now begin to determine a relation between the parameter k, the total en-
ergy E, and the potentia Vy. If we consider region | in Figure 3.6 () < x < a) in
which ¥ (x) = 0, take the second derivative of Equation (3.1}, and substitute thisre-
aultinto the time-independent Schrodinger's wave equation given by Equation (2.13).
weobtain therelation

dtu (x) L dua ()
dx? T2k dx
Thefunction &, (x) isthe amplitude of the wave function in region | and the parame-
ter aisdefinedas

- (k' - az)ul(x) =0

Considernow aspecificregion II, —# < x < 0, in which V{x) = V;, and apply
Schrodinger's wave equation. We obtain the relation

wherex;(x) is theamplitude of the wave function in region I1. We may define

9 that Equation (3.6) mey be written as

Notethat from Equation (3.7).if E > Vi, the parameter § isrea, whereasif E < Vg,
then  isimaginary.
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The solution to Equation (3.4}, forregion 1, is of the form

u(x) = Apilo—ids + Be— itk for (0 < x < a) (3.9)

and the solution to Equation {3.8), for region 11, is of the form
uz(x) = Cel B0 o P o0 o v <0 (3.10)

Since the potential function V (x) iseverywherefinite, both the wave function s {x}
and itsfirst derivative dr (x)/dx must be continuous. This continuity condition im
plies that the wave amplitude function u(x) and its first derivative du(x)/dx et
a'so hecontinuous.

If we consider the boundary at x = {) and apply the continuity condition to the
wave amplitude, we have

1 (0) = u2(0) (3.11)
Substituting Equations (3.9) and (3.10) into Equation {3.11), we obtain
A+B-C—-D=0 (3.12)
Now applying the condition that
we obtain
(@—KA-(@+bB-B-hCTB+bHD=0 (3.14)

We have considered region | as0 < x < « and region Il as —& < x < (. The
periodicity and the continuity condition mean that the function ;. asa-» «. is
equal to the functionu,, asx — —b. Thiscondition may be written as

i {ay = u-(—b) (3.15)

Applying the solutions for u«;{x) and «2(x) to the boundary condition in Equa
tion (3.15) yields

Aej(tx—kla -+ Be—j[u+k)a Ct,fj(ﬁff()b _ Dej(ﬁJrk)h =0 (316)

The last boundary condition is

which gives
(o — k)Aej(u—k)a — (o + k)Be—j(a+kJ<1 — (8- k)CeJ-’i(’Bfk)b
+ (BT D/ P — g (3.18)

We now have four homogeneous equations, Equations (3.12), (3.14), (3.16). ad
(3.18), with four unknowns as a result of applying the four boundary conditions. Ina
set of simultaneous, linear, homogeneous equations, there is a nontrivial solution if,
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and only if, thedeterminant of the coefficientsis zero. In our case, the coefficientsin
question are the coefficients of the parameters A, B, C, and D.

The evaluation of this determinant is extremely laborious and will not he con-
Sdered in detail. Theresult is

Equation (3.19) relates the parameter k tothetotal energy E (through the parameter a)
and the potential function ¥, (through the parameter #).

As we mentioned, the more interesting solutions occur for £ < V,, which ap-
plies|o theelectron bound within the crystal. From Equation (3.7), the parameter 8
isthen an imaginary quantity. We may define

B#=Jjy (3.20
wherey isareal quantity. Equation (3.19) can he written in terms of y as

Equation (3.21) does not lend itself to an analytical solution, but must be solved
usng numerical or graphical techniques to obtain the relation between k, E. and V,,
The solution of Schrodinger's wave equation for a single bound particle resulted in
discrete allowed energies. The solution of Equation (3.21) will result in a band of
dlowed energies.

To obtain an eguation that is more susceptible to a graphical solution and thus
will illustrate the nature of the results, let the potential barrier width b — 0 and the
barrier height V) — oo, but such that the product &V, remainsfinite. Equation (3.21)
then reduces ta

+ cosaa = coska

We may definea parameter P as

Then, finally,we have the relation

P,Sinao

+ cosaa = cosku (3.24)
oa

Equation (3.24) again givesthe relation berween the parameter K, total energy E
(through the parameter a), and the potential barrier bV,. We may note that Equa-
tion (3.24)is not a selution of Schrodinger s wave equation but gives the conditions
for which Schrodinger's wave equation will kave asolution. If we assume the crystal
isinfinitelylarge, then k in Equation (3.24) can assume a continuum of values and
mug be redl.
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3.1.3 Thek-Space Diagram

To begin to understand the nature of the solution, initially consider the special
for which V3 = 0. In this case P' = 0. which corresponds to a free particle §
there are no potential barriers. From Equation (3.24). we have that

cosaa = coska

o=k

Since the potential is equal to zero, the total energy E isequal to the kinetic energy,]
so that, from Equation (3.5), Equation (3.26) may be written as

h

where pisthe particle momentum. The constant of the motion parameter k is related
to the particle momentum for the free electron. The parameter K isalso referred to as
awave number.

We can also relate the energy and momentum as

Figure 3.7 shows the parabolic relation of Equation (3.28) between the energy E ad
momentum p for the free particle. Since the momentum and wave number are lin- |
early related, Figure 3.7 isalso the £ versus k curve for the free panicle.

We now want to consider the relation between E and k from Equation (3.24) for
the particle in the single-crystal lattice. As the parameter P’ increases, the particle
becomes moretightly bound to the potential well or atom. We may define theleft Sde
of Equation (3.24) to be afunction f {«a), so that

Sinae

f(@a) = P’ + coswa (3.29)
oda

Figure 37 1 Theparabolic E versusk
curve for the free eectron.
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Figure 381 A plat of (a) thefirgt term in Equation (3.29), {b) the second term in Equation
(3.29), and (c) theentire £ (zer) function. The shaded areas show the allowed vaues of
{ara} corresponding to red valuesof k.

Figure3.8aisaplot of thefirst term of Equation (3.29) versus cca. Figure 3.8b shows
aplot o the cos aa term and Figure 3.8¢ is the sum of the two terms, or f{xa).
Now from Equation (3.24). we also have that

f(aa) = coska (3.30)

For Equation (3.30) to be valid, the allowed values of the f {xa) function must be
bounded between +1  and — 1. Figure 3.8¢ shows the allowed values of f (@a) and
thedlowed valuesof aa in the shaded areas. Also shown on the figure are the values
d kafromtheright side of Equation (3.30) which correspond to the allowed values
of f (xa).

The parameter a is related to the wtal energy E of the particle through Equa-
tion (3.5), which iser® = 2m E /42. A plot of the energy E of the particle asafunction
d the wave number k can be generated from Figure 3.8c¢. Figure 3.9 shows this plot
and shows the concept of allowed energy bands for the particle propagating in the
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Figure391 The E versus k diagram generated from
Figure 3.8. The allowed energy bands and forbidden
energy bandgaps are indicated.

crystal lattice. Since the energy E has discontinuities, we also have the concept of
forbidden energiesfor the particlesin the crystal.

EXAMPLE 32

Objective

To determine the lowest allowed energy bandwidth.
Assume that the coefficient P’ = 10 and that the potential widtha = 5A

8 Solution
To find the lowest allowed energy handwidth. we need to find the difference in wa valuesas
ka changesfrom 0 to = (see Figure 3.8c}. For ka = 0, Equation (3.29) becomes

Snea

1=10 + cosaa

e

By trial and error, we findaa = 2.628 rad. We see that for ke = 7. ca = m.
For q¢g = m. we have

or

For wa = 2.628. we find that £, = 1.68 x 107"Y J= 1.033 eV. The alowed energy band-
width is thrn

AE = E- — E, =150 - 1.053 = 0.447 eV
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sComment
W sefrom Fgure 3.8¢ thet. as theenergy increases, the widthsof the allowed bands increase
from this Kronig—Penney moddl.

TEST YOUR UNDERSTANDING

E3.1 Using the parametersgiven in Example 3.2, determine the width (in eV) of the
forbidden energy bend thet existsat ka = r (SeeFigure 3.8c). (AR 6.7 = JV 'SUV)

Consider again the right side of Equation (3.24), which is the function cos ka
Thecosnefunction is periodic so that

coska = cos (ka +2n7) = cosika — 2nm) (3.31)

wheren isa positiveinteger. We may consider Figure 3.9 and displace portions of the
curve by 2x. Mathematically, Equation (3.24) is still satisfied. Figure 3.10 shows
how various segments of the curve can be displaced by the 2z factor. Figure 3.11
shows the case in which the entire E versus k plot is contained within —z/a <
k < m/a. This plot is referred to as a reduced &-space diagram, or a reduced-zero
representation.

We noted in Equation (3.27) that for afree electron, the particle momentum and
the wave number k are related by p = Ak. Given the similarity between the free

Figure3101 The £ versus k diagram showing 2
digplacementsof severd sections of alowed energy Figure 3.111The £ versusk diagram
bands. in the reduced-zone representation.
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electron solution and the results of the single crystal shown in Figure 3.9, the para-
meter #ik in asinglecrystal isreferred to as the crystal momentum. This parameter is
not the actual momentum of the electron in the crystal, but is a constant of the mo-
tion that includes the crystal interaction.

We have been considering the Kronig—Penney model, which is a one-
dimensional periodic potential function used to model a single-crystal |attice. The
principle result of thisanalysis, sofa,: isthat electrons in the erystal occupy certain
allowed energy bands and are exciuded from the forbidden energy bands. For red
three-dimensional single-crystal materials, a similar energy-band theory exists. We
will obtain additional electron properties from the Kronig—Penney model in the next
sections.

3.2 ELECTRICAL CONDUCTION IN SOLIDS

Again, we are eventually interested in determining the current—voltage characteris-
tics of semiconductor devices. We will need to consider electrical conduction in
solids as it relates to the band theory we have just developed. Let us begin by con-
sidering the motion of electrons in the various allowed energy hands.

321 TheEnergy Band and the Bond M odel

In Chapter 1, wediscussed the covalent bonding of silicon. Figure 3.12 shows atwo-
dimensional representation of the covalent bonding in asingle-crystal silicon lattice.
Thisfigurerepresentssilicon at T = 0 Kin which each silicon atom is surrounded by
eight valence electrons that arein their lowest energy state and are directly involved
in the covalent bonding. Figure 3.4b represented the splitting of the discrete silicon
energy states into bands of allowed energies as the silicon crystal is formed. At
T =0 K, the 4N states in the lower band, the valence band, are tilled with the va
lence electrons. All of the valence electrons schematicatly shown in Figure 3.12 are
in the valence band. The upper energy band, the conduction band, is completely
empty at T = 0K.

Figure3.12 | Two-dimensiona
representation of the covalent bonding
inasemiconductorat T = 0 K.



3.2 Hedricd Conduction in Solids

Asthe temperature increasesabove 0 K, a few valence band electrons may gain
enough thermal energy to break the covalent bond and jump into the conduction
band. Figure 3.13a shows a two-dimensional representation of this bond-breaking
effect and Figure 3.13b, a simple line representation of the energy-band model,
showsthe same effect.

The semiconductor is neutrally charged. This means that, as the negatively
charged electron breaks away from its covalent bonding position, a positively
charged "empty state™ iscreated in the original covalent bonding position in the va-
lence band. As the temperature further increases, more covalent bonds are broken,
more electrons jump to the conduction hand, and more positive "empty states" are
cregted in the valence band.

We can aso relate this hond breaking to the E versus k energy bands.
Foure 3.14a shows the E versus k diagram of the conduction and valence bands at

Conduction o
band -
t \
Valence +,
band

Figure3.131 (a) Two-dimendona representationof the breaking of acovaent bond.
(b) Corresponding line representation of the energy band and the generation of a
negative and positive charge with the breaking of acovaent bond.

Figure314 | The £ versus & diagram of the conduction and vaence bands of a
smicondudord (@) T =0Kand (b) T = 0K,
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T = 0 K. The energy states in the valence band are completely full and the statesin
the conduction band are empty. Figure 3.14b shows these same bands for T > 0K,
in which some electrons have gained enough energy to jump to the conduction berd
and haveleft empty states in the valence hand. We are assuming at this point that ro
external forces are applied so the electron and "empty state” distributions are sym-
metrical with k. ;

3.2.2 Drift Current

Current is due to the net flow of charge If we had acollection of positively charged
ions with a volume density N {cni*) and an average drift velocity v, {cm/s), thenthe
drift current density would be

J=gNvy,  Alem’ (332

If, instead of considering the averagedrift velocity, we considered the individual ion
velocities, then we could write the drift current density as

where v; isthevelocity of theith ion. Thesummation in Equation (3 33) istaken over |
aunit volume so that the current density Jisstill in units of A/cm?.

Since electrons are charged particles, a net drift of electrons in the conduction
band will give riseto a current. The electron distribution in the conduction band, as
shown in Figure 3.14b. isan even function of k when no external forceisapplied. Re
cal that k for afree electron is related to momentum so that, since there are as many
electrons with a +|k| value as there are with a —|4| value, the net drift current den-
sity due to these electrons is zero. This result is certainly expected since there is ro
externally applied force.

If aforceisapplied to a particle and the particle moves, it must gain energy. Thisi
effectis expressed as

dE = Fdx = Fudt (3.34)

where F istheapplied force, dx isthedifferential distancethe particle moves, v isthe

velocity, and 2 E isthe increase in energy. If an external force is applied to the elec-

trons in the conduction band, there are empty energy states into which the electrons

can move: therefore, because of the external force, electrons can gain energy and angt

momentum. The electron distribution in the conduction band may look like that

shown in Figure 3.15, which implies that the electrons have gained a net momentum.
We may write the drift current density due to the motion of electrons as

where ¢ is the magnitude of the electronic charge and n is the number of electrons
per unit volume in the conduction hand. Again, the summation is taken over a unit
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Figure3.15 | The asymmetric distribution
of electrons in the E versus k diagram
when an external forceis applied.

volume so the current density is Afcmi®. We may note from Equation (3.35) that the
current isdirectly related to the electron velocity; that is, the current isrelated 1o how
wdl the electron can move in the crystal.

3.23 Electron Effective M ass

The movement of an electron in alattice will, in general, be different from that of an
eectron in free space. In addition to an externally applied force, there are internal
forcesin the crystal due to positively charged ions or protons and negatively charged
eectrons, which will influence the motion of electrons in the lattice. We can write

where i, Fexe. and Fip, are the total force, the externally applied force, and thein-
ternd forces, respectively, acting on a particle in a crystal. The parameter a is the
accelerationand m is the rest mass of the particle.
Sinceit is difficult to takeinto account al of theinternal forces, we will write the
eguation
Fou =m'a (1.37)

wherethe acceleration a is now directly related to the external force. The parameter
m*. called theeffective mass, takes into account the panicle mass and also takes into
account the effect of theinternal forces.

To usean analogy for the effective mass concept, consider the difference in mo-
tion between aglass marble in a container filled with water and in a container filled
with ail. In general, themarble will drop through the water at afaster rate than through
the ail. The external force in this example is the gravitational force and the internal
forcesare related to the viscosity of the liquids. Because of the differencein motion
d the marblein these two cases, the mass of the marble would appear to be different
in water thanin oil. (Aswith any analogy, we must be careful not to betoo literal.)

We can also relate the effective mass of an electron in acrystal to the E versus k
curves, such as was shown in Figure 3.11. In a semiconductor material, we will be
deding with allowed energy bands that are almost empty of electrons and other
energy bandsthat are almost full of electrons.



CHAPTER 3 Infroduction to the Quantum Theory of Solids ]

To begin, consider the case of afree electron whose E versus k curve was sho
in Figure 3.7. Recalling Equation (1.28). the energy and momentum are related
E = p%/2m = A%*?/2m, where m is the mass of the electron. The momentum an
wave number k are related by p = Rk. If we take the derivative of Equation (3.281
with respect to k, we obtain

Relating momentum to velocity, Equation (3.38) can be written as

1dE _p

Fdk —m
where v is the velocity of the particle. The first derivative of Ewith respect to kis
lated to the velocity of the panicle.
If we now take the second derivative of E with respect to k, we have

We may rewrite Equation (3.40) as

1

The second derivative of E with respect to k is inversely proportional to the mass d
the particle. For the case of a free electron, the mass is a constant (nonrelativistic|
effect), so the second derivative function is a constant. We may also note from FHg
ure 3.7 that d° E /dk? is a positive quantity, which implies that the mass of the dec-
tron is also a positive quantily.

If weapply an electricfield to the free electron and use Newton's classical equa
tion of motion, we can write

where a is the acceleration, E 1s the applied electricfield, and e is the
the electronic charge. Solving for the acceleration, we have
—eE
a=—
m
The motion of thefree electron isin the opposite direction to the applied electric fidg
because of the negative charge.

We may now apply the results to the electron in the bottom of an allowed ener
band. Consider the allowed energy band in Figure 3.16a. The energy near the bottom
thisenergy band may be approximated by a parabola, just as that of afree particle.
may write |

E-E =Cik)}
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Figure 3.16 | (a) The conduction band in reduced k space, and the parabolic
goproximation. (b} The vaence band in reduced k space, and the parabolic
goproximetion.

Theenergy E. istheenergy at the bottom of the band. Since E > E., the parameter
C, isapositivequantity.

Taking the second derivative of £ with respect to k from Equation (3.44), we
obtain

We may put Equation (3.45) in theform
| d’E 2C,
H?dk?2 T n?
Comparing Equation (3.46) with Equation (3.41). we may equate /i /2C) to the mass

of the particle. However, the curvature of the curve in Figure 3.16a will not, in gen-
erd, be the same as the curvature of the free-particle curve. We may write

(3.46)

wherem* iscalled the effective mass. Since C; = 0, we havethat m* = 0 also.

The effectivemass is a parameter that relates the quantum mechanical results to
the dlassical forceequations. In most instances, the electron in the bottom of the con-
duction band can be thought of as a classical particle whose motion can be modeled
ky Newtonian mechanics, provided that the internal forces and quantum mechanical
propertiesare taken into account through the effective mass. If we apply an electric
field to the electron in the bottom of the allowed energy band, we may write the
accderationas

where m’; istheeffective mass of the electron. The effective mass m;; of theelectron
regr the bottom of the conduction band is a constant.
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3.24 Concept of theHole

In considering the two-dimensional representation of the covalent bonding shown in
Figure 3.13a, a positively charged "' empty state" was created when a valence dectron
was elevated into the conduction band. For T = 0 K, all valence electrons may gan
thermal energy; if avalenceelectrongainsasmall amount of thermal energy, it may hop
into the empty state. The movement of a valenceelectron into theempty state isequiv-
alent to the movement of the positively charged empty stateitself. Figure 3.17 showsthe
movement of valenceelectronsin thecrystal aternately fillingoneempty state and cre-
ating a new empty state, a motion equivalent to a positive charge moving in the vaence
band. Thecrystal now hasasecond equally important chargecarrier that can giveriseto
acurrent. Thischargecarrier iscalled a hole and, aswe will see, can also be thought of
asaclassical particle whose motion can be modeled using Newtonian mechanics.

Thedrift current density due to electrons in the valence band, such as shownin
Figure 3.14b, can be written as

where the summation extends over all filled states. This summation is inconvenient
since it extends over a nearly full valence band and takes into account a very large
number of states. We may rewrite Equation (3.49) in theform

If we consider aband that istotally full, all available states are occupied by elec-
trons. The individual electrons can be thought of as moving with a velocity as given
by Equation (3.39):

Theband is symmetricink and each state is occupied so that, for every electron with
avelocity |u|, thereisacorrespondingel ectron with avelocity —|v|. Since the bandis
full, the distribution of electrons with respect to k cannot he changed with a
externally applied force. The net drift current density generated fromacompletely full

Figure 317 | Visudization of the movement of a hole in a Semiconductor.



band, then, iszero, or

We can now write the drift current density from Equation (3.50) for an almost

full bend as
J=+e Z Vi

i(empty)
whaethe v; in the summation isthe

asciated with the empty state. Equation (3.52) is entirely equivalent to placing a
postively charged particle in theempty states and assuming all other statesin the hand
ae empty, or neutrally charged. This concept is shown in Figure 3.18. Figure 3.18a
shows the valence band with the conventional electron-filled states and empty states,
while Figure3.18b showsthe new concept of positive charges occupying the original
empty states. This concept is consistent with the discussion of the positively charged
"empty stete” in the valence band as shown in Figure 3.17.

Thev; inthe summation of Equation (3.52) is related to how well this positively
charged paniclemovesin the semiconductor. Now consider an electron near thetop of
theallowedenergy band shown in Figure 3.16b. Theenergy near thetop of theallowed
energy hand may again he approximated by a parabola so that we may write

(E — E) = —Cao(k) (3.53)

Theenergy E, istheenergy at the top of the energy hand. Since E < E, for electrons
in this band, then the parameter > must be a positive quantity.

Teking the second derivative of E with respect to k from Equation (3.53). we
obtan

W& mey rearrange this equation so that

Figure 3181 (a) Veence band with conventional electron-filledstatesand empty
dates. (b) Conoept of positive charges occupying the origina cmpty states.
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Comparing Equation (3.55) with Equation (3.41), we may write

) :

1d’E -20; 1 (3_561)

K2 dk2 h? m* ’

where m* is again an effective mass. We have argued that C; is a positive quantity,

which now implies that m* isanegative quantity. An electron moving near the topo
an alowed energy hand behaves as if it has a negative mass.

We must keep in mind that the effective mass parameter is used to relate quan-
tum mechanics and classical mechanics. The attempt to relate these two theories
leads to this strange result of a negative effective mass. However, we must recall that
solutions to Schrodinger's wave equation also led to results that contradicted class-
cal mechanics. The negative effective mass is another such example.

In discussing the concept of effective massin the last section, we used an andogy
of marbles moving through two liquids. Now consider placing an ice cube in the can
ter of a container filled with water: the ice cube will move upward toward the surface
in adirection opposite to the gravitational force. The ice cube appears to have a nega:
tive effective mass since its acceleration is opposite to the external force. The effec-
tive mass parameter takes into account all internal forces acting on the particle.

If we again consider an electron near the top of an allowed energy band and ue
Newton's force equation for an applied electric field, we will have

However, m* is now a negative quantity, so we may write

An electron moving near the top of an allowed energy band moves in the same di-
rection as the applied electric field.

The net motion of electrons in a nearly full hand can he described by consider-
ing just the empty states, provided that a positive electronic charge is associated with
each state and that the negative of m* from Equation (3.56) is associated with ech
state. We now can model this band as having particles with a positive electronic
charge and a positive effective mass. The density of these panicles in the vaence)
band is the same as the density of empty electronic energy states. This new panicle]
is the hole. The hole, then, has a positive effective mass denoted by m7 and a posi-
tive electronic charge, so it will move in the same direction as an applied field.

3.25 Metals, Insulators,and Semiconductors



3.2 Electrical Conduction in Solids

me badc differences in electrical characteristics caused by variations in band
gructure by considering some simplified energy bands.

There are several possible energy-band conditions to consider. Figure 3.19a
dhows an dlowed energy band that is completely empty of electrons. If an electric
fiddisapplied, thereare no particlesto move, sothere will benocurrent. Figure 3.19b
shows another allowed energy band whose energy states are completely full of elec-
uons. We argued in the previous section that a completely full energy band will also
na giverisetoacurrent. A material that hasenergy bands either completely empty or
completey full is an insulator. The resistivity of an insulator is very large or, con-
verey, theconductivity of aninsulator isvery small. Thereareessentially no charged
paniclesthat can contribute toadrift current. Figure3.19¢ showsasimplified energy-
bend diagramof an insulator. Thebandgap energy E, of an insulator is usually on the
orderof3.5t0 6 eV or larger, sothat at room temmperature, thereareessentially noelec-
tronsin the conduction band and the valence band remainscompletely full. There are
vay faw thermally generated electrons and holesin an insulator.

Figure3.20a shows an energy band with relatively few electrons near the bottom
of theband. Now, if anelectric field isapplied, the electrons can gain energy, moveto

— All d
Allowed — enersy
mgy P— band
band B — (abmost
(empty) empty)
——— f— Allowed
== Allowed —
= energy — band
—a— band f— (almost
a—— (full) full)
) Conduction
Conduction hand
band (dmost
(empty)
E,
Vdence
band
(tull)
(c) (c)
Figure3.191 Allowved energy bands Figure 3.20 1 Allowed energy bands
showing (&)an emply band, (b) a showing (a)an amost empty band. (b) an
compledy full bend. and (c) the bandgap amost full band, and (c) the bandgap

enagy between the two dlowed bands. energy between the two allowed bands.
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Full

Figure 3.211 Two possibleenergy bands of a metd showing (a) a partialy filled bend
and (b) overlapping allowed energy bands.

higher energy states, and movethrough thecrystal. The net flow of chargeisacurrent.
Figure 3.20b shows an allowed energy band that is almost full of electrons. which
means that we can consider the holes in this band. If an electric field is applied, the
holes can move and giverise to a current. Figure 3.20c shows the simplified energy-
band diagram for this case. The bandgap energy may be on the order of | eV. This
energy-band diagram represents a semiconductor for T = 0 K. The resistivity o a
semiconductor, as we will see in the next chapter, can be controlled and varied over
many orders of magnitude.

The characteristics of a metal include a very low resistivity. The energy-band di-
agram for a metal may bein one of two forms. Figure 3.21a shows the case of a par-
tially full band in which there are many electrons available for conduction, so that the
material can exhibit alarge electrical conductivity. Figure 3.21b shows another pos
sible energy-band diagram of a metal. The band splitting into allowed and forbidden
energy bandsisacomplex phenomenon and Figure 3.21b shows a case in which the
conduction and valence bands overlap at the equilibrium interatomic distance. Asin
the case shown in Figure 3.21a, there are large numbers of electrons as well aslarge
numbers of empty energy states into which the electrons can move, so this materia
can also exhibit a very high electrical conductivity.

3.31EXTENSION TO THREE DIMENSIONS

The basic concept of allowed and forbidden energy bands and the basic concept of
effective mass have been developed in the last sections. In this section, we will ex-
tend these concepts to three dimensions and to real crystals. We will qualitatively
consider particular characteristics of the three-dimensional crystal in terms of theE
versus k plots, bandgap energy, and effective mass. We must emphasize that we will
only briefly touch on the basic three-dimensional concepts; therefore, many details
will not be considered.

One problem encountered in extending the potential function to a three
dimensional crystal isthat the distance between atoms varies as the direction through
thecrystal changes. Figure 3.22 shows aface-centered cubic structure with the [ 100]
and [110] directions indicated. Electrons traveling in different directions encounter
different potential patterns and therefore different k-space boundaries. The E versus
k diagramsare in general afunction of the k-space direction in acrystal.



3.3 Extensionto Three Dimensions

bl [110]

direction

Figure 3.221 The (100) plane of a
face-centered cubic crysta showing
the [100] and [110] directions.

331 Thek-SpaceDiagramsof Si and GaAs

Foure 3.23 shows an E versus & diagram of gallium arsenide and of silicon. These
simplified diagrams show the basic properties considered in this text, but do not
show many of the details more appropriate for advanced-level courses.

Note that in place of the usua positive and negative k axes, we now show two
different crystal directions. The E versus k diagram for the one-dimensional model

GaAs |  Conduction | Si Conduction
band
3 -
2 -
Ly
6]
1 -1F
Valence Valence
N band | \ | 3 band
(nn 0 [100] 11111 0 [100]

Figure3.231 Energy band structuresd (a) Gaas and (b) Si
(From Sze [11].)
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was symmetricink sothat no new information isobtained by displaying the negative
axis. Itis normal practice to plot the|100] direction along the normal +k axisandto
plot the [ I'1'1] portion of the diagram so the +k points to the left. In the case of da
mond or zinchlende lattices, the maximain the valence band energy and minimain
the conduction band energy occur at k = 0 or along one of these two direction*.

Figure 3.23a shows the £ versus k diagram for GaAs. The valence band maxi-
mum and the conduction hand minimum both occur a k = 0. The electrons in the
conduction band tend to settle at the minimum conduction band energy whichisa
k = 0. Similarly, holes in the valence band tend to congregate at the uppermost
valence band energy. In GaAs, the minimum conduction band energy and maximum
valence band energy occur at the samek value. A semiconductor with this property is
said to be adirect bandgap semiconductor; transitions between the two allowed bends
can take place with nochange in crystal momentum. Thisdirect nature has significant
effect on the optical properties of the material. GaAs and other direct bandgap mate
rials areideally suited for use in semiconductor lasers and other optical devices.

The E versus k diagram for silicon is shown in Figure 3.23b. The maximum in
the valence band energy occurs at k = 0 as before. The minimum in the conduction
band energy occurs not a1 k = 0, hut along the [100] direction. The difference be
tween the minimum conduction band energy and the maximum valence band energy
is still defined as the bandgap energy E,. A semiconductor whose maximum vaence
band energy and minimum conduction band energy do not occur at the same k vdue
is called an indirect bandgap semiconductor. When electrons make a transition e
tween the conduction and valence bands, we must invoke the law of conservation of
momentum. A transition in an indirect bandgap material must necessarily includean
interaction with the crystal so that crystal momentum is conserved.

Germanium is also an indirect bandgap material, whose valence band maximum
occurs a k = 0 and whose conduction band minimum occurs along the [111] direc:
tion. GaAsisadirect bandgap semiconductor, but other compound semiconductors,
such as GaP and AlAs, have indirect bandgaps.

3.3.2 Additional Effective Mass Concepts

The curvature of the E versus k diagrams near the minimum of the conduction ben
energy is related to the effective mass of the electron. We may note from Figure 3.
that the curvature of the conduction band at its minimum value for GaAs is larg
than that of silicon, so the effective mass of an electron in the conduction hand o
GaAs will be smaller than that in silicon.

For the one-dimensional E versus k diagram, the eftective mass was defined by
Equation (3.41) as 1/m* = 1/k> . 42E/dk>. A complication occurs in the eff
mass concept in a real crystal. A three-dimensional crystal can be described by
k vectors. The curvature of the E versus kdiagram at the conduction band minimum
not be the samein the three k directions. We will not consider the details of the vag
effectivemass parameters here. In later sections and chapters, the effective mass param-
eters used in calculations will be akind of statistical average that is adeguate for mogt
device calculations.



3.4 Denstyd StatesFunciion

341 DENSITY OF STATES FUNCTION

As we have stated. we eventually wish to describe the current-voltage characteris-
tics of semiconductor devices. Since current is due to the flow of charge. an im-
portant step in the process is to determine the number of electrons and holes in the
semiconductor that will he available for conduction. The number of carriers that
can contribute to the conduction process is a function of the number of available
energy or quantum states since, by the Pauli exclusion principle, only oneelectron
can occupy a given quantum state. When we discussed the splitting of energy lev-
elsinto bands of allowed and forbidden energies, we indicated that the band of al-
lowed energies was actually made up of discreteenergy levels. We must determine
the density of these allowed energy states as a function of energy in order to calcu-
late the electron and hole concentrations.

341 Mathematical Derivation

To determinethe density of allowed quantum states as afunction of energy, we need
to consider an appropriate mathematical model. Electrons are allowed to move rela-
tively freely in the conduction band of a semiconductor, but are confined to the crys-
td. As a first step, we will consider a free electron confined to a three-dimensional
infinite potential well, where the potential well represents the crystal. The potential
d theinfinite potential well is defined as

OD<z<a

Vix, v, z) = elsewhere

wherethecrystal is assumed to be acubewith length a. Schrodinger's wave equation
in three dimensions can be solved using the separation of variables technique.
Extrapolating the results from the one-dimensional infinite potential well, we can
show (see Problem 3.21) that

wheren,, i, and n- are positive integers. (Negative values of ., 51, and ». yield
the same wave function, except for the sign, asthe positive integer values, resulting
in the same probability function and energy, so the negative integers do not represent
adifferent quantum state.)

We can schematically plot the allowed quantum states in & space. Figure 3.24a
shows atwo-dimensional plot as a function of 4, and k,. Each point represents an
dlowed quantum state corresponding to variousintegral valuesof #, and «,. Positive
ad negative values of &, k,, or k. have the same energy and represent the same
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Figure324 ) (a)A rwo-dimensional array of alowed quantum stalesin
k space. (b) The poditive one-eighth of the spherical k space.

energy state. Since negative values of k,, k,, or £ do not represent additional quar
tum states, the density of quantum states will be determined by considering only the
positive one-eighth of the spherical 4 space as shown in Figure 3.24b,

The distance between two quantum states in the &, direction, for example, is

given by
Generalizing thisresult tothree dimensions, the volume V;, of asinglequantum stateis

We can now determine the density of quantum states in k space. A differential vol-
ume in k space is shown in Figure 3.24b and is given hy 4nk? dk, so the differential
density of quantum states in k space can he written as |

The first factor, 2, takes into account the two spin states allowed for each quant
stale; the next factor, % takes into account that we are considering only the quant:ﬁ
statesfor positive values of k., k,, and k,. Thefactor Ank?dk is again the

tial volume and thefactor (7 /a)* is the volume of one quantum state.

may be simplified to



3.4 Density of StatesFunction

Equation (3.64) gives the density of quantum states as afunction of momentum,
through the parameter k. We can now determine the density of quantum states as a
functiondf energy E. For afree electron, the parameters E and k are related by

Tredifferentia dk is

Then, substituting the expressions for k? and dk into Equation (3.64). the number of
enagy stetes between Eand E + ¢ £ isgiven by

Snceh = h/27, Equation (3.67) becomes

Equation (3.68) gives the total number of quantum states between the energy E and
E t dE inthecrystal space volume of u®. If wedivide by the volumea?, then we will
ohtain the density of quantum states per unit volume of the crystal. Equation (3.68)
then becomes

Thedensity of quantum states is a function of energy . As the energy of this free
eectron becomes small, the number of available quantum states decreases. Thisden-
sty functionis redly a double density, in that the units are given in terms of states
per unit energy per unit volume.

Objective

To cdaulae the density of states per unit volume over a particular energy range.
Condder the dengity of states for a free eectron given by Equation (3.69).Cdculate the
desty of datesper unit volume with energiesbetween 0 and | eV.

EXAMPLE 3.3
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W Solution
Thevolumedensty of quantum states, from Equation (3.69), is

4 (2my* | preY

. VEdE
h v

| eV
0

or

The dengity of statesis now

B Comment

The dendity of quantum states is typically alarge number. An effectivedendty of satesina
semiconductor, as we will see in the following sectionsand in the next chapter, is dso aluree
number, but is usudly less than the density of atomsin the semiconductorcrystal.

34.2 Extension to Semiconductors

In the last section, we derived a general expression for the density of allowed eleoq
tron quantum states using the model of afree electron with mass s bounded in a
three-dimensional infinite potential well. We can extend this same general mode to
a semiconductor to determine the density of quantum states in the conduction band
and the density of quantum states in the valence band. Electronsand holes are con
fined within the semiconductor crystal so we will again usethe basic model of thein-
finite potential well.

The parabolic relationship between energy and momentum of a free dectron
was given in Equation (3.28) as E = p?/2m = h’k’/2m. Figure 3.16a showed the
conduction energy band in the reduced k space. The E versus k curve near k = Oat
the bottom of the conduction band can be approximated as a parabola, so
write

ik’
2m

E=E.+

%

n

where E.. is the bottom edge of the conduction hand and 1}, is the electron effecti
mass. Equation (3.70) may be rewritten to give

ﬁlk'Z
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Thegenera form of the E versusk relation for an electron in the bottom of acon-
duction band is the same as the free el ectron, except the massisreplaced by the effec-
tivemass. We can then think of the electron in the bottom of the conduction band as
beng a"'free" electron with itsown particular mass. Theright side of Equation (3.71)
isof thesameform athe right side of Equation (3.28), which was used in the deriva-
tion of the density of states function. Because of this similarity, which yields the
"fred" conduction electron model, we may generalize the free electron results of
Equation (3.69) and write the density of allowed electronic energy statesin the con-
ductionhand as

Equetion (3.72)is valid for £ o .. As the energy of the electron in the conduction
bend decreases, the number of available quantum states al so decreases.

Thedensity of quantum states in the valence band can be obtained by using the
same infinite potential well model, since the hole is aso confined in the semicon-
ductor crystal and can he treated as a"'free" particle. The effective mass of the hole
is m. Figure 3.16b showed the valence energy band in the reduced k space. We
mey also approximate the £ versus k curve near k = 0 by a parabola for a "'free"
hole, so that

Equation (3.73) may he rewritten to give

Again, the right side of Equation (3.74) is of the same form used in the general
derivation of the density of states function. We may then generalize the density of
gates function from Equation (3.69) to apply to the valence band, so that

Equation (3.75) is valid for £ < £,.

We have argued that quantum states do not exist within the forbidden energy
band, 0 g(E) =0 for £, < E < E,. Figure 3.25 shows the plot of the density of
quantum states as afunction of energy. If the electron and hole effective masses were
equal, then the functions g.(E) and g,(E) would be symmetrical about the energy
midway between £, and £, or the midgap energy. Enidaap-
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gv(E}

| 4(E) —»-

Figure3.25| The density of energy
statesin the conduction band and the
dengty of energy statesin the valence
band as afunction o energy.

TEST YOUR UNDERSTANDING

E3.2 Determinethe total number of energy statesin silicon between E, and E, T 4T at
T =300K. (,_Wd 01 X ZI'T

E3.3 Determinethe total number of energy statesin slicon between E,and E, - 47T &
T =300 K. (;_1I3 ;|01 X Zg'L "SUVY)

35ISTATISTICAL MECHANICS

In dealing with large numbers of particles, we are interested only in the statistical be
havior of the group as awhole rather than in the behavior of each individual particle.
For example, gas within acontainer will exert an average pressure on the walls of the
vessel. The pressure is actually due to the collisions of the individual gas molecules
with the walls, but we do not follow each individual molecule as it collides with the
wall. Likewise in a crystal, the electrical characteristics will be determined hy the
statistical behavior of alarge number of electrons.

351 Statistical Laws

In determining the statistical behavior of particles, we must consider the laws that the
particles obey. There are three distribution laws determining the distribution of par-

ticles among available energy states. F



Onedigtribution law is the Maxwell-Boltzmann probability function. In this case,
the panicles are considered to be distinguishable by being numbered, for example, from
| to N. with no limit to the number of particles alowed in each energy state. The
behavior of gas molecules in a container at fairly low pressure is an example of this
digtribution.

Asecond distribution law isthe Bose—Einstein function. Thepanicles in thiscase
aeindistinguishableand, again, there is no limit to the number of particles permitted
in each quantum state. The behavior of photons, or black body radiation, is an exam-
pledf thislaw.

The third distribution law is the Fermi—Dirac probability function. In this case,
the particles are again indistinguishable, but now only one particle is permitted in
each quantum state. Electrons in acrystal obey thislaw. In each case, the particles are
assumed to be noninteracting.

352 TheFermi-DiracProbability Function

Figure 3.26 shows the ith energy level with g; quantum states. A maximum of one
paticleisalowed in each quantum state by the Pauli exclusion principle. There are
g; ways of choosing where to place the first panicle, (g; — 1) ways of choosing
where to place the second particle, (g; — 2) ways of choosing where to place the
third particle, and so on. Then the total number of ways of arranging #; particlesin
theith energy level (where ; < g;) is

Thisexpressionincludesdl permutations of the N, particles among themselves.

However, since the particles are indistinguishable, the N;! number of permuta-
tions that the particles have among themselves in any given arrangement do not
count as separate arrangerments. The interchange of any two electrons. for example,
does not produce a new arrangement. Therefore, the actual number of independent
waysof realizing adistribution of &; particlesin theith level is

s BH (3.77)
Nil(g: — Ny)!
ithenergy | @ | @ | @ ®
el | 1] 2]3] . ... 2,

Quantum states

Figure3261 The ith energy level wrth g,
quantum states.
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ExaAMPLE34 | Objective
To determine the possible number of waysd redizing a particular distribution.
Lety, =N, = 10. Then (g, — N)! = L.
B Solution
Equation {3.77} becomes
&' _ Q -
Nilg, - NV ot
B Comment
If we have 10 particlesto be arranged in 10 quantum states, there isonly one poséblearrange‘]
ment. Each quantum state contains one particle.
EXAMPLE35 | Objective

To again determine the possible number of ways of redizing a particular distribution. ‘
Letg, = 10ad N =9 Inthiscaseg, — ¥, =1 sothat (g, — N} = I.

® Solution
Equation (3.77) becomes

m Comment
In this case, if we have 10 quantum statesand 9 particles. there is one empty quantum state.
Thereare 10 possible arrangements, or positions, for the one empty state.

Equation (3.77) gives the number of independent waysof realizing adistribution
of N, particlesin theith level. The total number of waysof arranging (V. Ny, Ny, ...,
N_) indistinguishable particles among # energy levels is the product of al distribu-
tions, or

The parameter W is the total nhumber of waysin which Nelectrons can be arranged in
this system, where N = 37| N, isthe total number of electrons in the system. We
want to find the most probable distribution, which means that we want to find the
maximum W. The maximum W is found by varying &; among the E; levels, which
vanes the distribution, but at the same time, we will keep the total number of parti-
clesand total energy constant.



3.5 Statistical Mechanics

We may write the most probable distribution function as

where E ¢ is called the Fermi energy. The number density A (E) is the number of
particles per unit volume per unit energy and the function g{£) is the number of
guantum states per unit volume per unit energy. The function fr(E) is caled the
Fermi-Dirac distribution or probability function and gives the probability that a
quantum state at theenergy E will be occupied by an electron. Another interpretation
of thedistribution function isthat fr(E} is the ratio of filled tototal quantum states

a any energy E.

3.5.3 TheDistribution Function and the Fermi Energy

To begin to understand the meaning of the distribution function and the Fermi
energy, we can plot the distribution function versus energy. Initialy, le¢ T =0K and
consider the case when E « Ex. The exponential term in Equation (1.79) becomes
expl(E — Ep}/kT| — exp(—o0) = 0. The resulting distribution function is
fr(E < Er) = 1. Again let T =0 K and consider the case when £ = £,. The
exponentid term in the distribution function becomes exp[{£ — Ef)/kT)—
exp(+o00) — +oc. The resulting Fermi—Dirac distribution function now becomes
frlE > Ep)=0.

The Fermi~Dirac distribution function for T = 0 K is plotted in Figure 3.27. This
result showsthat, for T = 0 K, the electrons are in their lowest possible energy states.
The probability of a quantum state being occupied is unity for £ < £ and the proba-
bility of astatebeing occupied is zerofor £ > £ . All electrons have energies below
theFermi energy at T = 0 K.

Figure 3.28 shows discrete energy levels of a particular system as well as the
number of available quantum states at each energy. If we assume, for this case, that

E—» £y F
Figure3.281 Discrete energy states
Figure327 | TheFermi probability and quantum statesfor aparticular

functionversus energy for T =0 K. systema T = 0 K.
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the system contains 13 electrons. then Figure 3.28 shows how these electrons are dis
tributed among the various quantum states at T = 0 K. The electrons will he in the
lowest possible energy state, so the probability of a quantum state being occupiedin
energy levels E| through E4 is unity, and the probability of a quantum state being oc
cupied in energy level E5 is zero. The Fermi energy, for this case, must be above E4
but lessthan Es. The Fermi energy determines the statistical distribution of eectrons
and does not have to correspond to an alowed energy level.

Now consider a case in which the density of quantum states g(£) is a continu-
ous function of energy as shown in Figure 3.29. If we have ¥q electrons in thissys
tem, then the distribution of these electrons among the quantum statesat T = 0 K is
shown by thedashed line. The electrons are in thelowest possible energy state so thet
all states below Ef aretilled and al states above E£r are empty. If g(£) and Ny ae
known for this particular system, then the Fermi energy £ ¢ can be determined.

Consider the situation when the temperature increases above T = 0 K. Bec
trons gain a certain amount of thermal energy so that some electrons can jump to
higher energy levels, which meansthat the distribution of electrons among the avail-
ableenergy states will change. Figure 3.30 shows the same discrete energy levelsad
guantum states as in Figure 3.28. The distribution of electrons among the quantum
states has changed from the 7 = 0 K case. Two electrons from the E; level have
gained enough energy tojump to E5, and one electron from £5 hasjumped to E;. As
the temperature changes, the distribution of electrons versus energy changes.

The change in the electron distribution among energy levelsfor T = OK can ke
seen by plotting the Fermi—Dirac distribution function. If welet E = Erand T > OK,
then Equation (3.79) becomes

The probability of a state being occupied at E = Ef is % Figure 3.31 shows the
Fermi-Dirac distribution function plotted for several temperatures, assuming the
Fermi energy is independent of temperature.
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Figure 3.301 Discrete energy statesand
Figure 3.291 Dengty of quantum statesand electronsin a quantum states for the same system
continuous energy systema T = 0 K. shown in Figure3.28 for T > 0 K.



3.5 Saidicd Mechanics

(E)

Figure 3.311 The Fermi probability function versus energy
for different temperatures.

We can see that for temperatures above absolute zero, there isa nonzero proba-
bility that some energy states above £y will be occupied by electrons and some
energy states below £¢ will be empty. This result again means that some electrons
have jumped to higher energy levels with increasing thernal energy.

Objective

To caculate the probability that an energy state above E is uccupied by an electron.
Let T = 300 K. Determine the probability that an energy level 3kT above the Fermi en-
ergy isoccupied by an electron.

8 Solution
From Equation (3.79). we can write

| 1
fr(E) = =

or(E) ()

which becomes

1 Comment

At energiesabove £ , the probability of a state being occupied by an electron can become sig-
nificantly less than unity. or the ratio of electrons to available quantum states can he quite
smdl.

EXAMPLE 3.6

TEST YOUR UNDERSTANDING

E34 Assumethe Fermi energy level is0.30 eV below the conduction band energy.
(a) Determine the probability of astate being occupied by an electron &t E,..
(h)Repeat part (a)for an energy state at E, + 7. Assume T = 300 K.

[4-00 x €7 € (q) "y 01 ¥ TE'6 (V) 'SUV¥]
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E3.5 Assumethe Fermi energy level is0.35¢V above the valence band energy.
(a) Determine the probability of a state being empty of an electron at E,. (b)
pan (a)for an energy stateat £y — &T. Assume 7 = 300 K.
[,-01 * 86t (9) 5. 01 X SE1 (¥) "sUV]

We can see from Figure 3.31 that the probability of an energy above £
occupied increases as the temperature increases and the probability of astate beloti
E ¢ being empty increases as the temperature increases.

EXAMPLE 3.7

Objective

To determine the temperature at which thereisa 1 percent probability that an energy statei'
empty.

Assume that the Fermi energy level for a particular material is6.25eV
trons in this material follow the Fermi—Dirac distribution function. Calculate the temperatuq
at which thereisa | percent probability that aslate 0.30eV below the Fermi
not contain an electron.

W Solution
The probability that a state isempty is

Then

Solving for &T. wefind kT = 0.06529 eV, so that the temperature iS7 = 756 K

m Comment
The Fermi probability function is a strong function of temperature

TEST YOUR UNDERSTANDING

E3.6 Repeat Exercise E3.4for 7'= 400 K. [¢-01 X 0Z°9(g) *,_01 X 69'1 (P} suy]
E3.7 Repeat Exercise E3.5for T'= 400 K. [c—01 ¥ 9%°1 (¢ *_0] * Y6E (7} suy|

We may note that the probability of a state a distance ¢ E above E¢
occupied is the same as the probability of a srate a distance 4 E below E¢
emipty. Thefunction fr(E) issymmetrical with the function | — fr(E) about t
Fermi energy, E . This symmetry effect is shown in Figure 3.32 and will be us
in the next chapter.



Figure 3.321 The probability of a slate being occupied.
fr(E), and the probability of a state heing empty, 1 — £:(£)

-

Figure 3.331 The Fermi-Dirac probability function and the
Maxwell-Boltrmann approximation.

Consider the case when E — Ey > kT. where the exponential term in the de-
nominator of Equation (3.79) is much greater than unity. We may neglect the 1 in the
denominator, so the Fermi—Dirac distribution function becomes

Equation (3.80)is known as the Maxwelil-Boltzmann approximation, or simply the
Boltzmann approximation. tothe Fermi—Dirac distribution function. Figure 3.33 shows
the Fermi—Dirac probability function and the Boltzmann approximation. This figure
givesanindication of therange of energies over which the approximation isvalid.

Objective

To determine the energy a which the Boltzmann approximation may be considered valid.
Cdculate the energy, in terms of &7 and Er, a which the difference between the
Boltzmann approximation and the Fermi-Dirac function is 5 percent of the Fermi function.

EXAMPLE 3.8
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® Solution
We can write

exp[~(E—En]_ I
T (5]

1

E-E
l+exp( F)

If we multiply both numerator and denominator by the | + exp () function, we have

E-E0) | 4. [E—E _
e""[ KT ]{1 EXP[ 5 “_I_O'OS

=0.05

which becomes

® Comment

As seen in thisexample and in Figure 3.33. the E — E, > kT notation is somewhat midead
ing. The Maxwell-Boltzmann and Fermi—Dirac functions are within 5 percent o each ather
when E — Ep == 3kT.

The actual Boltzmann approximation is valid when exp [(£ — Eg)}/kT] 3 |
However, it isstill common practice to use the £ — E = kT notation when apply-
ing the Boltzmann approximation. We will use this Boltzmann approximation in our
discussion of semiconductorsin the next chapter.

3.6 | SUMMARY

Discrete allowed electron energies split into a band of allowed energies as atoms are
brought together to form acrystal.

B Theconcept of alowed and forbidden energy bands was devel oped more rigorously I
by considering guantum mechanics and Schrodinger's wave equation using the
Kronig-Penney model representing the potential function of a single crystal material.
This result forms the basis of the energy band theory of semiconductors.

W The concept of effective mass was developed. Effective mass relates the motion of a
particle in acrystal to an externally applied force and takes into account the effect of the
crystal lattice on the motion of the particle.

B Two charged particles exist in asemiconductor An electron isa negatively charged
panicle with a positive effective mass existing at the bottom of an allowed energy band.
A hole isapositively charged particle with a positive effective mass existing at the tap
of an allowed energy band.



m TheE versus kdiagram of silicon and gallium arsenide were given and the concept of
direct and indirect bandgap semiconductors was discussed.

Energieswithin an allowed energy band are actually at discrete levels and each contains
afinitenumber of quantum states. The density per unit energy of quantum states was
determined by using the three-dimensional infinite potential well asa model.

m Indeding with large numbers of electrons and holes, we must consider the statistical
behavior of these particles. The Fermi—Dirac probability function wasdeveloped. which
givesthe probability of a quantum state at an energy E of being occupied by an electron.
The Fermi energy was defined.

GLOSSARY OF IMPORTANT TERMS

allowed energy band A band or range of energy levels that an electron in a crystal is al-
lowed to occupy hased on quantum mechanics.

density of statesfunction The density of available quantum states as a functiun ol energy,
given in unitsof number per unit energy per unit volume.

electron effective Mass 1 he parameter that relates the acceleration of an electron in the con-
duction band of acrystal te an external force: a parameter that takes into account the effect
o internal forces in the crystal.

Fermi-Dirae probability function The function describing the statistical distribution of
electrons among available energy states and the probability that an allowed energy stateis
occupied by an electron.

fermi energy In the simplest definitton, the energy below which al states are filled with
electronsand above which all statesareempty at T =0K

forbiddenenergy band A hand or range of energy levels that an electron in acrystal is not
allowed to occupy based on quantum mechanics.

hole The positively charged "particle” associated with an empty state in the top of the va-
lence band.

hole effective mass The parameter that relates the acceleration of a hole in the valence band
of acrystal toan applied external force (a positive quantity); a parameter that takes into ac-
count the effect of internal forces in a crystal.

k-space diagram The plot of el ectroh energy inacrystal versys K, where kisthe momentum-
related constant of the motion that incorporates the crystal interaction.

Kronig-Penney Mmodel  The mathematical model of a periodic potential function represent-
ing aone-dimensional single-crystill lattice by a seriesof periodic step functions.

Maxwell-Boltzmann approximation e condition in which the energy is several «T
above the Fermi energy or several kT below the Fermi energy so that the Fermi—Dirac
probability function can be approximated by a simple exponential function.

Pauli exclusion principle The principle which states that no two electrons can occupy the
same quantum state.

CHECKPOINT

After studying this chapter, the reader should have the ability to:

m Discussthe concept of allowed and forbidden energy bandsin asingle crystal both
qualitatively and more rigorously from the results of using the Kronig—Penney model
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Discuss the splitting of energy bands in silicon.

State the definition of effective mass from the E versus k diagram and discussits
meaning in terms of the movement of a particlein acrystal.

Discuss the concept of ahole.

Qualitatively, in terms of energy hands, discuss the difference between a metal,
insulator, and semiconductor

Discuss the effectivedensity of states function.

Understand the meaning of the Fermi-Dirac distribution function and the Fenni energy.

REVIEW QUESTIONS

1.  What is the Kronig-Penney model'?

2. State two resultsof using the Kronig—Penney model with Schrodinger's wave equation.

3. What iseffective mass?

4. What isadirect bandgap semiconductor? What is an indirect bandgap semiconductor?

5. What is the meaning of the density of states function'!

6. What was the mathematical model used in deriving the density of states function?

7. Ingeneral, what is the relation between density of states and energy?

8. What isthe meaning of the Fermi—Dirac probability function?

9. What is the Fermi energy?

PROBLEMS

Section 3.1 Allowed and Forbidden Energy Bands

31 Consider Figure 3.4b, which shows the energy-band splitting of silicon. If the
equilibrium lattice spacing were to change by a small amount. discuss how you woud
expect the electrical properties of silicon to change. Determine at what point the
material would behave like an insulator or like a metal.

3.2 Show that Equations (3.4) and (3.6) are derived from Schrodinger’s wave equation.
using the form of solution given by Equation (3.3).

3.3  Show that Equations (3.9) and (3.10) are solutions of the differential equations given
by Equations (3.4) and (3.8), respectively.

34  Show that Equations (3.12), (3.14), (3.16), and (3.18) result from the boundary condi-
tions in the Kronig—Penney model.

35 Plot the function f(wa) = 9sinaa/ea cosaafor 0 < aa < 6x. Also, given the
function f(aa) = cosku, indicate the allowed values of aa which will satisfy this
equation

3.6 Repeat Problem 3.5 for the function

f{wa) = 6sinva/oa + coswa = coska
37  Using Equation (3.24), show that 4 £ /dk = ) atk = rm/a, wherer =0, 1, 2.....
3.8  Using the parameters in Problem 3.5 and letting a = 5A, determine the width (in eV)

of the forbidden energy bands that exist at (a) ka = 7. (b)ka = 2=, {¢) ka = 3. ad
(d) ka = 4n. Refer to Figure 3.8c.



39

310
3
312

Using the parameters in Problem 3.5 and lettinga = 5 A. determine the width (in eV)
o the allowed energy bands that exist for (@) 0 < ka < 7, (h) m < ka < 27,

()27 < ko < 3, and (d) 3m < ka < 4.,

Repeat Problem 3.8 using the parameters in Problem 3.6.

Repeat Problem 3.9 using the parameters in Problem 3.6.

The bandgap energy in asemiconductor is usualy aslight function of temperature

In some cases. the bandgap energy versus temperature can be modeled by

where E, (0) is the value of the bandgap energy a T = { K. For silicon. the parameter
vauesare E, () = 1.170 eV, = 4.73 x 107* eV/K and § = 636 K. Plot £, versus
Tover therange0 < T < 600 K. In particular, note the valuea 7 = 300 K.

Section 3.2  Electrical Conductionin Solids

313

314

315

316

317

318

319

Two possible conduction bands are shown in the £ versus k diagram given in

Figure 3.34. State which hand will result in the heavier electron effective mass;

state why.

Two possible valence bands are shown in the £ versus k diagram given in Figure 3.35.
State which band will result in the heavier hole effective mass; state why.

The E versusk diagram for a panicular allowed energy band is shown in Figure 3.36.
Determine (a) the sign of the effective massand (h) the direction of velocity for a
particleat each of the four positions shown.

Figure 3.37 shows the parabolic £ versus k relationship in the conduction band for

an electron in two particular semiconductor materials. Determine the effective mass
(in unitsof thefree electron mass) of the two electrons.

Figure 3.38 shows the parabolic £ versus k relationship in the valence band for ahole
in two particular semiconductor materials. Determine the cffective mass (in units of
the free electron mass) of the two holes.

Theforbidden energy band of GaAs is 1.42 eV. («} Determine the minimum frequency
of an incident photon that can interact with a valence electron and elevate the electron
to the conduction band. (b) What is the corresponding wavelength?

The E versusk diagramsfor afree electron (curve A) and for an electron in a
semiconductor (curve B) are shown in Figure 3.39. Sketch (a) ¢ £ /dk versus k and

Figure3.34 | Conduction Figure3.35 | Valence bands
bandsfor Problem 3.13. for Problem 3.14.
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ke —t— k (A™h
Figure 3361 Figure for Problem 3.15 Figure3371 Figure for Problem 3.16.
Figure3.381 Figure for Problem 3.17. Figure 3.391 Figure for Problem 3.19.

(h)d?E/dk* versusk for each curve. (c) What conclusion can you make concerning a
comparison in effective masses for the two cases?

Section 3.3 Extension to Three Dimensions

320 Theenergy band diagram for silicon is shown in Figure 3.23b. The minimum energy
in the conduction band is in the [ 100] direction. The energy in this one-dimensional
direction near the minimum value can bc approximated by

E = E(} — E] COSQ’(k - k[))

wherek; isthe value of k at the minimum energy. Determine the effective mass of the
particleat k = ko in terms of the equation parameters.

Section 3.4 Density of StatesFunction

321 Starting with the three-dimensional infinite potential well function given by Equa-
tion (3.59) and using the separation of variablestechnique, derive Equation (3.60).

3.22 Show that Equation (3.69) can be derived from Equation (3.64).

3.23 Determine the total number nf energy statesin GaAs between E, and E, +iT a
T =300K.



324 Determine the total number of energy states in GaAs between E,. and £, — kT a
T =300K.

325 {ua) Plot thedensity of states in the conduction band for silicon over the range
E.<E<E.t02eV (b Repeat pan (a) for the density of states in the valence
band over therange £, — 0.2eV = E < E,.

326 Find theratio of the effective density of states in the conduction band at E,. +iT to
theeffective density of states in the valence band a £, — kT.

Saction 3.5  Statistical M echanics

327 PFat the Fermi-Dirac probability function, given by Equation (3.79), over the range
—-02<{E-Ef)102eVfor(a)T =200K, (h)T =300K,and (c) T = 400 K.

328 Repeat Example 3.4for thecase wheng, = 10 and &, = 8.

329 (a)lf Er = E,, find the probability of a state being occupied at E = E. + kT, () If
Ey; = E_, find the probability of a state beingempty at E = E, — kT.

330 Determinethe probability that an energy level isoccupied by an electron if the state is
abovethe Fermi level by (a) kT, (b) 5kT, and (¢} 10&T.

331 Determinethe probability that an energy level is empty of an electron if the state is
bdow the Fermi level by (a)&T, (b) 5kT. and (c) 10kT.

332 The Fermi energy in silicon is0.25 eV below the conduction band energy E.. () Plot
the probahility of a state being occupied by an electron over the range
E.<ESE, *+2kT. AssumeT = 300 K. (») Repeat part {a) for T = 400 K.

333 Four electronsexist in a one-dimensional infinite potential well of widtha = 10+ A.
Assuming the free electron mass, what is the Fermi energy a T = 0 K.

334 (a)Five dectronsexist in athree-dimensional infinite potential well with al three
widthsequal to« = 10 A. Assuming the free electron mass. what is the Fermi energy
a T =0K. (b)Repeat pan (@) for 13 electrons.

335 Show that the probability of an energy state being occupied A E above the Fermi
energy isthe same as the probability of a state being empty A E below the Fermi level.

336 (a) Determinefor what energy above £, (intermsof £T) the Fermi—Dirac probabil-
ity function iswithin | percent of the Boltzmann approximation. (#) Give the value of
the probahility function at this energy.

3.37 The Fermi energy leve! for a particular material at T = 300 K is6.25 V. The elec-
tronsin this material follow the Fermi—Dirac distribution function. (z) Find the
probability of an energy level at 6.50eV being occupied by an electron. (5) Repeat
pan (a) if the temperature is increased to 7 = 950 K. (Assume that £ isaconstant.)
(¢) Calculatethe temperature at which thereisa 1 percent probability that a state
0.30 eV below the Fermi level will be empty of an electron.

338 TheFermi energy for copper a T = 300K is 7.0 eV. The electrons in copper follow
the Fermi—Dirac distribution function. (&) Find the probability of an energy level at
7.15eV being occupied by an electron. (b) Repeat part {¢) for T = 1000 K. (Assume
that Ex isaconstant.) (¢) Repeat part (a) for E =6.85eV and T = 300 K. () De-
termine the probability of the energy state at E = Er being occupied at 7 = 300 K
anda T = 1000 K.

339 Consider theenergy levels shown in Figure 3.40. Let T =300 K. () If Ey — Er =
0.30eV, determine the probability that an energy state at E = E, isoccupied by an
electron and the probability that an energy state at £ = E; isempty. {¥) Repeat pan
(@)if Er — E5 =0.40eV.

LQW
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340 Repeat problem 3.39 for the case when £, — F; = 1.42 eV. '

341 Determine the derivative with respect to energy of the Fermi—Dirac distribution
function. Plot the derivative with respect toenergy for () T = 0 K, {#) T = 300K,
and (c)T =500 K.

3.42 Assume the Fermi energy level isexactly in the center of the bandgap energy of a
semiconductor & T = 300 K. (a) Calculate the probability that an energy state in the
bottom of the conduction band is occupied by an electron for Si, Ge. and GaAs.

(b) Calculate the probability that an energy state in the top of the valence hand is
empty for S8i, Ge, and GaAs.

343 Calculate the temperature at which thereisa 10-= = robability that an energy state
(.55 eV above the Fermi energy level is occupied by an electron.

3.44 Caculate theenergy range (in eV) between f; (E) = 0.95and f: {E) = 0.05 for
Er =7.0¢Vandfor (a)T =300Kand (b) T =500 K.
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The Semiconductor
iIn Equilibrium

PREVIEW

epts of quantum mechanics in order to determine a few of the characteristics

felectronsin asingle-crystal lattice. In this chapter, we will apply these con-
cepts specifically to a semiconductor material. In particular, we will use the density
of quantum states in the conduction band and the density of quantum states in the va-
lence band along with the Fermi-Dirac probability function to determine the con-
centration of electrons and holes in the conduction and valence bands, respectively.
We will aso apply the concept of the Fermi energy to the semiconductor material.

This chapter deals with the semiconductor in equilibrium. Equilibrium, or ther-
md equilibrium, implies that no external forces such asvoltages, electric fields. mag-
neticfields, or temperature gradients are acting on the semiconductor. All properties
of the semiconductor will be independent of time in this case. Equilibrium is our
starting point for developing the physics of the semiconductor. We will then be able
to determine the characteristics that result when deviations from equilibrium occur,
such as when a voltage is applied to a semiconductor device.

We will initially consider the properties of an intrinsic semiconductor, that is, a
pure crystal with no impurity atoms or defects. We will see that the electrical proper-
tiesof a semiconductor can be altered in desirable ways by adding controlled amounts
of specificimpurity atoms. called dopant atoms, to the crystal. Depending upon the
typeof dopant atom added, the dominant charge carrier in the semiconductor will be
either electrons in the conduction band or holes in the valence band. Adding dopant
atoms changes the distribution of electrons among the available energy states, so the
Fermi energy becomes afunction of the type and concentration of impurity atoms.

Finally, as part of this discussion, we will attempt to add more insight into the
significance of the Fermi energy. B

S far, we have been considering a genera crystal and applying to it the con-
C



CHAPTER 4 The Semiconductor in Equilibrium

411 CHARGE CARRIERSIN SEMICONDUCTORS !

Current is the rate at which charge flows. In a semiconductor. two types of charge
carrier, the electron and the hole, can contribute to a current. Since the current in a
semiconductor is determined largely by the number of electrons in the conduction
band and the number of holesin the valence hand, an important characteristic of the
semiconductor is the density of these charge carriers. The density of electrons and
holes is related to the density of states function and the Fermi distribution function,
both of which we have considered. Aqualitative discussion of these relationshipswill :
be followed by a more rigorous mathematical derivation of the thermal-equilibrium
concentration of electrons and holes. ‘

411 Equilibrium Distribution of Electronsand Holes

Thedistribution (with respect to energy) of electrons in the conduction band is given !
by the density of allowed quantum states times the probability that a state is occupied
by an electron. This statement iswritten in equation form as ‘

wheref,.(E) isthe Fermi—Dirac probability functionand g (E) isthe density of quan- 14
tum states in the conduction band. The total electron concentration per unit volume
in the conduction band is then found by integrating Equation (4.1) over the entire
conduction-band energy.

Similarly, the distribution (with respect to energy) of holesin the valence bad
is the density of allowed quantum states in the valence hand multiplied by the prob-
ability that a state is nor occupied by an electron. We may express this as

The total hole concentration per unit volume is found by integrating this function
over the entire valcnec-band energy.

To find the thermal-equilibrium electron and hole concentrations, we need o
determine the position of the Fermi energy E, with respect to the bottom of the
conduction-band energy E, and the top of the valence-band energy E,.To address
this question, we will initially consider an intrinsic semiconductor. Anideal intrinsic
semiconductor is a pure semiconductor with no impurity atoms and no lattice defects
in the crystal (e.g., pure silicon). We have argued in the previous chapter that, for an
intrinsic semiconductor at T = 0 K, al energy statesin the valence band are filled
with electrons and al energy states in the conduction band are empty of electrons.
The Fermi energy must, therefore, be somewhere between E, and E,..(The Fermi
energy does not need to correspond to an allowed energy.)

Asthetemperature beginsto increase above 0 K, the valence electrons will gan
thermal energy. A few electrons in the valence band may gain sufficient energy to
jump to the conduction band. Asan electron jumpsfrom the valence band to the con-
duction band, an empty state, or hole, is created in the valence band. In an intrinsic
semiconductor, then, electrons and holes are created in pairs by the thermal energy ©



4.1 Charge Cariersin Semiconductors

&AENF(E) = n(E)

E, Area = ng=
electron
concentretion

hole concantration

Figure4.11 (8) Dendty of statesfunctions, Fermi-Dirac probability function,and areas representingelectron and hole
concentrations for the case when £« is near the midgap energy; (b) expanded view near the conduction band energy;
and {¢) expanded view near the valence band energy.

that the number of electrons in the conduction band is equal to the number of holes
in the valence band.

Figure4.1a showsaplot of the density of states function in the conduction band
g E), thedensity of statesfunction in the valence band g.( £}, and the Fermi-Dirac
probability function for T == 0 K when £ isapproximately halfway between £, and
E,. If we assume, for the moment, that the electron and hole effective masses are
equal, then g. (£} and g..( £) are symmetrical functionsabout the imidgap energy (the
energy midway between E, and E,}. We noted previously that the function fr(E)
for E » Er issymmetrical to thefunction 1 — fr(E} for E < E about the energy
E = E7. This also means that the function (£} for £ = £r T dE is equal tothe
functionl — fr{E)for E= Er — dE.
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Figure 4.1b is an expanded view of the plot in Figure 4.1a showing fr(E) ad
g.(EY} above the conduction band energy E, . The product of g.(E) and fr(E) iste
distribution of electrons n(£) in the conduction band given by Equation (4.1). This
product is plotted in Figure 4.1a. Figure4.1¢ is an expanded view of the plot in F
ure 4.1a showing [1 — fr(E)] and g.(£) below the valence band energy EL.ﬁ
product of g,(F£} and [1 — fr{£)] is the distribution of holes p(E} in the va
band given by Equation (4.2). This product is also plotted in Figure 4.1a. The area
under these curves are then the total density of electrons in the conduction band ad
the total density of holesin the valence band. From this we see that if g.(E) ad
g.(E) are symmetrical, the Fermi energy must be at the midgap energy in order ta
obtain equal electron and hole concentrations. If the effective masses of the electron
and hole are not exactly equal, then the effective density of statesfunctions g.(£)
and g,.(E) will not be exactly symmetrical about the midgap energy. The Fermi levd
for the intrinsic semiconductor will then shift slightly from the midgap energy h
order to obtain equal electron and hole concentrations.

4.1.2 Theny and py Equations 1

We have argued that the Fermi energy for an intrinsic semiconductor is near midgap
In deriving the equations for the thermal-equilibrium concentration of electrons #
and the thermal-equilibrium concentration of holes py, we will not be quite sore
strictive. We will see later that, in particular situations, the Fermi energy can deviat
from this midgap euergy. We will assume initially, however, that the Fermi leve
remains within the bandgap energy.

The eguation for the thermal-equilibrium concentration of electrons may be
found by integrating Equation (4.1) over the conduction band energy, or

(43

Thelower limit of integration is £, and the upper limit of integration should be th
top of the allowed conduction band energy. However, since the Fermi probability
function rapidly approaches zero with increasing energy asindicated in Figure 4.1a
we can take the upper limit of integration to beinfinity.

We are assuming that the Fermi energy is within the forbidden-energy bandgap
For electrons in the conduction hand, we have E = E,. If (E. — Ep) 2 kT, tha
(E— Ep) > kT, so that the Fermi probability function reduces to the Boltzmam
approximation," which is H

- AR == A A

'The Maxwell-Boltzmann and Fermi—Dirac distribution functions are within 5 percent of each other
when E — Ey = 3kT (seeFigure 3.33). The > notation is then somewhat misleading to indicate when
the Boltzmann approximation is valid, although it is commonly used.
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Applying the Boltzmann approximation to Equation (4.3), the thermal-equilibrium
dengty of electrons in the conduction band is found from

E—E.exp [;(E};_Er)jl dE (4.5)

Theintegral of Equation (4.5) may be solved moreeasily by making a change of
varigble. If we let

then Equation (4.5) becomes

Theintegra is the gamma function, with a value of
Then Equation (4.7) becomes

We may define a parameter N, as

D that the thermal-equilibrium electron concentration in the conduction band can be
written as

The parameter N. is called the effective densiry of stares function in the conduc-
tion band. If we were to assume that r1}; = my, then the value of the effective density
of states function at T=300K is N, = 2.5 x 10!¥ c¢m 3, which is the order of
megnitude of N, for most semiconductors. If the effective mass of the electron is
larger or smaller than »2y, then the value of the effective density of states function
changesaccordingly, but is still of the same order of magnitude.

Objective

Cdaudethe probahility that astatein the conduction band is occupied by an electronand cal-
cuae the therma equilibrium electron concentrationin silicon at 7= 100 K.

Asumethe Fermi energy is0.25 eV below the conduction band. The vaueof , for sil-
ionaT=100K isN, =28 x 10" em™>.

EXAMPLE 4.1
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B Solution
The probability that an energy statea E = E. isoccupied by an electronis given by

E) = — - -
fe(ES) o (BC_EF
€Xp LT )
or
—0.25 .
e — R TaETs = 0. l L2
fr(ED ‘”‘"(o.ozsg) 643 x 10
Theelectron concentration is given by
—{E, — 2 —0.25
=N, — | =QE8x 10 exp| =—=—
o = N e(p[ kT ] ( ) p(o.ozsg)

or
ng = 1.8 x 108 em™?
B Comment

The probability of a state being occupied can be quite small, but the fact thet there are alargef]
number of states means thet the €ectron concentrationis a reasonable value.

The thermal-equilibrium concentration of holesin the valence band is found b‘
integrating Equation (4.2) over the valence band energy, or

Po= /é'v(E)[] - fr(E)]dE (4.12'

We may note that

L felE) =

For energy statesin thevalence band, E < E,. If (Er — E,) > kT (the Fermi func-
tion istill assumed to be within the bandgap), then we have a slightly different form
of the Boltzmann approximation. Equation (4.13a) may be written as I

L

Applying the Boltzmann approximation of Equation (4.13b) to Equation (4.12), we
find the thermal-equilibrium concentration of holesin the valence band is
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wheare the lower limit of integration is taken as minus infinity instead of the bottom
of the valence band. The exponential term decays fast enough so that this approxi-
mdion isvalid.

Equation (4.14) may be solved more easily by again making a change of vari-
dile If welet

then Equation (4.14) becomes

where the negative sign comes from the differential dE = —&Tdn’. Note that the
lower limit of 7’ becomes +o0 when £ = —o¢. If wechange the order of integration,
weintroduceanother minus sign. From Equation (4.8). Equation (4.16) becomes

Wemay definea parameter &, as

which is called the effective densiry of states function in the val ence band. The
thermal-equilibrium concentration of holesin the valence band may now be written as

The magnitudeof &, isalso on the order of 10" cm~* at T = 300 K for most semi-
conductors.

Objective

Cdauige the thermal equilibrium hole concentrationin silicon & T = 400 K.
Asime thet the Fermi energy is0.27 eV above the vaence hand energy. The vaueof &,
forsilicona T =300K is &, = 1.04 x 10¥ cm >,

& Solution
The paraneter values at T = 400 K arefound as:

EXAMPLE 4.2
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The hole concentrationis then
po = N.exp- ————| = (1.60x 10"y exp

or
= 6.43x 10"% cm™?
B Comment

The parameter vaues & any temperature can easily he found hy using the 300 K vauesand
the temperaturedependence.

The effective density of states functions, N, and &, are constant for a given
semiconductor material at a fixed temperature. Table 4.1 gives the values of the de'ti
sity of states function and of the effective masses for silicon, gallium arsenide, and:
germanium. Note that the value of N, for gallium arsenide is smaller than the typica
10" cm™? value. Thisdifference isdue to the small electron effective massin gallium3
arsenide. mj

Thethermal equilibrium concentrationsof electrons in the conduction band
of holesin the valence band aredirectly related to the effective density of statescon-
stants and to the Fermi energy level,

TEST YOUR UNDERSTANDING

E4.1 Cdculate the thermal equilibriumelectron and hole concentrationin silicon a
T = 300 K for the case when the Fermi energy level is0.22 ¢V below the conduction
hand energy £.. Thevaueof E, is givenin Appendix B.4.
(-Wo 01 X gpg="d "c_Wd 0] X ¢L°¢ = suy)

E4.2 Determinethe therma equilibriumelectron and hole concentrationin GaAs a
T = 300K for the case when the Farmi energy leve is0.30 eV above the vdence
band energy £.. Thevaued E, isgivenin Appendix B.4.
(U 0T x €69 = U ' _wWd 6L.00 = "u suy)

4.1.3 Thelntrinsic Carrier Concentration

For an intrinsic semiconductor, the concentration of electronsin the conduction b
isegual to the concentration of holes in the valence band. We may denote »;

Table4.1| Effectivedengty of statesfunction and effective mass vaues

Nc (Cl‘l‘l_}] Nl‘ (cm—.'i) m; /mﬂ m; /mﬂ
Silicon 2.8 x 10" 1.04 x 10" 1.08 0.56
Gallium arsenide 4.7 x 10" 7.0 x 10" 0.067 0.48

Germanium 1.04x 10%* 6.0 x 10'8 0.55 0.37




4.1 Charge Carriersin Semiconductors

asthedectron and hole concentrations, respectively, in the intrinsic semiconductor.
These parametersare usually referred to as theintrinsic electron concentration and
intringc hole concentration. However, r; = p;, so normally we simply use the para-
meer n; astheintrinsic carrier concentration, which refersto either theintrinsic el ec-
tron or hole concentration.

The Fermi energy level for the intrinsic semiconductor is called the intrinsic
Fermi energy, or £EF = Er,. If we apply Equations (4.11) and {4.19} to theintrinsic
semiconductor, then we can write

If we take the product of Equation.; (4.20) and (4.21). we obtain

n? = N N, exp

where E, is the bandgap energy. For a given semiconductor material at a constant
temperature, the value of n, isaconstant, and independent of the Fermi energy.

The intrinsic carrier concentration for silicon a T = 300 K may be calculated
by using the effective density of states function values from Table 4.1. The vaue of
n; caculated from Equation (4.23)for E, = 1.12 eV isn; = 6.95 x 10° em ™. The
commonly accepted value of #; for silicon at T = 300K is approximately
15 x 10" ¢m™3. This discrepancy may arise from several sources. First, the values
of the effective masses are determined at alow temperature where the cyclotron res-
onance experiments are performed. Since the effective mass is an experimentally
determined parameter, and since the effective mass is a measure of how well a parti-
demovesin acrystal, this parameter may be a slight function of temperature. Next,
the dengity of states function for a semiconductor was obtained by generalizing the
modd of an electron in a three-dimensional infinite potential well. This theoretical
function may aso not agree exactly with experiment. However, the difference be-
tween the theoretical value and the experimenta value of n, isapproximately afactor

Marious references may list slightly different values of the intrinsic silicon concentration at room
temperature. In general. they are all between | x 10" and 1.5 x 10" em™. Thisdifferenceis. in most
carer, not significant.
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Table 4.2 | Commonly accepted valuesd =,

atT=300 K
Silicon n, = 15x 10" cm—?
Gallium arsenide n, = 1.8 x 10% ¢cm™?
Germanium n, =24x 10" ¢cm—?

of 2, which, in many cases, is not significant. Table 4.2 lists the commonly accepted
values of #; for silicon, gallium arsenide, and germanium at 7 = 300 K.
Theintrinsic carrier concentration is a very strong function ot temperature.

EXAMPLE 43

Objective

To calculate the intrindic carrier coneentration in gallium arsenide & T = 300 K and a
T =450K.

The values of N. and N, a 300 K for galium arsenide are 4.7 x 10'7 ¢m ' and
7.0 x 10" cm™*, respectively. Both &, and N, vary as 7°/2. Assume the bandgap energy of
galium arsenide is 1.42 eV and does not vary with temperatureover thisrange. The value of
kT & 450K is

Solution
Using Equation (4.23). we findfor T = 300 K

so that

n; = 385x 10" em™

Comment
We may note from thisexamplethat theintrinsiccarrier concentration increased by over 4 or-
ders of magnitudeas the temperature increased by 150°C.

Figure 4.2 isa plot of #; from Equation (4.23) for silicon, gallium arsenide, and
germanium as a function of temperature. As seen in the figure, the value of n, f&
these semiconductors may easily vary over several orders of magnitude as the tem
perature changes over a reasonable range.
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Figure 4.2| The intrinsic carrier
concentration of Ce, Si, and GaAsasa

function of temperature.
{From Sze [13]}

TEST YOUR UNDERSTANDING

B3 Fndtheintrinsic carrier concentration in silicon at («) T = 200 K and (b) T = 400 K.
[c—wd 01 x ' (q) ", W2, 0 x 89 'L (1) SUY]

B4 Repea B4 3for GaAs. [;—Wd 0F X Q7€ () ' wd gL' [ (#) suy]

E45 RepeatE4.3for Ge. LW ;01 X 9'8 (4} "¢ 10 ( gf X 91°C (7} 'suy]

414 Thelntrinsic Fermi-Level Position

We have qualitatively argued that the Fermi energy level islocated near the center of
the forbidden bandgap for the intrinsic semiconductor. We can specifically calculate
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the intrinsic Fermi-level position. Since the electron and hole concentrations arz
equal, setting Equations (4.20) and (4.21) equal to each other, we have

If we take the natural log of both sidesof this equation and solvefor Eg;, we ddtan
I
EFr = E(Er + El') + 2

From the delinitions for ¥. and N, given by Equations (4.10) and (4.18), respec
tively, Equation (4.25) may be written as

Thefirst term, %(Ec + E,). isthe energy exactly midway between E, and E,. or the
midgap energy. We can define

so that

If the electron and hole effective masses are equal so that m, =mp, then the intrin-
sic Fermi level is exactly in the center of the bandgap. If m}, > mj}. the intrinsc
Fermi level isslightly above the center, and if m, < mj, itisslightly below the cen-
ter of the bandgap. The density of states function isdirectly related to the carrier ef-
fective mass: thus a larger effective mass means a larger density of states function.
The intrinsic Fermi level must shift away from the band with the larger density of

statesin order to maintain equal numbers of electronsand holes.

EXAMPLE 4.4

Objective

To calculatethe position of the intrinsic Fermi level with respect to the center of the bandgap
inslicona T =300 K.

The density of dtates effective carrier mases in dlicon are m; = 1.08m, and
m: = ().56myq.

m Solution
The intrinsic Fermi level with respect to the center of the bandgap is

3
EF,- - Emidgup = Z kT In
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1 Comment

Treintrindc Fermi level in slicon is 12.8 meV bdow the midgap energy. If we compare
128meV to 560 meV, which isone-half of the bandgap energy of silicon, we can, in many ap-
plications Smply approximatethe intrinsic Fermi level to bein the center of thebandgap.

TEST YOUR UNDERSTANDING

B 6 Deeminethe podtionof theintrinsc Fermi level with respect to the center of the
bandeap in GaAs at T = 300 K. (A9 '8¢ — "suy)

4.21 DOPANT ATOMSAND ENERGY LEVELS

The intrinsic semiconductor may be an interesting material, but the real power of
semiconductorsisrealized by adding smail, controlled amounts of specific dopant, or
impurity, atoms. Thisdoping process, described briefly in Chapter |, can greatly alter
theelectrical characteristics of the semiconductor. The doped semiconductor, called
an extrinsic material, is the primary reason we can fabricate the various semiconduc-
tor devicesthat we will consider in later chapters.

4.2.1 Qualitative Description

In Chapter 3, we discussed the covalent bonding of silicon and considered the sim-
ple two-dimensional representation of the single-crystal silicon lattice as shown in
Fgure 4.3. Now consider adding a group V element, such as phosphorus, as a sub-
ditutiona impurity. The group V element has five valence electrons. Four of these
will contribute to the covalent bonding with the silicon atoms, leaving the fifth more
loosdly hound to the phosphorus atom. This effect is schematically shown in
Figure 4.4. We refer to the fifth valence electron as a donor electron.

Figure44 i Two-dirnsnsona
Figure 4.3 | Two-dimensiond representation of the dlicon latticedoped
representation of the intrinsic silicon lattice. with a phosphorus atom.
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The phosphorus atom without the donor electron is positively charged. At very
low temperatures, the donor electron is bound to the phosphorus atom. However. by
intuition, it should seem clear that the energy required to elevate the donor dectron
into the conduction band is considerably less than that for the electrons involved in
the covalent bonding. Figure 4.5 shows the energy-hand diagram that we would cx-
pect. Theenergy level, E,, is the energy state of the donor electron.

If asmall amount of energy, such as thermal energy. is added to the donor dec
tron, it can be elevated into the conduction band, leaving behind a positively charged
phosphorus ion. Theelectronin the conduction band can now move through thecrys-
tal generating a current, while the positively charged ion isfixed in the crystal. This
type of impurity atom donates an electron to the conduction band and so is cdleda
donor impurity arom. Thedonor impurity atomsadd electrons to theconduction band
without creating holesin the valence band. The resulting material is referred toasan
n-rype semiconductor (n for the negatively charged electron).

Now consider adding a group 11T element, such as boron, as a substitutional 1m-
purity to silicon. The group 11l element has three valence electrons, which are ll
taken up in the covalent bonding. As shown in Figure4.6a, one covalent bonding po-
sition appears to he empty. If an electron were to occupy this ™ empty™ position. its

Conduction band

|
_|.|
_|.|
|
_|.|
I
.

El ctron energ ——

Geclron enrg

Valence band !

Figure45 t The energy-handdiagram showing (a) the discretedonor energy date r
and (b) the effect of adonor state being ionized.

Figure46 | Two-dimensional representation of aslicon lattice (a) doped with a boron atom
and (b) showing the ionization of the boron aiom resulting in ahole.
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Conduction band t
4 £
2
L)
€ 8
R —— . o e p—
= E £ X X &
= Valenceband ' _&‘3 T 2 v

Figure4.7 | Theenergy-band diagram showing (a) the discrete acceptor energy state
and {b) the effect of an acceptor state being ionized.

energy would have to be greater than that of the valence el ectrons, sincethe net charge
date of the boron atom would now benegative. However, theel ectron occupying this
"empty" position does not have sufficient energy to he in the conduction band, so its
enagy isfar smaller than the conduction-band energy. Figure 4.6b shows how va-
lence electrons may gain a small amount of thermal energy and move about in the
crysd. The" empty" position associated with the boron atom becomes occupied, and
other valence electron positions become vacated. These other vacated electron posi-
tionscan he thought of as holesin the semiconductor material.

Figure 4.7 shows the expected energy state of the " empty" position and also the
formation of a holein the valence hand. The hole can move through the crystal gen-
erding acurrent, while the negatively charged boron atomisfixed in thecrystal. The
group Tl atom accepts an electron from the valence band and so isreferred to as an
acceptor impurity atom. The acceptor atom can generate holes in the valence hand
without generating electrons in the conduction band. Thistype of semiconductor ma-
terid isreferredto asa p-rype materia (p for the positively charged hole).

The pure single-crystal semiconductor material is called an intrinsic material.
Adding controlled amounts of dopant atoms, either donors or acceptors, creates a
materid called an extrinsic semiconductor. An extrinsic semiconductor will have ei-
ther a preponderanceof electrons (n type) or a preponderance of holes (p type).

42.2 lonization Energy

W& can calculate the approximate distance of the donor electron from the donor im-
purity ion, and also the approximate energy required to elevate the donor electron
into the conduction band. Thisenergy is referred to as the ionization energy. We will
use the Bohr model of the atom for these cal culations. The justification for using this
modd is that the most probable distance of an electron from the nucleus in a hydro-
o atom, determined from quantum mechanics, is the same as the Bohr radius. The
energy levelsin the hydrogen atom determined from quantum mechanicsare also the
same as obtained from the Bohr theory.

In the case of the donor impurity atom, we may visualize the donor electron or-
biting the donor ion, which isembedded in the semiconductor material. We will need
to use the permittivity of the semiconductor material in the calculations rather than
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the permittivity of free spaceasis used in the case of the hydrogen atom. Wewill al
use the effective mass of the electron in the calculations.

The analysis begins by setting the coulomb force of attraction between the &k
tron and ion equal to the centripetal force of the orbiting electron. Thiscondition w
give asteady orbit. We have

e m* v’

dier? r,

where v isthe magnitude of thevelocity and r, isthe radius of the orbit. If we assut
the angular momentum is also quantized, then we can write 4

where n is a positive integer. Solving for v from Equation {4.28), substituting it
Equation (4.27), and solving for the radius, we obtain ‘

The assumption of the angular momentum being quantized leads to the radi usd
being quantized.
The Bohr radius is defined as ‘

We can normalize theradiusof thedonor orbital to that of the Bohr radius, which giv

where ¢, is the relative dielectric constant of the semiconductor material, m isl
rest mass of an electron, and nt* is the conductivity effective mass of the electron
the semiconductor.

If we consider the lowest energy statein which n = 1, and if we consider silic
in which ¢, = 11.7 and the conductivity effective mass is m*/mgy = 0.26. then'
have that

or ry = 23.9~This radius corresponds to approximately four lattice constants
silicon. Recall that one unit cell in silicon effectively contains eight atoms, so the
diusof the orbiting donor electron encompasses many silicon atoms. The donor ¢k
tron is not tightly bound to the donor atom.

The total energy of the orbiting electronis given by I



4.2 Dopant Atoms and Energy Levels

whaeT isthekinetic energy and V isthe potential energy of the electron. Thekinetic
enagy is

Usng the velocity v from Equation (4.28) and the radius r,, from Equation (4.29}, the
kinetic energy becomes

The potentia energy is

Thetotal energy isthe sum of the kinetic and potential energies, so that

For the hydrogen atom, m* = m and € = ¢,. The ionization energy of the hydrogen
domin thelowest energy stateisthen E = —13.6eV. If weconsider silicon, theion-
ization energy is £ = —25.8 meV, much less than the bandgap energy of silicon.
Thisenergy istheapproximate ionization energy of the donor atom, or the energy re-
quired to elevate the donor electron into the conduction band.

For ordinary donor impurities such as phosphorus or arsenic in silicon or ger-
manium, this hydrogenic model works quite well and gives some indication of the
magnitudes of the ionization energies involved. Table 4.3 lists the actual experimen-
tdly measured ionization energies for a few impurities in silicon and germanium.
Germanium and silicon have different relative dielectric constants and effective
masses; thus we expect the ionization energies to differ.

423 Group III-V Semiconductors

In the previous sections, we have been discussing the donor and acceptor impurities
in a group 1V semiconductor, such as silicon. The situation in the group HI-V

Table43 | Impurity ionization energiesin silicon
and germanium

lonizationenergy (eV)

Impurity Si Ge
Donors

Phosphorus 0.045 0.012
Arsenic 0.05 0.0127
Acceptors

Boron 0.045 0.0104

Aluminum 0.06 0.0102
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Table4.4 | Impurity 10nzation energies
in gallium arsenide

Impurity lonizationenerev (eV)
Donors

Sdenium 0.0059
Tellurium 0.0058
Silicon 0.0058
Germanium 0.0061
Acceptors

Beryllium
Zinc

Cadmium
Silicon 0.0345
Germanium 0.0404

compound semiconductors, such as gallium arsenide, is more complicated. Groupl
elements, such as beryllium, zinc, and cadmium, can enter the lattice as subst
tional impurities, replacing the group III gallium element to become acceptor impu
rities. Similarly, group VI elements, such as selenium and tellurium, can enter the
|attice substitutionally, replacing the group V arsenic element to become donor im-
purities. The corresponding ionization energies for these impurities are smaller than
for the impurities in silicon. The ionization energies for the donors in gallium ar-
senide are also smaller than the ionization energies for the acceptors, because o the
smaller effective mass of the electron compared to that of the hole.

Group IV elements, such as silicon and germanium, can also be impurity atoms
in gallium arsenide. If a silicon atom replaces a gallium atom, the silicon impurity
will act as a donor. but if the silicon atom replaces an arsenic atom. then the silicon
impurity will act asan acceptor. The sameistrue for germanium as an impurity dom
Such impurities are called amphoreric. Experimentally in gallium arsenide, it is
found that germanium is predominantly an acceptor and silicon is predominantly a
donor. Table 4.4 lists theionization energies for the various impurity atomsin gdlium
arsenide.

TEST YOUR UNDERSTANDING

E4.7 Cdculate the radius (normalizedto a Bohr radius) of adonor dectron in itslowest
energy statein GaAs. (57561 Suy)

4.3 THE EXTRINSIC SEMICONDUCTOR

We defined an intrinsic semiconductor as a material with no impurity atoms prea*,'
in the crystal. An extrinsic semiconductor is defined as a semiconductor in
controlled amounts of specific dopant or impurity atoms have been added so that i
thermal-equilibrium electron and hole concentrations are different from the intrin
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canier concentration. One type of carrier will predominate in an extrinsic semicon-
ductor.

431 Equilibrium Distribution of Electronsand Holes

Adding donor or acceptor impurity atoms to a semiconductor will change the distrib-
ution of electrons and holes in the material. Since the Fermi energy is related to the
digtributionfunction, the Fermi energy will change as dopant atoms are added. If the
Fermi energy changes from near the midgap value, thedensity of electrons in the con-
duction band and the density of holesin the valence band will change. These effects
ae shown in Figures 4.8 and 4.9. Figure 4.8 shows the case for £; > Ef; and
Figure4.9 shows the casefor £ < Er;. When Ef = EFp;, the electron concentra-
tionislarger than thehol e concentration, and when Er < Eg;, thehole concentration

hole concentration

Figure 481 Dengity of statesfunctions. Fermi-Dirac
probability function, and areas representingelectron
and hole concentrationsfor the case when E » is above
theintrinsic Fermi energy.
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hole concentration

fHE) =0 FHE) = 1

Figure49 | Dendty of statesfunctions,Fermi-Dirac
probability function, and areas representing electron and
hole concentrationsfor the case when £, is bdow the
intrinsic Fermi energy.

islarger than the electron concentration. When the density of electronsisgreater then
the density of holes, the semiconductor is n type; donor impurity atoms have bem
added. When the density of holes is greater than the density of electrons, the semi-
conductor is p type; acceptor impurity atoms have been added. The Fermi energy
level in asemiconductor changes asthe electron and hole concentrations change and,
again, the Fermi energy changes as donor or acceptor impurities are added. The
changein the Fermi level asafunction of impurity concentrationswill be considered
in Section 4.6.

The expressions previously derived for the thermal -equilibrium concentrationo‘
electrons and holes, given by Equations (4.11) and (4.19) are general equations fa
ny and pg intermsof the Fermi energy. These equations are again given as i

ng= N, exp-
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—(Ef — E,
Po= N,exp|—¥|

Aswe just discussed, the Fermi energy may vary through the bandgap energy, which
will then change the values of ny and pyg.

Objective

To calculate the thermal equilibrium concentrations of electrons and holes for a given Fermi
energy.

Consder silicon at T=300K so that N, =28 x 10™ em™ and N, = 1.04 %
10" em~—*. Assumethat the Fermi energy is().235 eV below the conduction hand. If we assume
thet the bandgap energy of silicon is 1.12 eV, then the Fermi energy will be0.87 ¢V above the
vaence band.

1 Solution
Usng Equation (4.11), we have

From Equation (4.19), we can write

—0.87
0.0259

po = (1.04 x 10') exp( ) =27 x 10 em™

1 Comment

The changein the Fermi level is actualy afunction of the donor or acceptor impurity concen-
trations thet are added to the semiconductor. However, this example shows that electron and
hae concentrationschange by orders of magnitude from the intrinsic carrier concentration as
the Fermi energy changes by afew tenths of an electron-volt.

EXAMPLE 4.5

Inthis example, sinceno > py, the semiconductor is n type. In an n-type semi-
conductor, electrons are referred to as the majority carrier and holes as the minority
carier. By comparing the relative values of ny and py in the example, it is easy to
see how this designation came about. Similarly, in a p-type semiconductor where
po > no, holes arethe majority carrier and electrons are the minority carrier.

We may derive another form of the equations for the thermal-equilibrium con-
centrationsof electrons and holes. If we add and subtract an intrinsic Fermi energy in
the exponent of Equation (4.11), we can write

—(E, — Er) Y (Er - Ep)
kT

Ry = N, exp[ (4.38a)

no = N.exp EH)] exp [(EF = EFE):| {4.38h)
kT
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The intrinsic carrier concentration is given by Equation (4.20) as
n, = N.exp-

so that the thermal-equilibrium electron concentration can be written as

Similarly, if we add and subtract an intrinsic Fermi energy in the exponent of Ej
tion (4.19), we will obtain

As we will see, the Fermi level changes when donors and acceptors are added,
hut Equations (4.39) and (4.40) show that, asthe Fermi level changesfrom theintrin:
sic Fermi level, ry and pe changefrom then; value. If £, > Ef,;, then we will hae
ng > n, and py < n,. Onecharacteristic of an n-type semiconductor isthat E¢ > Ef;.
sothat ng > po. Similarly, in ap-type semiconductor, £F < Er; sothat py > n, end‘
no < n,; thus py > no.

We can see the functional dependence of ny and pg with Er in Figures 4.8 ad
4.9.As Ex movesaboveor below Er;, theoverlapping probability function with te
density of states functions in the conduction band and valence band changes. As E,
moves above E,;, the probability function in the conduction band increases, whilé
the probability, 1 — fr(£), of an empty state (hole) in the valence band decreases.
As Er moves below E£r;. the opposite occurs.

432 The nypo Pr oduct

We may take the product of the general expressions for #; and pg as given in Equa
tions (4.11) and (4.19). respectively. Theresult is

-~ _ Ef-)] exp [—(EF - Eu)}

(4.41)

= NN, ex
Py p[ KT T

which may be written as

As Equation (4.42) was derived for ageneral value of Fermi energy, the vaues
of ng and py are not necessarily equal. However, Equation (4.42) is exactly the ssame
as Equation (4.23), which we derived for the case of an intrinsic semiconductor. We
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then have that, for the semiconductor in thermal equilibrium,

Equation (4.43) states that the product of ng and py is always a constant for a
given semiconductor material at a given temperature. Although this equation seems
vay simple, it is one of the fundamental principles of semiconductors in thermal
equilibrium. The significance of thisrelation will become more apparent in the chap-
ters thet follow. It is important to keep in mind that Equation (4.43) was derived
usng the Boltrmann approximation. If the Boltzmann approximation is not valid,
then likewise, Equation (4.43) is not valid.

An extrinsic semiconductor in thermal equilibrium does not, strictly speaking,
contain an intrinsic carrier concentration, although some thermally generated carri-
asare present. Theintrinsic electron and hole carrier concentrations are modified by
the donor or acceptor impurities. However, we may think of the intrinsic concentra-
tion #; in Equation (4.41) simply as a parameter of the semiconductor material.

¥43.3 TheFermi-Dirac | ntegral

In the derivation of the Equations (4.11) and (4.19) for the thermal equilibrium elec-
tron and hole concentrations, we assumed that the Boltzmann approximation was
vdid. If the Boltrmann approximation does not hold. the thermal equilibrium elec-
tron concentration is written from Equation (4.3) as

If weagain make a change of variable and let

ad dsodefine

then we can rewrite Equation (4.44) as

Theintegral isdefined as
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Figure4.10 1 The Fermi-Diracintegral F,,. asafunction
of the Fermi energy.
(From Sze [13}.)

Thisfunction, called the Fermi-Diracintegral, is a tabulated function of the variabl
7. Figure 4.10 is a plot of the Fermi—Dirac integral. Note that if #g = 0. the
Er = E.;thusthe Fermi energy isactualy in the conduction band.

EXAMPLE 4.6

Objective

To calculate the electron concentration using the Fermi-Dirac integral. ;
Let n; = 2 so that the Fermi energy is above the conduction hand by agpproximatel
52meVa T = 300K,

W Solution
Equation (4.46)can he written as

For silicon at 300 K, N, = 28 x 10" cm * and. from Figure 4.t0, the Fermi-Dirac integn
hasavaueof £,,(2) = 2.3.Then
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u Comment

Nde thet if we hed used Equition (4.11). the thermal equilibrium value d », would be ry =
2.08x% 10* em—2, which is incorrect since the Boltzmann gpproximation is not vaid for this
cae

We may use the same general method to cal cul ate the thermal equilibrium con
centrationof holes. We obtain

Theintegra in Equation (4.48) is the same Fermi—Dirac integral defined hy Equa-
tion (4.47), although the variables have slightly different definitions. We may note
thet if # > 0, then the Fermi level isin the valence hand.

TEST YOUR UNDERSTANDING

E4.8 Cdculaethe therma equilibrium electron concentrationin silicon for the case when
Er=E ad7T = 300K, {,_Wd ([ X 61 SUy)

434 Degenerate and Nondegener ate Semiconductor s

In our discussion of adding dopant atoms to a semiconductor, we have implicitly as-
sumed thet the concentration of dopant atoms added is small when compared to the
dendty of host or semiconductor atoms. The small number of impurity atoms are
spread far enough apart so that there is no interaction between donor electrons, for
example,in an n-type material. We have assumed that the impurities introduce dis-
crete, noninteractingdonor energy states in the n-type semiconductor and discrete.
noninteractingacceptor states in the p-type semiconductor. These types of semicon-
ductorsare referred to as nondegenerate semiconductors.

If theimpurity concentration increases, the distance between the impurity atoms
decreasesand a point will he reached when donor electrons, for example, will begin
to interact with each other When this occurs, the single discrete donor energy will
it into a band of energies. As the donor concentration further increases, the band
of donor states widens and may overlap the bottom of the conduction band. This
overlgp occurs when the donor concentration becomes comparabl e with the effective
dendty of states. When the concentration of electrons in the conduction band exceeds
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Figure 4.11 | Smplifiedenergy-band diagramsfor degenerately doped (a) n-typead
(b) p-type semiconductors.

the density of states N, the Fermi energy lieswithin the conduction band. Thistypl
of semiconductor is called a degenerate n-type semiconductor.

In a similar way, as the acceptor doping concentration increases in a pty
semiconductor, the discrete acceptor encrgy states will split into a band of energi
and may overlap the top of the valence band. The Fermi energy will liein the valen
band when the concentration of holes exceeds the density of states N,..This type
semiconductor is called a degenerate p-type semiconductor.

Schematic models of the energy-band diagrams for a degenerate n-type and
generate p-type semiconductor are shown in Figure4.11. The energy states below E
are mostly filled with electrons and the energy states above E are mostly empty.
the degenerate n-type semiconductor, the states between £ and E,. are mostly fill
with electrons; thus, the electron concentration in the conduction band is very |
Similarly, in the degenerate p-type semiconductor, the energy states between E,

F; are mostly empty; thus, the hole concentration in the valence band is very | -3

4.41 STATISTICS OF DONORSAND ACCEPTORS

In the last chapter, we discussed the Fermi—Dirac distribution function, which gi
the probability that a particular energy state will be occupied by an electron. We re
to reconsider this function and apply the probability statistics to the donor and ac-
ceptor energy states.

4.4.1 Probability Function

One postulate used in the derivation of the Fermi-Dirac probability function was the
Pauli exclusion principle, which states that only one particle is permitted in ea
quantum state. The Pauli exclusion principle also applies to the donor and accep
states.

Suppose we have N; electrons and g; quantum states, wherethe subscript i indi-
cates the ith energy level. There are g; ways of choosing where to put the first pani-
cle. Each donor level has two possible spin orientations for the donor electron;
each donor level has two quantum states. The insertion of an electron into one qu
tum state, however, precludes putting an electron into the second quantum state. _
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adding one electron, the vacancy requirement of the atom is satisfied, and the addi-
tion of a second electron in the donor level is not possible. The distribution function
d donor electrons in the donor energy states is then dlightly different than the
Fermi-Dirac function.

The probability function of electrons occupying the donor stateis

wheren, is the density of electrons occupying the donor level and E; is the energy
of the donor level. Thefactor L in thisequation isadirect result of the spin factorjust
mentioned. The ! factor is sometimes written as 1 /g, where g is called a degeneracy
factor.

Equation (4.50) can also be written in the form

where N is the concentration of ionized donors. In many applications, we will be
interested more in the concentration of ionized donors than in the concentration of
electronsremaining in the donor states.

If we do the same type of analysis for acceptor atoms, we obtain the expression

where N,, isthe concentration of acceptor atoms. £, isthe acceptor energy level, p,
isthe concentration of holes in the acceptor states, and N, is the concentration of
ionized acceptors. A hole in an acceptor state correspondsto an acceptor atom that is
neutrdly charged and still has an "empty" bonding position as we discussed in Sec-
tion4.2.1. The parameter g is, again, a degeneracy factor. The ground state degener-
ay factor g is normally taken as four for the acceptor level in silicon and gallium
arsenide because of the detailed band structure.

442 Completelonization and Freeze-Out

The probability function for electrons in the donor energy state was just given by
Equation (4.50).1f we assumethat (£; — EF) 2> kT, then

Ny

nd%

| =Ny exp — — (4.53)

If (E; — Ex) > kT, then the Bolizmann approximation is also valid for the elec-
tronsin the conduction band so that. from Equation (4.11),

ng= N, exp
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We can determine the relative number of electrons in the donor state compa
with the total number of electrons; therefore we can consider theratio of eleciron
the donor state to the total number of electrons in the conduction band plus dot
state. Using the expressions of Equations (4.53) and (4.11). we write

The Fermi energy cancels out of thisexpression. Dividing by the numerator term,»
obtain

Thefactor (E, — E;) isjust the ionization energy of the donor electrons.

EXAMPLE 4.7

Objective

To determine the fraction of total electmnstill in the donor statesat T = 300 K.
Consider phospharus doping in silicon, for T = 300 K, at a concentration of ~
10 ¢m~*.

8 Solution
Using Equation (4.55), we find

m Comment

This example shows that there are very few electmns in the donor state compared with th
conduction band. Essentialy al of the electrons from the donor states are in the conductio
band and. since only about 0.4 percent of the donor states contain electrons, the donor date
are sad to be completely ionized.

At room temperature, then, the donor states are essentially completely ionijze
and, foratypical doping of 10'® cm ™, almost all donor impurity atoms have donate
an electron to the conduction band.

At room temperature, there isalso essentially complete ionization of the accep
tor atoms. This means that each acceptor atom has accepted an electron from theva:
lence band so that p, iszero. At typical acceptor doping concentrations, a hole iscre
ated in the valence hand for each acceptor atom. This ionization effect and the
creation of electrons and holes in the conduction band and valence band, respec-
tively, are shown in Figure 4.12.
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Conduction band Conduction band

Figure 412 | Energy-hand diagrams showing complete ionization of (a) donor states
and (b) acceptor states,
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Figure4.13 1 Energy-banddiagramat T = 0 K for (a) n-typeand (b) p-type
semiconductors.

The opposite of complete ionization occurs at T = 0 K. At absolute zero de-
grees, dl electrons are in their lowest possible energy state; that is, for an n-type
semiconductor, each donor state must contain an electron, therefore n; = N4 or
N} =0. We must have, then, from Equation (4.50) that exp 1(£; — Er)/kT] = 0.
SinceT = 0 K, thiswill occur for exp (—oc) = 0, which means that Er > E,4. The
Fermi energy level must he above the donor energy level at absolute zero. In the case
of a p-type semiconductor at absolute zero temperature, the impurity atoms will not
contain any electrons, so that the Fermi energy level must be below the acceptor en-
egy state. The distribution of electrons among the various energy states, and hence
the Fermi energy, is afunction of temperature.

Adetailed analysis, not given in thistext, shows that at 7 = 0 K, the Fermi en-
ergy is halfway between E, and £, for the n-type materia and halfway between £,
ad E, for the p-type material. Figure 4.13 shows these effects. No electrons from
the donor state are thermally elevated into the conduction band; this effect is called
freeze-our. Similarly, when no electrons from the valance band are elevated into the
acceptor states, the effect is also called freeze-out.
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Between T = 0 K. freeze-out, and T = 300 K, complete ionization, we haw
partial ionization of donor or acceptor atoms.

EXAMPLE 4.8

Objective

To determine the temperature at which 90 percent of acceptor atoms are ionized.
Consider p-type silicon doped with boron a a concentration of ¥, = 10™ em™.

m Solution

Find theratio of holesin the acceptor state to the total number of holesin the valence band pl
acceptor state. Taking into account the Boltzmann approximation and assuming the degener
acy factorisg = 4, we write

p(l

For 90 percent ionization,

Using trial and error, we find that T = 193 K.

B Comment

This example shows that at approximately 100°C below room temperature. we till
YO percent of the acceptor atoms ionized; in other words. 90 percent of the acceptor ao
have " donated" a hole to the valence band.

hOY

E49 Determine the fraction of total holes till in the acceptor states in silicon a T =
300 K for aboron impurity concentration of &, = i0'7 cm~*. (6L1°0 Suy)
E4.10 Consider silicon with a phosphorus impurity concentration of &, =5 x 10%° em™.
Plot the percent of ionized impurity atoms versus temperature over the range
100 < T < 400 K.

451 CHARGE NEUTRALITY ‘
In thermal equilibrium, the semiconductor crystal is electrically neutral. The e|61
trons are distributed among the various energy states. creating negative and positiv

charges, but the net charge density iszero. This charge-neutrality condition is used
determine the thermal-equilibrium electron and hole concentrations as a function of
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the impurity doping concentration. We will define acompensated semiconductor and
then determine the electron and hole concentrations as a function of the donor and
acoeptor concentrations.

451 compensated Semiconductors

A compensated semiconductor isone that contains both donor and acceptor impurity
aoms in the same region. A compensated semiconductor can he formed, for exam-
ple by diffusing acceptor impurities into an n-type material, or by diffusing donor
impurities into a p-type material. An n-type compensated semiconductor occurs
when Ny = N,, and a p-type compensated semiconductor occurs when N, > N,.
If ¥, = ¥4, we have acompletely compensated semiconductor that has. as we will
show, the characteristics of an intrinsic material. Compensated semiconductors are
created quite naturally during device fabrication as we will see later.

4.5.2 Equilibrium Electron and Hole Concentrations

Fgure 4.14 shows the energy-hand diagram of a semiconductor when both donor
and acceptor impurity atoms are added to the same region to form a compensated

Total electron
concentration

Thermal Donor
electrons y electrons
Un-ionized
donors | | Ionized donors
Ep
Un-ionized Ny =(N,—py
acceptors lonized acceptors
Thermal Po Acceptor
holes holes
Total hole

concentration

Figure4.14 | Energy-band diagram of acampenrated
semiconductor showing ionized and un-ionized donors
and acceptors.
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semiconductor. The figure shows how the electrons and holes can be distributed
among the various states.

The charge neutrality condition is expressed by equating the density of
charges to the density of positive charges. We then have

whereny and pp are the thermal-equilibrium concentrationsof electrons and hol
theconduction band and valence band, respectively. The parameter n,; isthe con
tration of electrons in the donor energy states, so N} = Ny — n, isthe concentrati
of positively charged donor states. Similarly, p, is the concentration of holesin t
acceptor states, so N, = N,, — p, isthe concentration of negatively charged acogp
tor states. We have expressions for ng. pg. g, and p, in terms of the Fermi energy
and temperature.

If we assume complete ionization, ny and p, are both zero, and Equation (4.57)
becomes 1

If we express po as#; /ny, then Equation (4.58) can be written as

which in turn can be written as

The electron concentration ng can be determined using the quadratic formula, or

The positive sign in the quadratic formula must be used, since, in thelimit of anin
trinsic semiconductor when ¥, = Ny = Q. the electron concentration must he a pos
itive quantity, or ny = n;.

Equation (4.60) is used to cal cul ate the electron concentration in an n-type sami-
conductor, or when N; > N,. Although Equation (4.60) was derived for a compen
sated semiconductor, the equation isalso valid for &, = 0.

EXAMPLE 4.9

Objective

To determine the thermal equilibrium electron and hole concentrationsfur a given doping
concentration.

Consider an n-type silicon semiconductor & 7 = 300 K in which ¥; = 10" cm " and
N, = 0. The intrinsic carrier concentrationisassumed to be s, = 1.5 x 10'® em™*
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 Solution
From Equation (4.60), the majority carrier electron concentrationis

The minority carrier hole concentrationis found as

® Comment

In thisexample. Ns > #;. 0 that the thermal-equilibrium mgjority carrier electron concen-
trationis essentialy equa to the donor impurity concentration. The thermal-equilibrium ma
jority and minority carrier concentrationscan differ by many ordersof magnitude.

We have argued in our discussion and we may note from the results of Exam-
pled.9 that the concentration of electrons in the conduction band increases above the
intringc carrier concentration as we add donor impurity atoms. At the same time, the
minority carrier hole concentration decreases below the intrinsic carrier concentra-
tion as we add donor atoms. We must keep in mind that as we add donor impurity
aoms and the corresponding donor electrons, there is a redistribution of electrons
among availableenergy states. Figure 4.15 shows a schematic of this physical redis-
tribution. A few of the donor electrons will fal into the empty states in the valence

Intrinsic
electrons

— - = — — — —
e
Un-ionized donor,
EFi
A few donor dedrons
VI I annihilate some
intrindgc hales
\ £,
@@ @ + 7 ninsic holes

Figure4.15 1 Energy-band diagram showing the
redistribution of €lectrons when donors are added.
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band and, in doing so, will annihilate some of the intrinsic holes. The minority ca-
rier hole concentration will therefore decrease as we have seen in Example 4.9. At
the same time, because of this redistribution, the net electron concentration in the
conduction band is not simply equal to the donor concentration plus the intri
electron concentration.

EXAMPLE 4.10

Objective

To calculate the thermal -equilibriumelectron and hole concentrationsin agermanium sampleg
for agiven doping densixy.

Consideragermaniumsamplea T = 300 Kinwhich &, = 5 x 10"* em™ and N, =
Assumethet n, = 2.4 x 10" con ™.

W Solution
Again, from Equation (4.60). the mgjority carrier electren concentrationis

The minority carrier hole concentration is

Comment
If the donor impurity concentrationis not too different in magnitude from the intrinsic carrier
concentratiun. then the thermal-equilibrium mgjority carrier eectron concentrationis influ-
enced by the intringc concentration.

We have seen that the intrinsic carrier concentration #; is a very strong function
of temperature. As the temperature increases, additional electron-hole pairs are ther-
mally generated so that the n} term in Equation (4.60) may begin to dominate. Tre
semiconductor will eventually lose its extrinsic characteristics. Figure 4.16 shows
the electron concentration versus temperature in silicon doped with 5 x 10'* donors
per cm>. As the temperature increases, we can see where the intrinsic concentratior
beginsto dominate. Also shown is the partial ionization, or the onset of freeze-out, a
the low temperature.

If we reconsider Equation (4.58) and express ng as n;/ py, then we have I
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Figure4.16 | Electron concentration versus temperature
showing the threeregions:. partial ionization, extrinsic, and
intrinsic.

Using the quadratic formula, the hole concentration isgiven by

where the positive sign, again, must he used. Equation (4.62) is used to calcul ate the
thermal-equilibrium majority carrier hole concentration in a p-type semiconductor,
or when N, > N,. This equation also applies for &; = O.

Objective

Tocdculate thethermal -equilibriumelectron and hole concentrations in acompensated p-type
semiconductor,
Consider a silicon semiconductor at T = 300K in which N, = 10! em™ and N, =

3x 10 ecm™, Assume n; = 1.5 X 10" em~?.

R Solution
Sne N, > N;, the compensated semiconductor is p-type and the thermal-equilibrium ma
jority carrier hole concentrationis given by Equation (4.62) as

/

EXAMPLE 4.11
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The minority carrier electron concentration is

nt (15 x 10'%)?

i

— =" —os =321 x 10fem™
Po X y

Hy =

B Comment

If we assume complete ionization and if (N, — N4) > n,, then the majority carrier hoIeoa‘
centration is, to avery good approximation, just thedifference between the acceptor and
concentrations.

Wemay note that, for a compensated p-type semiconductor, the minority cal
electron concentration is determined from m1

DESIGN
EXAMPLE 4.12

Objective

To determine the required impurity doping concentration in a semiconductor material.

A silicon device with n-type material isto be operated at T = 550 K. At this temperaturg
theintrinsic carrier concentration must contribute no more than 5 percent of the total eleotrof
concentration. Determinethe minimum donor concentration required to meet this

B Solution
At T =550 K, the intrinsic carrier concentration is found from Equation (4.23) as

or

so that

For the intrinsic carrier concentration to contribute no more than 5 percent of thetotal electrot
concentration, we set np = 1.05N,.

i
From Equation ¢4.60), we have ‘

or

+(3.20 x 1014)2
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which yidds

1 Comment
If the temperature remains less than 7 = 550 K, then the intrindic carrier concentration will
contribute less then 5 percent of the totd eectron concentration for this donor impurity
coneentration.

Equations (4.60) and (4.62) are used to calculate the majority carrier electron
concentration in an n-type semiconductor and majority carrier hole concentration in
a p-type semiconductor, respectively. The minority carrier hole concentration in an
ntypesemiconductor could, theoretically, be calculated from Equation (4.62). How-
ever, we would be subtracting two numbers on the order of 10'® em~3, for example,
to obtain a number on the order of 10* cm™3, which from a practical point of view is
not possible. The minority carrier concentrations are calculated fromnpg = 17 once
the majority carrier concentration has been determnned.

! TEST YOUR UNDERSTANDING

HE 11 Condder acompensated GaAs semiconductor a T = 300 K doped at N, =
5x 10 em™* and N, = 2 x 10% em™*. Cdculate the thermal equilibrium electron
and hole concentrations. (W2 .1 % 91'Z = Y-y wa 4,01 x ¢'] = % suy)
E412 Sliconisdoped a N,= 10" cm™ and N, = 0. (n) Plot the concentration of
eectrons versus temperatureover the range 300 < T < 600 K. (b) Calculate the
temperaturea which the ectron concentration is equa to 1.1 X 10'* em™7,
(M TEE = L "SUY)

461 POSITION OF FERMI ENERGY LEVEL

We discussed qualitatively in Section 4.3.1 how the electron and hole concentrations
change as the Fermi energy level moves through the bandgap energy. Then, in Sec-
tion 4.5, we calculated the elcctron and hole concentrations as a function of donor
and acceptor impurity concentrations. We can now determine the position of the
Fermi energy level as a function of the doping concentrations and as a function of
temperature. The relevance of the Fermi energy level will be further discussed after
the mathematical derivations.

461 Mathematical Derivation

The position of the Fermi energy level within the bandgap can be determined by
usng the equations already developed for the thermal-equilibrium electron and hole
concentrations. If we assume the Boltzmann approximation to be valid, then from
l‘. Equation (4.11) wehave g = N, exp [—(£. — Eri/&kT). Wecansolvefor £, — Er

g
f
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from this equation and obtain

46

where ng is given by Equation (4.60). If we consider an n-type semiconductor
which ¥; > n;, then ny = Ny, so that

The distance between the bottom of the conduction band and the Fermi energy
is alogarithmic function of the donor concentration. As the donor concentration in-
creases, the Fermi level moves closer to the conduction band. Conversely, if the
Fermi level moves closer to the conduction band, then the electron concentration m
the conduction band is increasing. We may note that if we have acompensated sami-
conductor, then the N; term in Equation (4.64) issimply replaced by ¥y — N, or the
net effective donor concentration.

DESIGN | Objective
EXAMPLE 4.13

To determine the reguired donor impurity concentrationto ohtain aspecified Fermi energy.
Silicon & T = 300K containsan acceptor impurity concentrationof &, = 10'% ¢cm .
- Determine the concentrationof donor impurity atoms that must be added so that the silicen s
n type and the Fermi energy is 0.20 eV below the conduction band edge.

]
W Solution ‘

From Equation (4.64).we have

which can be rewritten as

Ny— N, = N, expl e = En]
Then
Ny— N, =28%10"exp = 1.24x 10" em™
: |
Ny =124 x 108+ N, = 224 x 10" cm™

B Comment
A compensated semiconductor can be fabricated to provide a specific Fermi energy leve.
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We may develop a dlightly different expression for the position of the Fermi
level. We had from Equation {4.39} that ny = rm; expl{Er — £}/ kT]. We can
lvefor Ep — Eg; as

Equation (4.65) can be used specificaly for an n-type semiconductor, where ng is
gven by Equation (4.60). to find the difference between the Fermi level and thein-
tringic Fermi level as a function of the donor concentration. We may note that, if the
na effectivedonor concentration is zero, that is, Ny — N, = 0, then ng = n, and
Er = EFi. A completely compensated semiconductor has the characteristics of an
intringc material in terms of carrier concentration and Fenni level position.

We can derive the same types of equations for a p-type semiconductor. From
Equation (4.19), we have po = N exp[—{(Er — E,)/kT). sothat

If we assume that ¥V, = ;. then Equation (4.66) can be written as

Thedistance between the Fermi level and the top of the valence-band energy for
ap-typesemiconductor is alogarithmic function of the acceptor concentration: asthe
acceptor concentration increases, the Fermi level moves closer to the valence band.
Equation (4.67) still assumes that the Boltzmann approximation isvalid. Again. if we
haveacompensated p-type semiconductor, then the &, term in Equation (4.67) isre-
placsd by N, — N, or the net effective acceptor concentration.

We can also derive an expression for the relationship between the Fermi level
adtheintrinsic Fermi level in termsof the hole concentration. We have from Equa-
tion (4.40) thet pg = n, eXp{—(Er — Er)/&T], which yields

Equation (4.68) can be used to find the difference between the intrinsic Fermi level
ad the Fermi energy in terms of the acceptor concentration. The hole concentration
po in Equation (4.68) is given by Equation (4.62).

We may again note from Equation (4.65) that, for an n-type semiconductor,
m > n and Ep > Ep;. The Fermi level for an n-type semiconductor is above E;.
For a p-type semiconductor, pp = n;, and from Equation (4.68) we see that
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(a) (b)

Figure4.17 | Podtion of Formi level for an (a) ntype(N,, > N,) and (b) p-type
(v, > N,) semiconductor.

Er; > Er. The Fenni level for a p-type semiconductor is below E ;. These resuit
are shown in Figure 4.17.

4.6.2 Variation of Er with Doping Concentration
and Temperature

We may plot the position of the Fermi energy level as afunction of the doping con
centration. Figure 4.18 shows the Fermi energy level as afunction of donor concen
tration (n type) and as a function of acceptor concentration (p type) for slicona
T = 300 K. As the doping levelsincrease, the Fermi energy level moves closer tothi
conduction band for the n-type material and closer to the valence band for the p-typ
material. Keep in mind that the equations for the Fermi energy level that we havede
rived assume that the Boltzmann approximation is valid.

Figure4.18 | Position of Fermi level as a function of donor
concentration (n type) and acceptor concentration(p type).
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143

Objective |

To determine the Fermi-level position and the maximum doping a which the Boltzmann
gpproximationis still valid.

Consider p-typesilicon, at T = 300 K, doped with boron. We may assume that the limit
of the Boltzmann approximation occurs when Er — E, = 3kT. (See Section 4.1.2.)

1 Solution

Fom Table 4.3, wefind theionization energy is E, — £, = 0.045 ¢V for boron in silicon. If
we assumethat Ex; = Eqgiggap. then from Equation (4.68), the position of the Fermi level a
the maximum doping is given by

W\& can then solvefor the doping as

0437
0.025

N, :n;cxp( =32x10"cm’

1 Comment

If the acceptor (or donor) concentration insilicon is greater than approximately 3 x 10'7 ¢m™3,
then the Boltzmann approximation of the distribution function becomes less valid and the
eguations for the Fermi-level position are no longer quite as accurate.

EXAMPLE 414

TEST YOUR UNDERSTANDING

B.13 Determinethe position of the Fermi level with respect to the valence band energy in
ptypeGaAs a T = 300 K. The doping concentrations are N, = 5 x 10! em~? and
Ny=4x 108 em™?. {A20£10="7 —' 3 'suy)

E. 14 Cdculate the position of the Fermi energy levcl in n-typesilicon at T = 300 K with
respect to the intrinsic Fermi energy level. The doping concentrations are N; = 2 x
107 ecm™3 and N, =3 x 10" em ™3, (AR 1TH'Q = 7 — 47 suy)

Theintrinsic carrier concentration #;, in Equations (4.65) and (4.68), isa strong
function of temperature, so that £ isa function of temperature also. Figure 4.19
showsthe variation of the Fermi energy level in silicon with temperature for several
donor and acceptor concentrations. A s the temperature increases, #; increases, and
Er movescloser to theintrinsic Fermi level. At high temperature, the semiconduc-
tor material begins to lose its extrinsic characteristics and beginsto behave more like
an intrinsic semiconductor. At the very low temperature, freeze-out occurs; the
Boltzmann approximation is no longer valid and the equations we derived for the
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Figure4.19 | Position of Fermi level as afunction of

temperature for various doping concentrations.
(Fmm Sze [13].)

Fermi-level position no longer apply. At the low temperature where freeze-out oc-
curs, the Fermi level goes above £, for the n-type material and below E, for the
p-type material. At absolute zero degrees, all energy states below £ are full and all
energy states above E; are empty. i

4.6.3 Relevanceof the Fermi Energy

We have been calculating the position of the Fermi energy level asafunction of dop
ing concentrationsand temperature. Thisanalysis may seem somewhat arbitrary ad
fictitious. However, these relations do become significant later in our discussion d
pn junctions and the other semiconductor devices we consider. An important point is
that, in thermal equilibrium, the Fermi energy level is a constant throughout a s/s
tem. We will not prove this statement, but we can intuitively see its validity by con
sidering the following example.

Suppose we have a particular material, A, whose electrons are distributed in te
energy states of an allowed band as shown in Figure 4.20a. Most of the energy states
below E 4 contain electrons and most of the energy states above E 5,4 are empty d
electrons. Consider another material, B, whose electrons are distributed in the enJ
ergy states of an allowed band as shown in Figure 4.20b. The energy states bdow
Erg are mostly full and the energy states above E - are mostly empty. If thesetwo
materials are brought into intimate contact, the electrons in the entire system wilk
tend to seek the lowest possible energy. Electronsfrom material A will flow into the
lower energy states of material B, as indicated in Figure 4.20c, until thermal equi-
librium is reached. Thermal equilibrium occurs when the distribution of electrons, ag
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Allowed

Figure 420 { The Fermi energy of (&) material A in thermal equilibrium, (b) material B
in thermal equilibrium, (c) materials A and B at the instant they are placed in contact,
md (dj materials A and B in contact at thermal equilibrium.

afunction of energy, isthe samein the two materials. Thisequilibrium state occurs
when the Fermi energy is the same in the two materials as shown in Figure 4,20d.
The Fermi energy, important in the physics of the semiconductor, also provides a
good pictorial representation of the characteristics of the semiconductor materials
and devices.

471 SUMMARY

The concentration of electronsin the conduction band is the integral over the conduction
band energy of the product of the density of states function in the conduction hand and
the Fermi—Dirac probahility function.

The concentration of holes in the valence band is the integral over the valence bend
energy of the product of the density of states function in the valence band and the
probability of astate being empty, whichis[l — fr(E)1.

Using the Maxwell-Boltzmann approximation, the thermal equilibrium concentration

d electronsin the conduction band is given by

ng = N, cxp

where N, isthe effective density of states in the conduction band
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B Using the Maxwell-Boltzmann approximation, the thermal equilibrium concentration
of holes in the valence band is given by

pn:N,exp-_]

where ¥, isthe effective density of statesin the valence hand
Theintrinsic carrier concentration is found from

rz? = N, N, exp l:_k—;:f‘]

B Theconcept of doping the semiconductor with doner (group V elements) impurities
and acceptor (group i11 elements) impurities to form n-type and p-type extrinsic
semiconductors was discussed.

The fundamental relationship of rg po = r? was derived.

Using the concepts of complete ionization and charge neutrality, equations for the
electron and hole concentrations as a function of impurity doping concentrations we
derived.

The position of the Fermi energy level as afunction of impurity doping concentratio
was derived.

Therelevance of the Fermi energy was discussed. The Fermi energy is aconstant
throughout a semiconductor that is in thermal equilibrium.

GLOSSARY OF IMPORTANT TERMS N

acceptor atoms  Impurity atoms added to a scmiconductor to create a p-type material
chargecarrier Theelectron and/or hole that movesinside the semiconductor and givesrise
to electrical currents.

compensated semiconductor A semiconductor that contains both donars and

the same semiconductor region.

completeionization The condition when all donor atoms are positively

up their donor electrons and all acceptor atoms arc negatively charged by accepting electromm
degenerate semiconductor A semiconductor whose electron concentration or hole co
tration is greater than the effective density of states, so that the Fermi level isin the co
tion band (n type) or in the valence band (p type).

donor atoms  Impurity atoms added to a semiconductor to create an n-type material.
effective density of states The parameter N, . which results from integrating the dens
quantum states g.(£) times the Fermi function f; (E) over the conduotion-band ene
the parameter N,. which results from integrating the density of quantum states g, (E) ti
[I = fr(E)] over the valence-band energy.

extrinsic semiconductor A semiconductor in which controlled amounts of donors an
acceptors have been added so that the electron and hole concentrations change from th
trinsic carrier concentration and a preponderance of cither electrons (n type) or holes (p ty
is created.

freeze-out The condition that occurs in a semiconductor when the temperature is 1
and the donors and acceptors become neutrally charged. The electron and hole concen
become very small.



intrinsiccarrier concentration »;

The electron concentration in the conduction hand and

the haleconcentration in the valence band (equal values) in an intrinsic semiconductor.
intrinsic Fermi level E;  The position of the Fermi level in an intrinsic semiconductor.

intrinsic semiconductor

A pure semiconductor material with no impurity atoms and no lat-

tice defectsin the crystal.
nondegenerate semiconductor A semiconductor in which a relatively small number of
donors and/or acceptors have been added so that discrete, nonintcracting donor states and/or
discrete, noninteracting acceptor states are introduced.

CHECKPOINT
After studying this chapter. the reader should have the ability to:

Derivethe equations for the thermal equilibrium concentrations of electrons and holes
in termsof the Fermi energy.

Derive the equation for the intrinsic carrier concentration.

State the value of the intrinsic carrier concentration for silicon at T= 300 K.
Derivethe expression for rheintrinsic Fermi level.

Describe the effect of adding donor and acceptor impurity atoms to a semiconductor.

Describe the meaning of degenerate and nondegenerate semiconductors.

Discussthe concept of charge neutrality.

Derivethe equations for ny and g in terms of impurity doping concentrations.
Discussthe variation of the Fermi energy with doping concentration and temperature.

REVIEW QUESTIONS

1

Write the equation for n( £) asafunction of the density of states and the Fermi proba
bility function. Repeat for the function p{E}.

In deriving the equation for iz, in terms of the Fermi function. the upper limit of the
integral should be the energy at the top of the conduction hand. Justify using infinity
instead.

Assuming the Boltzmann approximation applies, write the equationsfor 1 and py in
termsof the Fcrmi energy.

What isthe value of the intrinsic carrier concentration in silicon at ¥ = 300 K?
Under what condition would the intrinsic Fermi level be at the midgap energy?

Whet is adonor impurity'! What isan acceptor impurity?

What is meant by complete ionization? What is meant by freeze-out?

Wha isthe product of #p and py equal t0?

Write the equation for charge neutrality for the condition of complete ianization.
Sketch agraph of #y versus temperature for an n-type material.

. Sketch graphs of the Fenni energy versus donor impurity concentration and versus

temperature.
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PROBLEMS i

Section4.1 Charge Carriersin Semiconductors

41

4.2

43

44

45

46

47

48

49

4.10

411

Calculate the intrinsic carrier concentration, n,. at T = 200, 400, and 600K for
{a} silicon, (k) germanium, and {c) gallium arsenide.

The intrinsic carrier concentration in silicon isto be no greater than #, =1 x

10'? e 7. Assume E, = 1.12 eV. Determine the maximum temperature allowedfc
the silicon.

Plot the intrinsic carrier concentration, »;, for a temperature range of 200 < T <
600K for (a)silicon, (b) germanium, and {¢) gallium arsenide. (Usealog scale
for n,.)

In a particular semiconductor material, the effective density of states functions are
given hy N, = No(T)? and N. = N,o(T)*"* where ¥, and N, are consrantsin-
dependent of temperature. The experimentally determined intrinsic carrier concentrs
tions asafunction of temperature are given in Table 4.5. Determine the product
N.oNyg and the bandgap energy E,. (Assume E, isindependent of temperature.)

{&) The magnitude of the product g { E} f={E} in the conduction band is a function
energy as shown in Figure 4.1, Assume the Boltrmann approximation is valid. Dete
mine the energy with respect to E, at which the maximum occurs. (b) Repeat pan (¢
for the magnitude of the product gv{E)} [| — £ {E}] in the valence band.

Assume the Boltzmann approximation in asemiconductor is valid. Determine the
ratio of n(E) = gc{EVfr(E)at £ = E, +4kT tothat at £ = E, T k772
Assumethat E, — Er = 0.20 eV insilicon. Plot n{£} = gc (E) fr(£) over theran;
E, < E<E +010eVior(a) T = 200K and (¥} 7 =400 K.

Two semiconductor materials have exactly the same properties except that materia
has a bandgap energy of 1.0 ¢V and material B has a bandgap energy of 1.2 eV. Dex
mine the ratio of #; of material A to that of material B for 7 = 300 K.

{a) Consider silicon a T = 300 K. Plot the thermal equilibrium electron concentra-
tion 1, (on alog scale) over the energy range0.2 < £, — Ef < 0.4 eV. (b) Repest
part (¢} lor the hole concentration over therange0.2 = £ — E, < 0.4eV.

Given the effective messes of electrons and holes in silicon. germanium, and galliur
arsenide, calculate the position of the intrinsic Fermi energy level with respect to th
center of the bandgap for each semiconductor at T = 300 K.

(a)Thecarrier eftective masses in asemiconductor arerm;, = 0.62mq andm), = Lo
Determinethe oosition of theintrinsic Fermi level with resnect to the center of the
bandgap at T = 300K. (b)Repeat pan (a}if #; = |, 10mg and m, = 0.25mg. i‘

Table4.5 | Intrinsic concentration as a
function of temperature

T (Ky n; (cm™)
200 182 x 107




Problems

412 Caculate Ef, with respect to the center of the bandgap in silicon for 7 == 200. 400,
and 600 K.

413 Plot theintrinsic Fermi energy Er; with respect to the center of the bandgap in silicon
for 200 = 1 = 600 K.

414 If the density of states function in the conduction band of a particular semiconductor
isaconstant equal to K, derive the expression for the thermal-equilibrium concentra-
tion o electronsin the conduction hand, assuming Fermi--Dirac statistics and assuim-
ing the Boltzmann approximation is valid.

4.15 Repeat Problem 4.14 if the density of states function isgiven by g.(E) = C,(E - E)
for E > E. where C, isaconstant.

Stion4.2 Dopant Atomsand Energy Levels

416 Calculatethe ionization energy and radius of the donor electron in germarium using
the Bohr theory. {Use the density of states effective mass asafirst approximation.)

417 Repesat Problem 4.16 for gallium arsenide.

Sation 4.3 The Extrinsic Semiconductor

418 Theelectron concentration in siliconat ¥ = 300 Kis ny =5 X 10* ¢em~*. (a) Deter-
mine pg. Is thisn- or p-type matenal ? (») Determine the position of the Fermi level
with respect to the intrinsic Fermi level.

419 Determine the valuesof n, and py for silicon at ¥ = 300 K if the Fermi energy is
0.22eV above the valence band energy.

420 (@) If E. — E; =0.25¢Vingaliumarsenideat 7 = 400 K. calculate the values of
ng and py. (b) Assuming the value of rq from part (&) remains constant, determine
E.—Efandpya T=300K.

421 Thevauedf pginsilicon at T = 300 K is 10" ¢m~*. Determine (a) £, — £ and
i) no.

422 (a)Considersilicon at T = 300 K. Determine py if E;, — E,. = 0.35eV. (b) Assum-
ing that po from part {¢) remains constant, determine thevalue of £7;, — £z when
T=400K. {¢} Find the valueof n, in both parts(a) and (b).

4.23 Repeatproblem 4.22 for GaAs.

*4,24 Assumethat Er = E, at 7 = 300K in silicon. Determine py.

¥4,25 Consdersiliconat T = 300K, which has#z; =5 x 10" ¢cm—?. Determine E, — E.

Sation4.4  Statisticsof Donorsand Acceptor s

*4,26 Theelectronand hole concentrations as a function of energy in the conduction hand
and valence band peak at a particular energy as shown in Figure 4.8. Consider silicon
andassume £, — Er = 0.20 eV. Determine the energy, relative to the band edges, at
which the concentrations peak.

*427 For the Boltzmann approximation to he valid for a semiconductor, the Fermi level
must be at least 3kT below the donor level in an n-type material and at least 3kT above
the acceptor level in a p-type materia. If T = 300 K, determine the maximum elec-
tron concentration in an n-type semiconductor and the maximum hole concentration

E—
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4.28

in a p-type semiconductor for the Boltzmann approximation to be valid in («) slicon
and (b) gallium arsenide.

Plot the ratio of un-ionized donor atomsto the total electron concentration versus
temperature for silicon over therange 50 = T = 200 K.

Section 4.5 Charge Neutrality

4.29

*4.30

431

432
4.33

4.34

4.35

4.36

4.37

4.38

4.39
4.40

441

Consider @ germanium semiconductor at T = 300 K. Calculate the thermal equilib
rium concentrations of ng and py for (a)N, = 10% cm?. N, =0, and (b)) Ny =
Sx10% em™, N, =0.

The Fermi level in n-type silicon at 7 = 300 K is 245 meV below the conduction
band and 200 meV below the donor level. Determine the probability of findingan
electron («) in the donor level and () in a state in the conduction band 4T abovete
conduction band edge.

Determine the equilibrium electron and hole concentrations in silicon for the follow-
ing conditions: 1l
(8) T =300K, N, =2x10%m ™} N, =0

(b) T = 300K. N; = 0. N, = 10" ¢cm~*

() T =300K. Ny = N, = 10 cm™F

(d)y T =400K. N; =0.N,, = 10" em™

((’] 7 = 500K. Ny = IUM Cm_3. N, = 0

Repeat problem 4.31 for GaAs.

Assume that silicon. germanium, and gallium arsenide each have dopant concentra:
tionsof &, = | x 10" cm ¥ and N, = 2.5 x 10"* em~* a T = 300 K. For eachof
the three materials (¢) Is this material n type or p type'?(b) Calculate sy and py.

A sample of silicon a T = 450 K isdoped with boron at acencentration of 1.5 x
1075 cm ? and with arsenic at a concentration of 8 x 10 em=*. (@) |s the materiatn
or p type? (») Determine the electron and hole concentrations. {¢) Calcul ate the total
ionized impurity concentration.

The thermal equilibrium hole concentration in silicon at T = 300K is pg = 2 x

10" em~3. Determine the thermal equilibrium electron concentration. Is the materid
n type or p type?

Inasample of GaAs & T = 200 K, we have experimentally determined that #, = Sﬂ
and that N, = 0. Calculate no, Po. and Ny.

Consider a sample of silicon doped at ¥, = 0 and N, = 10" em~*. Plot the majorif
carrier concentration versus temperature over thr range 200 < 7 < 500 K.

The temperature of a sample of silicon is T = 300 K and the acceptor doping conoeo
tration is N, = 0. Plat the minority carrier concentratiun ¢(on alog-log plot) versusN1'
over the range 10'3 < N, < 10" cm™3. :
Repeat problem 4.38 for GaAs. |
A particular semiconductor material isdoped at Ny = 2 x 10'* em™. N, = 0. ad
the intrinsic carricr concentration isn, = 2 x 10" cm™. Assume complete ionizati
Determine the thermal equilibrium majority and minority carrier concenuations.
(a)Silicon at T = 300K is uniformly doped with arsenic atoms at a concentrationof
2 x 10" ¢m™* and boron atoms at aconcentration of 1 x 10'cm *. Determine the
thermal equilibrium concentrations of magjority and minority carriers. (b) Repeat
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part (a) if the impurity concentrations are 2 x 10'* ¢em™ phosphorus atoms and 3 x
10" em~ boron atoms.

Insiliconat T = 300 K. we have experimentally found that ny = 4.5 X 10 em~* and
Ny =5 x 10" em~>. (a)lsthe material n type or p type? (#) Determine the majority
and minority carrier concentrations. (c) What types and concentrations of impurity
aomsexist in the material?

Settion4.6  Position of Fermi Energy Level

443

444

4.45

+.46

447

4.48

4.49

450

451

452

Consider germanium with an acceptor concentration of &, = 10" em~? and a donor
concentration of &, = (. Consider temperatures of T = 200,400. and 600 K. Calcu-
late the position of the Fermi energy with respect to the intrinsic Fermi level at these
temperatures.

Consider germanium at T = 300 K with donor concentrations of A, == 10", 10!,
and 10" cm~*. Let N, = 0. Calculate the position of the Fermi energy level with re-
spect to theintrinsic Fermi level for these doping concentrations.

A GaAs device is doped with a donor concentration of 3 x 10'% em~*, For the device
lo operate properly. the intrinsic carrier concentration must remain less than 5 percent
of the total electron concentration. What is the maximum temperature that the device

mey operate? p—
Consider germanium with an acceptor concentration of N, = 10'S cm~* and a donor
concentration of N,; = 0. Plot the position of the Fermi energy with respect to the Qi
intrinsic Fermi level as afunction of temperature over therange 200 = T < 600 K.

Considersilicona T =300 K with &, = 0. Plot the position of the Fermi energy —
level with respect to theintrinsic Fermt level as a function of the donor doping con-

centration over therange 10" < N, S10'% em™? =
For a particular semiconductor, E, = 1.50eV.m = 10m;, T = 300K, and

n; =1 x 10° em™?, (@) Determine the position of theintrinsic Fermi energy level

with respect to the center of the bandgap. {#) Impurity atoms are added so that the

Fermi energy level is0.45 eV below the center of the bandgap. (i) Are acceptor or

donor atoms added? (i) What is the concentration of impurity atoms added?

Siliconat T = 300 K contains acceptor atoms at a concentration of &, = 5X

10" em~3. Donor atoms are added forming an n-type compensated semiconductor

such that the Fermi level is0.215 eV below the conduction band edge. What concen-

tration of donor atoms are added?

Slicona T = 300 K is doped with acceptor atoms at a concentration of N, = 7 x
10" cm*. (a)Determine £ — E,. (b} Calculate the concentralinn of additional
acceptor atoms that must be added to move the Fermi level adistance kT closer to the
valence-band edge.

(a) Determine the position of the Fermi level with respect to the intrinsic Fermi level
insiliconat T =300 K that is doped with phosphorus atoms at a concentration of
10" cm=3. (h)Repeat part {a) if the silicon is doped with boron atoms a a concentra-
tion of 10'* em™. (¢) Calculate the electron concentration in the silicon for parts

(@) and (£).

Gdliumarsenideat T = 300 K contains acceptor impurity atoms at a density of

10" e~ . Additional impurity atoms are to be added so that the Fermi level is
0.45eV below theintrinsic level. Determine the concentration and type (donor or
acceptor) of impurity atomsto be added.
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4.53

4.54

4.55

Determine the Fermi energy level with respect to the intrinsic Fermi level for each
condition given in Problem 4.31

Find the Fermi energy level with respect to the valence band energy for the conditi
given in Problem 4.32.

Calculate the position of the Fermi energy level with respect to the intrinsic Fermi
the conditions given in Problem 4.42.

Summary and Review

4.56

4.57

4.58

A special semiconductor material isto he " designed.” The semiconductor isto ke
n-type and doped with 1 x 10'* ¢cm~* donor atoms. Assume complete ionization a
assume N, = 0. The effective density of states functions aregiven by N, = ¥, =
15 x 10" cm™? and are independent of temperature. A particular semiconductor
device fabricated with this material requires the electron concentration to he no
greater than 1.01 x 10" cm™* at T = 400 K. What is the minimum value of the
bandgap energy'!

Silicon atoms, at a concentration of 10’ ¢ m ?, are added to gallium arsenide. Ass
that the silicon atoms act as fully ionized dopant atoms and that 5 percent of thec
centration added replace gallium atoms and 95 percent replace arsenic atoms. Let
T = 300 K. (a)Determine the donor and acceptor concmtrations. (h) Calculate the
electron and hole concentrations and the position of the Fcrmi level with respect
toE,, .

Defects in a semiconductor material introduce allowed energy states within the for-
bidden bandgap. Assume that a particular defect in silicon introduces two discretel
els: adonor level 0.25 eV above the top of the valence band, and an acceptor level "2
0.65 eV above the top of the valence band. The charge state of each defect is afune- &
tion of the position of the Fermi level. (a)Sketch the charge density of each defect
the Fermi level movesfrom E, to E,. Which defect level dominates in heavily doj
n-type material'?In heavily doped p-type material? (h)Determine the electron axd
hole concentrations and the location of the Fermi level in (i) an n-type sample doped
at Ny = 107 e~ and (ii)in a p-type sample doped a N, = 10" em™. (¢} Deter-
mine the Fermi level position if no dopant atoms are added. Is the material n-type,
p-type, or intrinsic?
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Carrier Trangport Phenomena

PREVIEW

termined electron and hole concentrations in the conduction and valence bands,

respectively. A knowledge of thedensities of these charged particles isimportant
toward an understanding of the electrical properties of a semiconductor material. The
net flow of the electrons and holesin asemiconductor will generatecurrents. The pro-
cess by which these charged particles move is called transport. In this chapter we
will consider the two basic transport mechanismsin a semiconductor crystal: drift—
the movement of charge due to electric fields, and diffusion— theflow of charge due
to density gradients. We should mention, in passing, that temperature gradients in a
semiconductor can also lead to carrier movement. However, as the semiconductor
device size becomes smaller, thiseffect can usually beignored. The carrier transport
phenomena are the foundation for finally determining the current-voltage character-
istics of semiconductor devices. We will implicitly assume in this chapter that,
though there will be a net flow of electrons and holes due to the transport processes,
thermal equilihrium will not be substantially disturbed. Nonequilibrium processes
will be considered in the next chapter. B

I n the previous chapter, we considered the semiconductor in equilibrium and de-

5.1 1 CARRIER DRIFT

An electric field applied to a semiconductor will produce a force on electrons and
holes so that they will experience a net acceleration and net movement, provided
there are available energy states in the conduction and valence bands. This net move-
ment of charge due to an electric field iscalled drift. The net drift of charge givesrise
to adrift current.



511 Drift Current Density

If we have a positive volume charge density » moving at an average drift velocity vy,
the drift current density is given by

Jirf = Pl {5.1)

whereJ isin unitsof C/cm?-s or amps/ecm?. If the volume charge density is due to
postively charged holes, then

Jpldrf = (EP)Udp (52)

where J, 4.1 1s the drift current density due to holes and vy, is the average drift ve-
lodty o the holes.

The equation of motion of a positively charged hole in the presence of an elec-
tricfidd is

F = m.;a =¢E (5.3

whaee is the magnitude of the electronic charge, a is the acceleration, E is the el ec-
tricfield,and m}, isthe effective mass of the hole. If the electric field isconstant, then
we expect the velocity to increase linearly with time. However, charged particlesin a
semiconductorare involved in collisions with ionized impurity atoms and with ther-
mdly vibrating lattice atoms. These collisions, or scattering events, alter the velocity
characterigticsof the particle.

As the hole accelerates in a crystal due to the electric field, the velocity in-
creases. When the charged particle collides with an atom in the crystal, for example,
the panicle loses most, or all, of itsenergy. The particle will again begin to acceler-
aeand gain energy until it isagain involved in a scattering process. This continues
over and over again. Throughout this process, the particle will gain an average drift
velocity which, for low electric fields, is directly proportional to the electric field.
We may then write

Vap = 1B (5.4)

where i, is the proportionality factor and is called the hole mobility. The mobility is
an important parameter of the semiconductor since it describes how well a particle
will move due to an electric tield. The unit of mobility is usually expressed in terms
of cm?/ V-s.

By combining Equations (5.2) and (5.4). we may write the drift current density
dueto holes as

Joar; = (epYup = ep, pE (5.5)

The drift current due to holesis in the same direction as the applied electric field.
The same discussion of drift applies to electrons. We may write

Jnla’rf = PVUdn = (_en)vdn {56)

whee J, 4, is the drift current density due to electrons and vy, is the average drift
velodty of electrons. The net charge density of electrons is negative.
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Table51 | Typicd mobility vauesa T = 300 K and luw doping

Silicon 1350 480
Gdlium arsenide 8500 400
Germanium 3900 1900 1

The averagedrift velocity of an electron is also propostional to the electric fieh
for small fields. However, since the electron is negatively charged, the net motiona
the electron is oppositeto the electric field direction. We can then write

gy = —MuE

where (1, isthe electron mobility and is a positive quantity. Equation (5.6) may
be written as

The conventional drift current due to electrons is also in the same direction as th
applied electric field even though the electron movement is in the opposite directiot

Electron and hole mobilities are functions of temperature and doping concentra
tions, as we will see in the next section. Table 5.1 shows some typical mobility val
uesat T = 300 K for low doping concentrations.

Since both electrons and holes contribute to the drift current, the total drift curren
density is the sum of the individual electron and hole drift current densities, so we ma
write

Jivy = e(pan + pyp}E (A

EXAMPLE 5.1

Objective

To calculatethe drift current dengity in asemiconductorfor a given electric field.
Consider agallium arsenide samplea 7 = 300 K with doping concentrations of &, =1

and N; = 10" ¢cm~?. Assume complete ionization and assume electron and hole mobiliti

given in Tables.1. Calculatethedrift current density if the appliedel ecuicfidd isE = 10 Vied

W Solution
Since ¥; > #,, the semiconductor iS n type and the majority carrier electron coricentratio
from Chapter 4 is given by

The minority carrier hole concentrationis



For thisextrinsic n-type semiconductor, the drift current density is

Jdrj == e(lu'i'in + I-"-pp)E = elly N(JE

& Comment

Significant drift current densities can be obtained in a semiconductor applying relatively small
dectricfields.We may note from this example that the drift current will usually he due pri-
maily to the majority carrier in an extrinsic semiconductor.

TEST YOUR UNDERSTANDING

E5.1 Consder asampleof silicona T = 300 K doped at an impurity concentration of
Ny =10"cm % and N, = 10 em™*, Assume electron and hole mobilities given in
Table5.1.Calenlate thedrift current density if theapplied electric fieldiSE = 35 V/cm.
{Wy 08°9 suy)

E5.2 Adriftcurrent density of J,., = 120 Alem’® is required in a particular semiconductor
deviceusing p-type silicon with an applied electric field of E = 20 V/cm. Determine
the required impurity doping concentration to achieve this specification. Assume elec-
tron and hole mobilitiesgiven in Table 5.1. {; Wl ;01 X 18°L = "N = "d 'suy)

512 Mobility Effects

In the last section, we defined mobility, which relates the average drift velocity of a
carrier to theelectric field. Electron and hole mobilities areimportant semiconductor
parametersin the characterization of carrier drift, as seen in Equation (5.9).

Equation (5.3)related the acceleration of a hole to aforce such as an electric
field. We may write this equation as

where v is the velocity of the particle due to the electric field and does not include
the random thermal velocity. If we assume that the effective mass and electric field
aeconstants, then we may integrate Equation (5.10) and obtain

where we have assumed the initial drift velocity to be zero.

Figure 5.1a shows a schematic model of the random thermal velocity and mo-
tion of @ hole in a semiconductor with zero electric field. There is a mean time be-
tween collisions which may be denoted by r,,,. If a small electric field (E-field} is
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.
E field ,1
(b
Figure5.1  Typica random behavior of aholein asemiconductor (8 without an
eectricfield and (b) with en electricfidd.

applied asindicated in Figure 5.1b. there will be anet drift of the holein the directiw
of the E-field, and the net drift velocity will be a small perturbation on the raom
thermal velocity, so the time between collisionswill not be altered appreciably. If we
use the mean time between collisions z.,, in place of the time ; in Equation ¢5.11),
then the mean peak velocity just prior to a collision or scattering event is

The averagedrift velocity is one half the peak value so that we can write

However, thecollision processis not as simple as this model, but is statistical m
nature. In a more accurate model including the effect of a statistical distribution., the
factor % in Equation (5.12b) does not appear. The hole mobility is then given by

The same analysis applies to el ectrons; thus we can write the electron mobility e

where 7., is the mean time between collisions for an electron.

There are two collision or scattering mechanisms that dominate in a semicon-
ductor and affect the carrier mobility: phonon or lattice scattering, and ionized im-
purity scattering.

The atoms in a semiconductor crystal have a certain amount of thermal enagy
at temperatures above absolute zero that causes the atoms to randomly vibrate aat
their lattice position within the crystal. The lattice vibrations cause a disruption in the

|



perfect periodic potential function. A perfect periodic potential in asolid allowselec-
trons to move unimpeded. or with no scattering, through the crystal. But the thermal
vibrationscause a disruption of the potential function, resulting in an interaction be-
twen the electrons or holes and the vibrating lattice atoms. This lattice scattering is
do referred to as phonon scattering.

Since lattice scattering is related to the thermal motion of atoms, the rate at
which the scattering occurs is afunction of temperature. If we denote y; as the mo-
hility that would be observed if only lattice scattering existed, then the scattering the-
ay datesthat to first order

Mohility that is due to lattice scattering increases as the temperature decreases. Intu-
iivdy, we expect the lattice vibrations to decrease as the temperature decreases,
which impliesthat the probability of a scattering event also decreases, thus increas-
ing mobility.

Figure 5.2 shows the temperature dependence of electron and hole mobhilitiesin
dlicon. In lightly doped semiconductors, lattice scattering dominates and the carrier
mobility decreases with temperature as we have discussed. The temperature depen-
dence of mobility is proportional to 7. The inserts in the figure show that the pa-
rameter n is not equal to ; as the first-order scattering theory predicted. However,
mobility does increase as the temperature decreases.

The second interaction mechanism affecting carrier mobility is called ionized
impurity scattering. We have seen that impurity atoms are added to the semiconduc-
tor to control or alter its characteristics. These impurities are ionized at room tem-
perature SO that a coulomb interaction exists between the electrons or holes and the
ionized impurities. This coulomb interaction produces scattering or collisions and
do atersthe velocity characteristics of the charge canier. If we denote ; as the
mobility that would be observed if only ionized impurity scattering existed, then to
firstorder we have

whee N; = N + N, isthe total ionized impurity concentration in the semicon-
ductor. If temperature increases, the random thermal velocity of a carrier increases,
reducing the time the carrier spendsin the vicinity of theionized impurity center. The
lesstimespent in the vicinity of acoulomb force, the smaller the scattering effect and
the larger the expected value of t¢;. If the number of ionized impurity centers
increasss, then the probability of a carrier encountering an ionized impurity center
increases, implying asmaller value of u, .

Figure 5.3 isaplot of electron and hole mobilities in germanium, silicon, and
gdlium arsenideat T = 300 K as a function of impurity concentration. More accu-
rady, these curves are of mobility versus ionized impurity concentration N,. As
the impurity concentration increases, the number of impurity scattering centers in-
creases, thus reducing mobility.






5.1 Carier Drift

Impurity concentration (¢m ™)

Figure5.31 Electron and hale mobilities versus impurity
concentrations for germanium, silicon. and gallium
arsenidea T = 300K.

(From Sze [12].)

TEST YOUR UNDERSTANDING

E5.3 (a)Using Figure 5.2, find the electron mobility for (i) ¥, = 10" e¢m . T = 150°C
ad(ii) N, =10 ecm=*, T = OC. (k) Find the hole mobilitiesfor (i) N,, =
10%em™, T =50 Ciand (id N, = 107 em™, T = 150°C.

[S-A/ WD Q0T ~ (1) *S-A WD 08~ (D) S-AS I QOE [~ (1) 'S-A/UD 006 () () suy]

ES4 Using Figure’5.3, determine the electron and hole mobilities in (a)silicon for
Ny = 10%¢m™>, N, == 0; (b)silicon for Ny = 107 em™*, N,, =5 x 10" e¢m=3;
(0)sliconfor Ny = 10 cm—*, N, = 10" cm *; and (d) GaAs for
Ny = Ne = 107 em=? [S-A/, W2 OTT = /71 006% =~ " (p)
1€ & U008 = M () 1008 & T 00L& M1 (g) %t = H OsEY & 1T (D) suy]

If 7, isthe mean time between collisions due to lattice scattering, then dt/t; is
the probability of a lattice scattering event occurring in a differential time dt.
Likewisg, if z; isthe mean time between collisions duetoionized impurity scattering,
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then dt /t; isthe probability of an ionized impurity scattering event occurring in th.
differential timedt. If these two scattering processes are independent, then the tot.
probability of a scattering event occurring in the differential timedt isthe sum ofth
individual events, or

drdr dt
=—+ — (5.17
TI 123
where r is the mean time between any scattering event.
Comparing Equation (5.17) with the definitions of mobility given by Equ:
tion (5.13) or (5.14), we can write

L I

where g+, isthe mobility due to the ionized impurity scattering processand gy is th
mobility due to the lattice scattering process. The parameter u is the net mobilin
With two or more independent scattering mechanisms, the inverse mobilities add
which means that the net mobility decreases.

5.1.3 Conductivity
Thedrift current density, given by Equation (5.9), may be written as

wherea isthe conductivity of the semiconductor material. The conductivity isgive:
in unitsof (R-cm)~! and isafunction of the electron and hole concentrations and me
bilities. We havejust seen that the mobilities arefunctionsof impurity concentration,
conductivity, then isa somewhat complicated function of impurity concentration.

The reciproca of conductivity is resistivity, which isdenoted by p and is give
in units of ohm-cm. We can write the formulafor resistivity as

Figure 5.4 is a plot of resistivity as a function of impurity concentration in silicor
germanium, gallium arsenide, and gallium phosphide at T = 300 K. Obviously, th.
curves are not linear functionsof &, or &, because of mobility effects.

If we have a bar of semiconductor material as shown in Figure 5.5 with avolt
age applied that produces acurrent I, then we can write

J=— (5.2
A

and



Impurity concentration(em =)

H]H 1015 1016 I()I? 10]9 102() loll
Impurity concentration(cm >}
Figure54 | Resistivity versus impurity concentration at T = 300K in (a) silicon

and (b} germanium, gallium arsenide, and gallium phosphide.
{From Sze [12].)
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Figure55 [ Bar of semiconductor materiad as a resistor.

We can now rewrite Equation (5.19) as

Equation (5.22b) is Ohm's law for a semiconductor. The resistance is a functionof l
resistivity, or conductivity, as well as the geometry of the semiconductor.

If we consider. for example, a p-type semiconductor with an acceptor doping
N,iN; = 0) in which N, > »;, and if we assume that the electron and hole mobili-
ties are of the same order of magnitude, then the conductivity becomes

If we also assume complete ionization, then Equation (5.23) becomes

The conductivity and resistivity of an extrinsic semiconductor are a function pri-
marily of the majority carrier parameters.

We may plot the carrier concentration and conductivity of a semiconductor asa
function of temperature for a particular doping concentration. Figure 5.6 showsthe
el ectron concentration and conductivity of silicon asafunction of inverse temperature
for the case when N; = 10'* em™>. In the midtemperature range, or extrinsic rage
as shown, we have complete ionization— theelectron concentration remains esan
tially constant. However, the mobility isafunction of temperature so the conductivity
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Figure5.6 | Electron concentration and conductivity versus
inverse temperature for silicon.
{After Sze [12].)

varieswith temperature inthisrange. At higher temperatures, theintrinsic carrier con-
centration increases and begins to dominate the electron concentration as well asthe
conductivity. In the lower temperature range, freere-out beginsto occur; the electron
concentration and conductivity decrease with decreasing temperature.

Objective

To determine the doping concentration and majority carrier mobility given the type and con-
ductivity of acnmpensated semiconductor

Consider compensated n-type silicon a8 T =300 K, with a conductivity of o =
16 (2-cm)~! and an acceptor doping concentration of 10" ¢cm~*. Determine the doner con-
centration and the electron mobility.

W Solution
For ntypesilicon a T = 300 K, we can assume compl ete ionization; therefore the conductiv-
ity, assuming N, — N, > n,, isgiven hy

“ g T elyn = e.u-n(Nﬁ' - Na)
W& have that
16 = (1 6 X 10~ ", (N; — 10'7)

Since mohility isafunction of theionized impurity cnncentration. we can use Figure 5.3 along
with tridl and error to determine i, and N, For example, if we choose Ny = 2 x 10'7, then

EXAMPLE 5.2
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N, = & + N7 =3 x 10" so that 4, = 510 cm*/V-s which gives ¢ =8.16

If we choose &; =5 x 10'7. then N, = h x 10" so that @, = 325 cm*/V-s,

o = 20.8 (Q-cm)~'. Thedoping is hounded between these two values. Funhcr trid andenl
yields

and
which gives

m Comment
We can see from this example that, in high-conductivity semicunductor material. mobility s
strong function of carrier concentration.

DESIGN
EXAMPLES3

Objective

Todesign asemiconductor resistor with a specified resistance to handleagiven current de

Asilicon semiconductorat T = 300 K isinitially doped with donors at a concentréti
N; =5x 10" em™. Acceptors are to be added to form a compensated p-type material
resistor is to have aresistance of 10 k2 and handle a current density of 50 Afem® when &

applied.

Solution
For 5V applied to a 10-k§2 resistor, the total current is

If the current density is limited to 50 A/cm?, then the cross-sectional areais

If we, somewhat arbitrarily at this point, limit the electric field to E = 100 V/cm. the
length of theresistor is

From Equation (5.22b), the conductivity of the semiconductor is

The conductivity of acompensated p-type semiconductor is
O = ep,p = eru-p(er — Ny}

where the mobility is afunction of the total ionized impurity concentration N, + A;.



Using trial and error, if &, = 1.25 x 10'® em~3, then N, T N, = 1.75 X 10'® cm™?,
and the hole mobility, from Figure 5.3, is approximately £, = 410 em?/V-s. The conductivity
isthen

which is very close to the value we need

B Comment
Since the mobility is related to the total ionized impurity concentration, the determination of
the impurity concentration to achieve a particular conductivity is not straightforward.

TEST YOUR UNDERSTANDING

E5.5 Silicona T = 300 K is doped with impurity concentrations of ¥, = 5 X 10'* cm~?
ad N, =2 x 10" cm~?, (a) What are the electron and hole mobilities? (b) Deter-
mine the conductivity and resistivity of the material. [W2-25 8070 = ¢
fo(ura-gs) @ F = 04{g) 1S-A/ D O5E = i S-A/WMD Q00T = "1 (1) suy]

B6 Fora particular silicon semiconductor deviceat T = 300 K, the required material is
n type with aresistivity of 0.10£2-cm. {a) Determine the required impurity doping
concentration and (b) the resulting electron mobility.

[S-A/ 0669 = "1 (@) *._wd , 0f X 6 = PN ‘p's 81T WoL] (7) SUVY]

BB7 Abarof p-type silicon, such asshown in Figure 5.5, has a cross-sectional area of
A = 10"® cm® and alength of L = 1.2 x 10~* cm. For an applied voltage of 5V, a
current of 2 mA is required. What is the required (a} resistance, (k) resitivity of the
silicon, and (¢} impurity doping concentration?

[o-Wo 01 X L= "N AS) WS 8Oy (9) " T5A 677 () 'suy]

For an intrinsic material, the conductivity can be written as

The concentrations of electrons and holes are equal in an intrinsic semiconductor, so
theintrinsic conductivity includes both the electron and hole mohility. Since, in gen-
era, the electron and hole mobilities are not equal, the intrinsic conductivity is not
the minimum value possible at a given temperature.

514 Vedocity Saturation

Sofar in our discussion of drift velocity, we have assumed that mobility is not afunc-
tion of electric field, meaning that the drift velocity will increaselinearly with ap-
plied electric field. The total velocity of a particle is the sum of the random thermal
velocity and drift velocity. At T = 300 K, the average random thermal energy is

given by
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Electric field (V/cm)

Figure5.7 | Carrier drift velocity versuselectric field for
high-purity silicon. germanium, and gallium arsenide.
{From Sce {12].)

Thisenergy translates into a mean thermal velocity of approximately 107 ¢mys foran
electron in silicon. If we assume an electron mobility of s, = 1350 cm?/V-sin low-
doped silicon, a drift velocity of 10° cm/s, or | percent of the thermal velodity, is
achieved if the applied electric field is approximately 75 V/cm. This applied electrie
field does not appreciably alter the energy of the electron.

Figure 5.7 isa plot of averagedrift velocity asafunction of applied electric fidd
for electrons and holes in silicon, gallium arsenide, and germanium. At low dedtric
fields, where thereis alinear variation of velocity with electric field, the slope of the
drift velocity versus electric field curve is the mobility. The behavior of the drift ve-
locity of carriersat high electric fields deviates substantially from the linear relation
ship observed at low fields. The drift velocity of electrons in silicon, for example
saturates at approximately 107 em/s at an electric field of approximately 30 kV/em.
If the drift velocity of a charge carrier saturates, then the drift current density do
saturates and becomes independent of the applied electric field.

Thedrift velocity versuselectric field characteristic of gallium arsenide i mere
complicated than for silicon or germanmum. At low fields, the slope of the drift ve-
locity versus E-field is constant and is the low-field electron mobility, which isgp
proximately 8500 ¢m*/V-s for gallium arsenide. The low-field electron mobility in
gallium arsenide is much larger than in silicon. As the field increases, the electron
drift velocity in gallium arsenide reaches a peak and then decreases. A differentia
mobility is the slope of the v, versus E curve at a particular point on the curvead
the negative slope of the drift velocity versus electric field represents anegative dif
ferential mobility. The negative differential mobility produces a negative differentia
resistance; thischaracteristic is used in the design of oscillators.



Figure58 | Energy-hand structure
for gallium arsenide showing the
upper valey and lower valey in
the conduction band.

{From Sze f13].)

Thenegativedifferential mobility can be understood by considering the E versus
k diagram for gallium arsenide, which is shown again in Figure 5.8. The density of
dateseffectivemass of the electron in the lower valley is m} = 0.067mq. The small
effectivemass leads to a large mobility. As the E-field increases. the energy of the
electron increases and the electron can be scattered into the upper valley, where the
densty of states effective mass is 0.55m. The larger effective mass in the upper
valey yieldsa smaller mobility. This intervalley transfer mechanism results in ade-
creadng average drift velocity of electrons with electric field, or the negative differ-
entil mobility characteristic.

5.21 CARRIER DIFFUSION

Thereisasecond mechanism, in addition to drift, that can induce a current in asemi-
conductor. We may consider aclassic physicsexample in which acontainer, as shown
inFigure 5.9, isdivided into two parts by a membrane. The left side containsgas mol-
eculesa aparticular temperature and the right side isinitially empty. The gas mole-
culesarein continual random thermal motion so that, when the membraneis broken,
the gas molecules How into the right side of the container. Diffusion is the process
whereby panicles flow from a region of high concentration toward a region of low
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Figure5.9| Container
divided by a membrane with
gas moleculeson one side.

Figure5.101 Electron concentration versus distance.

concentration. If the gas molecules were electrically charged, the net flow of ch
would result in a diffusion current.

521 Diffusion Current Density

To begin to understand the diffusion process in a semiconductor, we will consider,
simplified analysis. Assume that an electron concentration variesin onedimens
shown in Figure 5.10. The temperature is assumed to be uniform so that the av
thermal velocity of electrons isindependent of x. To cal culate the current, we will
termine the net Row of electrons per unit time per unit area crossing the planec
x = (. If thedistance! shown in Figure 5.10 isthe mean-free path of an electron,
is, the average distance an electron travels between collisions (I = vy, 7. ), thet
the average, electrons moving to theright at x = —/ and electrons moving to thek
atx = -+ will crossthex = 0 plane. One half of theelectrons at x = —/ will bet
eling to theright at any instant of time and one half of theelectronsat x = +/ will L
traveling to the left at any given time. The net rate of electron flow, F,,,in the



directiona x = 0 isgiven by

If we expand the electron concentration in a Taylor series about x = 0 keeping
only thefirst two terms, then we can write Equation (5.27) as

which becomes

dn
Fy = —uyl &

Each electron has acharge (—e), so the current is

& dx

Thecurrent described by Equation (5.30)is the electron diffusion current and is pro-
portiond to the spatial derivative, or density gradient, of the electron concentration.

Thediffusion of electrons from aregion of high concentration to aregion of low
concentration produces a flux of electrons flowingin the negative x direction for this
example. Since electrons have a negative charge, the conventional current direction
isin the positivex direction. Figure 5.1 1ashows these one-dimensional flux and cur-
rent directions. We may write the electron diffusion current density for this one-
dimensiona case. in the form

where D, iscalled the electron diffusion coefficient, has units of cm’/s, and is a pos-
itive quantity. If the electron density gradient becomes negative, the electron diffu-
son current density will be in the negative x direction.

Figure5.11b shows an example of a hole concentration as afunction of distance
in a semiconductor. The diffusion of holes, from aregion of high concentration to a
region of low concentration, produces a flux of holes in the negative x direction.
Since holes are positively charged particles, the conventional diffusion current den-
Sty isalsoin the negative x direction. The hole diffusion current density is propor-
tiond to the hole density gradient and to the electronic charge, so we may write
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Figure5111 (a) Diffusion of electrons due to adensily
gradient. (b) Diffusion of holes due to a density gradient.

for the one-dimensional case. The parameter D, is called the hole diffusion co
cient, has units of cm?/s, and is a positive quantity. |f the hole density gradient
comes negative, the hole diffusion current density will be in the positive x directi

EXAMPLE 5.4

Objective

To calculate the diffusion current density given adensity gradient.

Assume that. in an n-type gallium arsenide semiconductor at T = 300 K, the ele¢
concentration varies linearly from 1 x 10" to 7 x 10" em™2 over adistance of 0.10¢m Cu
culate the diffusion current density if the electron diffusion coefficientis D, = 225 cm/

@l Solution
The diffuston current density is given by

B Comment
A significant diffusion current density can be generated in a semiconductor material witho‘
a modest density gradient.

N |



5.3 Graded Impurity Distribution

TEST YOUR UNDERSTANDING

B5.8 Thedectronconcentrationin siliconis given by n(x) = 1013 o=@/t em=? (¥ > Q)
where L, = 10" * cm. The dectron diffusion coefficientis U,, = 25cm?/s. Determine
theelectrondiffusioncurrent density at (¢) x =0, (b)x = 10* cm, and (¢) x — o<.

I (00w 1p1— (4) oy op— (7) suy]

E5.9  The hole concentration in silicon varieslinearly fromx = 0 tox = 0.01cm. The
hole diffusioncoefficientis D, = 10 cm?/s, the hole diffusion current density is
20 Afem’, and the hole concentration & x = 0 is p = 4 x 10'7 em~*, What isthe
vaue of the hole concentrationa x = 0.01 cm?{ ;M2 ;|01 X SL'Z "su¥)

E510 The hole concentration in silicon isgiven by p(x) = 2 x 10%¥e */tw em 3
{x = 0). The hole diffusioncoefficient is D, — 18cm?*/s. The vaue of the diffusion

g curentdensity @ x = 0is Jur = +6.4 Afem?, What isthe valued L,,?

(o, 0] X §="7 suy)

522 Total Current Density

We now have four possible independent current mechanisms in a semiconductor.
These components are electron drift and diffusion currents and hole drift and diffu-
son currents. The total current density is the sum of these four components, or, for
the one-dimensional case,

Thisequatian may be generalized to three dimensions as

The electron mobility gives an indication of how well an electron moves in a
semiconductor as a result of the force of an electric field. The electron diffusion co-
efficientgives an indication of how well an electron moves in a semiconductor as a
result of adensity gradient. Theelectron mobility and diffusion coefticient are not in-
dependent parameters. Similarly. the hole mobility and diffusion coefficient are not
independent parameters. The relationship between mobility and the diffusion coeffi-
cent will be developed in the next section.

Theexpression for the total current in a semiconductor contains four terms. For-
tunatdy in most situations, we will only need to consider one term at any onetime at
aparticular point in a semiconductor.

531 GRADED IMPURITY DISTRIBUTION

In mogt cases so far, we have assumed that the semiconductor isuniformly doped. In
mery semiconductor devices, however, there may be regions that are nonuniformiy
doped. Wewill investigate how ancnuniformly doped semiconductor reaches thermal



CHAPTER 5 Carrier Transport Phenomena

equilihrium and, fromthisanalysis, we will derive the Einstein relation, whichre
mobility and the diffusion coefficient.

531 Induced ElectricField

Consider a semiconductor that is nonunifnrmly doped with donor impurity atoms!
the semiconductor is in thermal equilibrium, the Fermi energy level is co
through the crystal so the energy-band diagram may qualitatively look like i
shown in Figure 5.12. The doping concentration decreasesas x increases in this i
There will be a diffusion of majority carrier electrons from the region of high cor
centration to the region of low concentration, which isin the +x direction. The il
of negative electrons leaves behind positively charged donor ions. The separation ¢
positive and negative charge induces an electric field that isin adirection to uppus
the diffusion process. When equilibrium isreached, the mobile carrier concentriue
is not exactly equal to the fixed impurity concentration and the induced electric ticl
prevents any further separation of charge. In most cases of interest, the space chure
induced by this diffusion process is a small fraction of the impurity concentratior
thus the mobile carrier concentration is not too different from the impurity
density.

The electric poteniial ¢ is related to electron potential energy by the ch
{—e), SO we can write

Theelectric field for the one-dimensional situation is defined as

Figure5.12 { Encrgy-band diagram for
a semiconductor in thermal equilibrium
with anonuniformdonor impurity
concentration



5.3 Graded Impurity Distribution

If theintrinsic Fermi level changes as a function of distance through a semiconduc-
tor in thermal equilibrium, an electric field exists in the semiconductor.

If we assume a quasi-neutrality condition in which the electron concentration is
dmog equal to the donor impurity concentration, then we can still write

Solving for Ef — Eg;, weobtain

The Fermi level is constant for thermal equilibrium so when we take the derivative
with respect tox we obtain

Theedlectricfield can then be written, combining Equations (5.39) and (5.36), as

Snce we have an electric field, there will be a potential difference through the semi-
conductor due to the nonuniform doping.

Objective

To determine the induced eectric field in asemiconductor in thermal equilibrium, given alin-
e vaidionin doping concentration.
Asumethat thedonor concentrationin an n-typesemiconductorat T = 300 K isgiven by

Nyx) = 10" - 10" (em™)
where x iSgiven in an and rangeshetween 0 = x < | um

B Solution
Tadrg the derivativeof the donor concentration, we have

Thededtricfieldisgiven hy Equation {5.40), so we have

A = 0, for example, wc find
E, = 25.9V/cm

EXAMPLE 5.5
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B Comment
We may recall from our previous discussion of drift current thet fairly small dectric fie
produce significant drift cumrent dengities, so that an induced electric fietd from nonuni

5.3.2 TheEinsein Relation l

If we consider the nonuniformly doped semiconductor represented by the ene
band diagram shown in Figure 5.12 and assume there are no electrical connectiors
that the semiconductor is in thermal equilibrium, then the individual electron J
hole currents must be zero. We can write

fy =0=enp, By +eD, — 1.

If we assume quasi-neutrality so that n = Ny(x), then we can rewrite
tion (5.41) as

tion (5.42). we obtain

Equation (5.43) is valid for the condition

D, kT

e € ul
The hole current must also be zero in the semiconductor. From this conditi
we can show that

Combining Equations (5.44a) and (5.44b) gives

between the mobility and diffusion coefficient, given by Equation (5.45), isk
the Einstein relation.



Table5.2 | Typicd mobility and diffusion coefficient valuesat
T =300K (1t = cm*V-s and D = cm/s)

Mo Dn a DP
Silicon 1350 35 480 12.4
Galium arsenide 8500 220 400 104
Germanitm 3900 101 1900 49.2
Objective EXAMPLE 5.6

To determine the diffusion coefficient given the carrier mobility. Assume that the mobil-
ity of aparticular carrier is 1000 cm*/V-s & T = 300 K.

1 Solution
Udng the Eingtein relation. we have thet

§

kT
D= (T) = (0.0259)(1000) = 259 cm’/s

1 Comment

Although thisexample is fairly simple and straightforward. it isimportant to keep in mind the
rdaive orders of magnitudeof the mobility and diffusion ceefficient. The diffurioncoetticient
is goproximately 40 times smaller than the mobility a room temperature.

Table 5.2 shows the diffusion coefficient valuesat T == 300 K corresponding to
the mobilities listed in Table 5.1 tor silicon. gallium arsenide. and germanium.

The relation between the mobility and diffusion coefficient given by Equa-
tion (5.45) contains temperature. It is important to keep in mind that the major tem-
perature effects are a result of lattice scattering and ionized impurity scattering
processss, as discussed in Section 5.1.2. As the mobilities are strong functions of
temperature because of the scattering processes, the diffusion coefficients are also
grong functions of temperature. The specific temperature dependence given in Equa-
tion (5.45) isasmall fraction of the real temperature characteristic.

*54| THE HALL EFFECT

The Hall effect is aconsequence of the forcesthat are exerted on moving charges by
electricand magnetic fields. The Hall effect is used to distinguish whether a semi-
conductor is n type or p type' and to measure the majority carrier concentration and
tngjority carrier mobility. The Hall effect device, as discussed in this section, is used
to experimentally measure semiconductor parameters. However, it is also used
extensvely in engineering applications as a magnetic probe and in other circuit
gpplications.

'We will assume an extrinsic semiconductor material in which the majority CAITIer concentration is much
|arger than the minority carrier concentration.
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Figure 5.13 | Geometry for measuring the Hall effect

The force on a particle having a charge g and moving in a magnetic fidd
given by
F=¢guvxB§B (54

wherethe cross product istaken between velocity and magnetic field so that the for
vector is perpendicular to both the velocity and magnetic field.

Figure 5.13 illustrates the Hall effect. A semiconductor with a current |,
placed in amagnetic field perpendicular to the current. In thiscase, the magneticfie
isin the z direction. Electrons and holes flowing in the semiconductor will exper
ence aforce as indicated in the figure. Theforce on both electrons and holesisin
(—y) direction. In a p-type semiconductor { py > no), there will be a buildup d po
itive charge on the y = 0 surface of the semiconductor and. in an n-type semico
ductor (g = pg), there will be a buildup of negative charge on the v = 0 surfac
This net charge induces an electric field in the y-direction as shown in the figure.:
steady state, the magnetic field force will be exactly balanced by the induced dectr
field force. This balance may be written as

F=¢g[E+vxB]=0 (5.47

which becomes
gE, = qu, B: (547
Theinduced electric field in the y-direction iscalled the Hall field. The Hall fie

produces a voltage across the semiconduclor which iscalled the Hull volrage. We e
write
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Thehole rnobility isthen given by

I.L

b, = ——————
i epV, Wd

Similarly for an n-type semiconductor, the low-field electron mobility isdeten'ni
from

EXAMPLE 5.7

Objective

To determine the majority carrier concentration and mobility. given Hall effect parameter

Consider the geometry shown in Figure 5.13. Let L = 107" em, W = 1077 ¢,
d = 10" cm. Also assume that |, = 1.0mA, V. =125V, B. = 500 gauss =5 x 1072 ¢
and Vy = —6.25 mV. 1

W Solution
A negative Hall voltage for this geometry implics that we have an n-type semicondw
Using Equation (5.54). we can calculate the electron concentration as

The electron mability is then determined from Equation (5.58) as

(1074410°%)

= = 0.10 mY/V-
(1.6 % 10 )(5 x 1071)(125)(107){10-%) s

ﬂ]!

or
tt, = 1000 cm/Vos

B Comment
It is important to note that the MKS units must be used consistently in the Hall effect equat
to vield correct results.

551 SUMMARY ‘

W The two basic transport mechanisms are drift, due to an applied electric field. and
diffusion. due to a density gradient.
Carriers reach an average drift velocity in the presence of an applied electric field, d
to scattering events. Two scattering proccsscs within a semiconductor are lattice
scattering and impurity scattering. !

B The average drift velocity isalinear function of the applied electric field for small
values of electric field, hut the drift velocity reaches a saturatic limit that is on the
order of 1¢¥ cm/s at high electricfields. I



8 Cariermobility is the ratio of the average drift velocity and applied elechicfield. The
eectron and hole mobilities are functions of temperature and of the ionized impurity
concentration.

B Thedrift current density is the product of conductivity and electric field (aform of
Ohm's law). Conductivity isafunction of the carrier concentrations and mobhilities.
Resistivity isthe inverse of conductivity

1 Thediffusion current density is proportional to the carrier diffusion coefficient and the
cartier density gradient.

M Thediffusion coefficient and mohilitv are related through the Einstein relation.

1 TheHal effect isaconsequence of acharged carrier moving in the presence of
perpendicular electric and magnetic fields. The charged carrier is deflected. inducing
aHall voltage. The polarity of the Hall voltage isafunction of the semiconductor
conductivity type. The majority carrier concentration and mobility can he determined
from the Hall voltage.

GLOSSARY OF IMPORTANT TERMS

conductivity A material parameter related to carrier drift; guantitatively, the ratio of drift
current density to electric field.

diftusion  The process whereby particles flow from aregion of high concentration toaregion
d low concentration.

diffusion coefficient The parameter relating particle flux to the particle density gradient.
diffusoneutrentt The current that results from the diffusion of charged particle?.

drift The process wherehy charged particles move while under the influence of an electric
fidd.

driftcurrent The current that results from the drift of charged particles.

drift velocity The average velocity of charged particles in the presence of an electric field.

Einsteinrelation The relation between the mobility and the diffusion coefficient.

Hdl voltage The voltage induced across a semiconductor in a Hall effect measurement.

ionized impurity scattering The interaction between a charged carrier and an ionized
impurity center.

latticescattering  Theinteraction between acharged carrier and athermally vibrating lattice
aom.

mobility The parameter relating carrier drift velocity and electricfield.

resgtivity The reciproca of conductivity; a material parameter that is a measure of the
resistance to current.

velocity saturation The saturation of carrier drift velocity with increasing electric field.

CHECKPOINT

After studyingthis chapter, the reader should have the ability to:

B Discusscarrier drift current density.

B Explan why carriersreach an average drift velocity in the presence of an applied
ectricfield.

8 Discussthe mechanisms of lattice scattering and impurity scattering.
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Define mobility and discuss the temperature and ionized impurity concentration
dependence on mohility.

Define conductivity and resistivity.

Discuss velocity saturation.

Discuss carrier diffusion current density.

State the Einstein relation.

Describe the Hall effect.

REVIEW QUESTIONS

1 Write theequation for the total drift current density.

2. Define carrier mobility. What is the unit of mobility'?

3. Explain the temperature dependence of mobility. Why is the carrier mobility afuncti
of the ionized impurity concentrations?

4. Define conductivity. Define resistivity. What are the units of conductivity and resistiv

5. Sketch the drift velocity of electronsin silicon versus electric field. Repeat for GaAs

6. Write the equations for the diffusion current densities of electrons and holes.

7. What isthe Einstcin relation?

8. Describe the Hall effect. I

9, Explain why the polarity of the Hall voltage changesdepending on the conductivity
(n type or p type) of the semiconductor.

PROBLEMS

(Note; Use the semiconductor parameters given in Appendix B if the parameters are
specifically given in a problem.)

Section5.1 Carrier Drift 1

5.1

5.2

53

54

Consider a homogeneous gallium arsenide semiconductor at T = 300 K with N, :
10' cm ™ and N, = 0. (a) Calculate the thermal-equilibrium values of dectronal
hole concentrations. {#) For an applied E-field of 10 V/cm. calculate the drift cum
density. (¢) Repeat parts{a) and (b) if Ny =0and N, = 10" em™,

A silicon crystal having a cross-sectional area of 0.001 ¢cm” and a length of 107 @
connected at itsendstoa 13-V battery. At T = 300 K, we wanr acurrent of 100«
in the silicon. Calculate: {«) the required resistance R. (») the required conductivit
(c) the density of donor atomsto be added to achieve this conductivity. and id) tu
concentration of acceptor atoms to be added to form acompensated p-type materi
with the conductivity given from part (b) if theinitial concentration of denor atom
N(J = ‘0'5 cm’}.

{(a) A silicon semiconductor isin the shape of a rectangular har with a cross-sectio
area of 100 alength of 0.1 cm, and is doped with 5 x 1§'® cm™ arsenic ator
The temperature is T = 300 K. Determine the current if 5V isapplied across the
length. (b) Repeat part () if the length is reduced to 0.01 cm. ¢} Calculate the
average drift velocity of electrons in parts{«) and (#}.

{a) A GaAs semiconductor resistor is doped with acceptor impurities at a concent
tion of N, = 10'7 cm™*. The cross-sectional areais 85 tm’. The current in the



55

56

5.7

58

59

510

511

512

513

514

resistoristo be | = 20 mA with 10 V applied. Determine the required length of the
device. (b) Repeat part (n)for silicon.

(a) Three valts is applied across a 1-cm-long semiconductor bar. The average electron
drift velocity is 10* ¢m/s. Find the electron mobility. (&) If the electron mobility in
part (a) were 800 cm?*/V-s, what is the average electron drift velocity?

Use the velocity-field relations for silicon and gallium arsenide shown in Figure 5.7
to determine the transit time of electrons through a |-y m distance in these materials
for an electric field of (a) 1 kV/cm and (#) 50 kV/cm.

A perfectly compensated semiconductor is one in which the donor and acceptor impu-
rity concentrations are exactly equal. Assuming complete ionization, determine the
conductivity of silicon at T = 300 Kin which the impurity concentrations are

@N, =N; =10 em™ and (&) N, = Ny = 10"%cm 3.

(@) In a p-type gallium arsenide semiconductor, the conductivity ise =5 (§2-cm)™!
a T =300 K. Calculate the thermal-equilibrium values of the electron and hole
concentrations. (b) Repesat part (a) for n-type silicon if the resistivity is p = 8 &-cm.
Inaparticular semiconductor material, p, = 1000 cm*/V-s, iz, = 600 cm*/V-s, and
Nc = Ny = 10" em ™. These parameters arc independent of temperature. The
measured conductivity of theintrinsic material isg = 107% (2-em)™' a 7 = 300 K.
Find the conductivity at T = 500 K.

(a) Calculate the resistivity at T = 300 K of intrinsic (/) silicon, (i) germanium. and
(iii) galium arsenide. (&) If rectangular semiconductor bars are fabricated using the
materiasin part (a),determine the resistance of each bar if itscross-sectiona area is
85 uum?* and length is 200 zm.

An n-type silicon sample has aresistivity of 5 2-cm a T = 300K. (a) What isthe
donor impurity concentration? (#) What is the expected resistivity at (i} T = 200 K
and (i) T =400 K.

Consider silicon doped at impurity concentrationsof Ny = 2 x 10" em™ and N, = 0.
An empirical expression relating electron drift velocity to electric field is given by

where i, = 1350 cm*/V-s, v, = 1.8 x 107 em/s, and E is given in V/cm. Plot
electron drift current density (magnitude) versus electric field (log—log scale) over the
range( < E < 10f Vicm.

Consider silicon & 7 = 300 K. Assume the electron mobility is y,, = 1350 cm/V-s.
The kinetic energy of an electron in the conduction band is (1/2)m*v3, where m? is
the effective mass and v, isthe drift velocity Determnine the kinetic energy of an
electron in the conductian hand if the applied electric field is(a) 10 Viem and

b | kVicm.

Consider a semiconductor that is uniformly doped with ; = 10™ cm™ and N, = 0,
with an applied electric field of E = 100 V/cm. Assume that 4, = 1000 cm?N-s and
p, = 0. Also assume the following parameters:



CHAPTER 5 Carrier Transport Phenomena l

515

5.16

517

5.18

5.19

5.20

521

(a) Calculate the electric-current density at 77 = 300 K. (b) At what temperature wif
this current increase by 5 percent? (Assume the mobilities are independent of
temperature.)

A semiconductor material has electron and hole mobilities g, and u .. respectiv
When the conductivity isconsidered as afunction of the hole concentration py,
(a) show that the minimum value of conductivity, ,,,. can be written as

20{ (Ju-n lu'p ) 142
Omin — ———
(itn + ,LL',,) |
where o; isthe intrinsic conductivity, and (b) show that the corresponding hole
concentration is py = n, (e, /pe,)' 2.

A particular intrinsic semiconductor has a resistivity of 50 Q2-cmat T = 300K

5 Q-cmalt T = 330 K. Neglecting the change in mobility with temperature, dete
the bandgap energy of the semiconductor

Three scattering mechanismsare present in a particular semiconductor material.

If only the first scattering mechanism were present, the mobility would be i, =
2000 cm*/V-s, if only the second mechanism were present, the mobility would

Jt2 = 1500 cm?/V-s, and if only the third mechanism were present, the mobilit

be 1£3 = 500 cm*V-s. What is the net mobility?

Assume that the mahility ofelectrons in siliconat T = 300 K sz, = 1300 cm?
Also assume that the mobility is limited by lattice scattering and variesas 7732,
Determine the electron mobility at (@) 7 = 200K and (b) T = 400 K.

Two scattering mechanisms exist in a semiconductor. If enly the first mechanism
present. the mobility would he 250 cm?/V-s. If only the second mechanism wer
sent, the mobility would be 500 ¢cm*V-s. Determine the mobility when both sca
mechanisms exist at the same time.

Theeffectivedensity of states functions in silicon can be written in the form

N, =28 x 10" N, =1.04x 10"

Assume the mobilities are given by

. l \---)

Assume the bandgap energy 1s £ | .2 ¢\ unJ independent o1 temperature Pli
the intrinsic conductivity as « function ot | over the range 200 . 7 . 600K

(«) Assume that the electron mobility in an n-type semiconductor is given by

_ 10 o
My = ( Na' )1/2 cm /V‘b

I+ ——
3 x 1
where N, isthe donor concentration incm . Assuming complete ionization.

conductivity asafunction of ¥, over therange 10" = N, < 10" cm~*, (b) Com{
the results of part () to that if the mobility were assumed to he a constant



plot the electron drift current density of pans(a} and (&)

Setion 5.2 Carrier Diffusion

52

L)

525

5%

527

528

Consider asample of silicon at T = 300 K. Assume that the electron concentration
varies linearly with distance, as shown in Figure 5.14. The diffusion current density is
found to he J, = 0.19 A/em?. If the electron diffusion coefficient is £2, = 25 em?™/s,
determine the electron concentration at x = 0.

The electron concentration in silicon decreases linearly from 104* ¢m =3 to 10" ¢m™
over adistance of 0.10 cm. The cross-sectional area of the sample is0.05 cm'. The
electron diffusion coefficient is 25 em*s. Cal culate the electron diffusion current.
Theelectron concentration in a sample of n-type silicon varieslinearly from 10'7 ¢cm *
ax=0to6x 10' cm at x = 4 um. Thereis no applied electric ficld. The
electron current density is experimentally measured to bc —400 Ajfem®. What is the
electron diffusion coefficient?

The holeconcentration in p type GaAs isgiven by p = 10"¢1 — x/L) em~? for

0 <x < L where L = 10 am. The holediffusion coeflicient is 10 cm?s. Calculate
the hole diffusion current density at (¢} X = 0, (b)X = 5 um, and {¢) x = 10 pm.
The hole concentralion is given by p = 10" exp (—x/L,) em™ for x > 0 and the
electron concentration isgiven by 5 x 10Y exp (4-x/L,) cm™* for x < 0. The values
of L,andL, are5 x 107* cm and 10~ cm, respectively. The hole and electron diffu-
sion coefficients are 10 cm®s and 25 cm?/s, respectively. The total current density
isdefined as the sum of the holediffusion current density at x = 0 and the electron
diffusion current density a x = 0. Calculate the total current density.

The hole concentration in germanium at T = 300 K varies as

SN o -3
pix) = 10" exp (22.5)Cm

wherex is measured in wem. If the hole diffusion cocfficient is D, = 48 em?fs,
determinethe hole diffusion current density as afunction of x.

The electron concentration in silicon a T = 300 K is given by

n(x) = 10" exp (%) cm™?

3

Figure5.14 | Figure for
Problem 5.22.
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5.29

*5.30

*5.3

*5.32

wherex is measured in tem and islimited to) = x < 25 um. The electron diffus
coefticient is I, = 25 cm'ls and the electron mobility is ., = 960 ¢cm*/V-s. The
electron current density through the semiconductor isconstant and equal to Jf,, =
—40 Alem?. The electron current has both diffusion and drift current components.
Determine the electric field as afunction of x which must exist in the semiconduct

The total current in asemiconductor isconstant and is composed of electron drift
current and hole diffusion current. The electron concentration is constant and iSeg
to 10'® The hole concentration is given by

~ -

where L = 12 pm. The hole diffusion coefficient is D, = 12 cm?/s and the electrc
mobility is i, = 1000 em?/V-s. The total current density is J = 4.8 Ajcm?. Caleul
(a) the hole diffusion current density versus x, (k) the electron current density vers
x, and (r)theelectric field versus x.

A constant electric field, E = 12 V/cm, exists in the 4+x direction of an n-type gall
arsenide semiconductor for 0 < x < 50 #m. The total current density is a constant
andis J = 100 Afcm’. At x = O, the drift and diffusion currents are equal. Let

T = 300K and g, = 8000 cm*/V-s. (a) Determine the expression for the electron
concentration #(x). (b) Calculate the electron concentration at x = 0 and at

x = 50 pm. (c) Calculate the drift and diffusion current densities at x = 50 gm.

In n-type silicon, the Fermi energy level varieslinearly with distance over ashon
range. Atx =0, Er — Ef, =0.4eVand, atx = 107 cm, £, — Ep; = 0.15eV,
(a)Write the expression for the electron concentration over the distance. () If the
electron diffusion coefficient is D,, = 25 em?/s, calculate the electron diffusion
current density at (f)x =0 and (ii)x = 5 x 10~* cm.

{a) Theelectron concentration in a semiconductor isgiven by n = 10'%(1 - x/L)¢
for0 < x = L. whereL = 10 um. The electron mobility and diffusion coefficient
ty = 1000 cm*V-s and D,, = 25.9 cm?/s. An electric field is applied such that the
total electron current density is a constant over the given rangeof x and is J,, =
—80 A/cm?. Determine the required electric field versus distance function. (b) Rep
part (a)if J,, = —20 Afem?.

Section 5.3 Graded Impurity Distribution

533 Consider a semiconductor in thermal equilibrium (no current). Assume that the donor

5.34

535

concenvation varies exponentially as
Ny(x) = Ngpexp(—ax)

over therange 0 = x = 1/ where Ny, isaconstant. (a)Calculate the electric fidd
asafunction of x for 0 < x < 1/e. (b) Calculate the potential difference between
xr=0andx = /.

Using thedatain Example 5.5, calculate the potential difference between x — 0 ad
x=1um,

Determine adoping profile in asemiconductor at T = 300 K that will induce an
electric fieldof | kV/em over alength of 0.2 gem.



Problems

*5,36 In GaAs. thedonor impurity concentration varies as ¥, exp{—x/L)forO = x <L,
whereL = 0.1 gm and Ny = 5 x 10'% ¢cm™. Assume pt,, = 6000 em?*/V-s and
T = 300K. (0) Derive the expression for the electron diffusion current density versus
distance over the given range of x. (&) Determine the induced electric field that gener-
atesadrift current density that compensates the diffusion current density.

537 (a)Consider the electron mobility in silicon for &; = 10'7c¢m™ from Figure 5.2a.
Calculateand plot the electron diffusion coefficient versus temperature over the range
—50 < T = 200°C. (b) Repeat pan (a) if the electron diffusion coefficientis given
by B, = (0.0259}, for all temperatures. What conclusion can be made about the
temperature dependence of the diffusion coefficient?

538 (a) Assume that the mobility of acarrier at T = 300K is 4 = 925 em™V-s. Calculate
the carrier diffusion coefficient. (b)Assume that the diffusion coeflicient of acarrier a
T = 300K is D = 28.3cm?s. Calculate the carrier mobility.

Section 5.4 TheHall Effect

(Nate: Refer to Figure 5.13 fur the geometry of the Hall effect.)
539 Asampleof silicon isdoped with 10'® baron atoms per cm'. The Hall sample has the

same geometrical dimensions given in Example 5.7. The current is |, = 1 mA with
B. = 350 gauss = 3.5 X 1077 tesla. Determine (a)the Hall voltage and (b) the Hall
held.

540 Germanium isdoped with 5 x 10" donor atotns per cm’ a T = 300 K. The dimen-
sionsof the Hall device ared = 5 x 10~ cm,W =2 x 10~2 cm,and L = 10~! cm.
Thecurrent is |, = 250 it A. the applied voltage is ¥, = 1G0 mV, and the magnetic
flux density is B. = 500 gauss = 5 X 1077 tesla. Calculate: (a) the Hall voltage,
(b)the Hall field. and {«) the carrier mobility

541 Asilicon Hall device at T = 300 K has the following geometry: d = 10~* cm,

W = 1072 cm, and L = 10~ cm. Thefollowing parameters are measured:

I, =0.75mA. ¥V, = 15V, ¥y = +3.8mV, and B. = 1000 gauss = 107! tesla.
Determine{a) the conductivity type, (b) the mgjority carrier concentration, and
(c)the majority carrier mobility.

542 Considersilicon at T = 300 K. A Hall effect device is fabricated with the following
geometry:d =5 x 10~* cm, W =5 x 07 em, and L = 0.50cm. The electrical
parameters measured are: 1, = 0.50 mA, ¥V, =1.25V, and B. = 650 gauss =
6.5x 107> teda The Hal field is £, = —16.5 mV/cm. Determine (a) the Hall
voltage, (#) the conductivity type, (¢) the majority carrier concentretion, and (d) the
majority carrier mobility.

543 Consider agallium arsenide sample at 7 = 300 K. A Hall effect device has been
fabricated with the following geometry: ¢ = 0.0l cm, W =0.05cm.and L = 0.5 ¢cm
Theelectrical parametersare; |, = 25 mA, ¥V, = 2.2 V,and B. = 25 x 10~ tesla
TheHal voltage is Vy = —4.5 mV. Find: (a) the conductivity type, (h) the majority
carrier concentration, (¢) the mobility, and (d) the resistivity.

Summary and Review

544 An n-typesilicon semiconductor resistor is to be designed so that it carries a current
of 5 mA with an applied voltage of 5V. (@) If Ny = 3 x 10 c¢cm™* and N, = 0,
design aresistor lo meet the required specifications. {b) If ¥; = 3 x 10'®* cm™ and
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N, =25 x 10'*cm', redesign the resistor. (c) Discuss the relative lengths of the
two designs compared to the doping concentration. Is there alinear relationship'!

545 Infabricating a Hall effectdevice, the two points at which the Hall voltage is mes
sured may not be lined up exactly perpendicular to the current 1, (see Figure 5.13).
Discuss the effect this misalignment will have on the Hall voltage. Show that avdid
Hall voltage can be obtained from two measurements: first with the magnetic fieldin
the +z direction, and then in the —z direction.

546 Another technique for determining the conductivity type of a semiconductor iscalled
the hot probe method. It consists of two probes and an ammeter that indicates the
direction of current. One probe is heated and the other is at room temperature. No
voltage is applied, but acurrent will exist when the probes touch the semiconductor
Explain the operation of this hot probe technique and sketch a diagram indicating the
direction of current for p- and n-type semiconductor samples.
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Nonequilibrium ExcessCarriers
INn Semiconductors

PREVIEW

hermal equilibrium. When a voltage isapplied or acurrent exists in a semi-

conductor device, the semiconductor is operating under nonequilibrium
conditions. In our discussion of current transport in Chapter 5, we did not address
nonequilibrium conditions but implicitly assumed that equilibrium was not signifi-
cantly disturbed. Excesselectrons in the conduction band and excess holesin the va-
lence band may exist in addition to the thermal-equilibrium concentrations if an
externa excitation is applied to the semiconductor. In this chapter, we will discuss
the behavior of nonequilibrium electron and hole concentrationsasfunctions of time
and space coordinates.

Excess electrons and excess holes do not move independently of each other.
They diffuse, drift, and recombine with the same effective diffusion coefficient, drift
mobility, and lifetime. This phenomenon is called ambipolar transport. We will de-
velop the ambipolar transport equation which describes the behavior of the excess
electrons and holes. The behavior of excesscarriers isfundamental to the operation of
semiconductor devices. Several examples of the generation of excess carriers will be
explored to illustrate the characteristics of the ambipolar transport phenomenon.

The Fermi energy was previously defined for a semiconductor in thermal equi-
librium. The creation of excess electrons and holes means that the semiconductor is
no longer in thermal equilibrium. We can define two new parameters that apply to
the nonequilibrium semiconductor: the quasi-Fermi energy for electrons and the
quasi-Fermi energy for holes.

Semiconductor devices are generally fabricated at or near a surface. We will
study the effect of these surfaces on the characteristics of excess electrons and holes.
These effects can significantly influence the semiconductor device properties. B

Our discussion of the physics of semiconductors in Chapter 4 was based on



CHAPTER 6 Nonaulibrium ExcessCarriers in Semiconductors

6.1 1 CARRIER GENERATION
AND RECOMBINATION

In thischapter, we discusscarrier generation and recombination, which we can define
asfollows: generation isthe process whereby electrons and holesare created, and re-
eombination isthe process whereby electron? and holes are annihilated.

Any deviation from thermal equilibrium will tend to change the electron and
hole concentrations in a semiconductor. A sudden increase in temperature, for exam-
ple, will increasethe rate at which electrons and holes are thermally generated so thet
their concentrations will change with time until new equilibriuin valuesare reached.
An external excitation, such as light (aflux of photons), can also generate electrons
and holes, creating a nonequilibrium condition. To understand the generation ad
recombination processes, we will first consider direct band-to-band generation and
recombination, and then, later, the effect of allowed electronic energy states within
the bandgap, referred to as traps or recombination centers.

6.1.1 TheSemiconductor in Equilibrium

We have determined the thermal-equilibrium concentration of electrons and holesin
the conduction and valence bands, respectively. In thermai equilibrium, these con-
centrations are independent of time. However, electrons are continually being ther-
mally excited from the valence band into the conduction band by the random nature
of the thermal process. At the same time, electrons moving randomly through the
crystal in the conduction band may come in close proximity to holesand "fall" into
theempty states in the valence band. Thisrecombination process annihilates both the
electron and hole. Since the net carrier concentrations are independent of time in
thermal equilibrium, the rate at which electrons and holes are generated and the rate
at which they recombine must be equal. The generation and recombination processes
are schematically shown in Figure6.1.

Let G,y and G o be the thermal-generation rates of electrons and holes, respec-
tively, given in unitsof #/cm*-s. For the direct band-to-band generation. the electrons
and holesare created in pairs, so we must have that

Electron-hole
generation

Figure6.1 | Electrun-holegeneration and recombination
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Let R,¢ and R,,p be the recomhination rates of electrons and holes, respectively, for
asemiconductor in thermal equilibrium, again given in units of #/cm®-s. In direct
band-to-hand recombination, electrons and holes recombine in pairs, so that

Rn(] - Rp() (6 2)

In thermal equilibrium, the concentrations of electrons and holes are independent of
time; therefore, the generation and recomhination rates are equal, so we have

Gro=Gpo = Ruo = Rpo (6.3)

6.1.2 ExcessCarrier Generation and Recombination

Additional notation is introduced in this chapter. Table 6.1 lists some of the more
pertinent symbols used throughout the chapter. Other symbolswill be defined as we
advance through the chapter.

Electrons in the valence hand may be excited into the conduction hand when, for
example, high-energy photons are incident on a semiconductor. When this happens,
nat only is an electron created in the conduction band, but a hole is created in the
vaence band; thus an electron-hole pair is generated. The additional electrons and
holes created are called excess electrons and excess holes.

The excess electrons and holes are generated by an external force at a particular
rate. Let g, be the generation rate of excess electrons and g, be that of excess holes.
These generation rates also have units of #/cm?-s. For the d| rect hand-to-hand gener-
ation, the excess electrons and holes are also created in pairs, so we must have

When excess electrons and holes are created, the concentration of electrons in
the conduction band and of holes in the valence band increase above their thermal-
equilibrium value. We may write

n=ngtsn (6.5a)
ad
p=py+dp (6.5b)

Table 6.1 | Relevant notanon used 1n Chapter 6

Svmbol Definition

ne. Py Thermd equilibrium electron and hole concentrations
(independent of time and also usudly position).

np Totd electron and hole concentrations(may be
functionsof time and/ar position).

dn=n—ng Excess éectron and hole concentrations(may

Sp=p—pm be functionsof time and/or pogition).

& 8, Excesselectron and hole generation rates.

R, R, Excesselectron and hole recombination rates.

"

Tuby: rpo Excess minority carrier electron and hole lifetimes.
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where 7y and pg are the thermal-equilibrium concentrations, and §# and 3p aretheli
excess electron and hole concentrations. Figure 6.2 shows the excess electron-hole
generation process and the resulting carrier concentrations. The external force hes '
perturbed the equilibrium condition so that the semiconductor is nolonger in thermal
equilibrium. We may notefrom Equations{6.5a) and (6.5b) that, in a nonequilibrium
condition, np # napy = n?.

A steady-state generation of excess electrons and holeswill not cause a continual
buildup of the carrier concentrations. As in the case of thermal equilibrium, an eec-
tron in the conduction band may "fal down" into the valence band, leading to the
process of excess electron-hole recambination. Figure 6.3 shows this process. The
recombination rate for excess electrons is denoted by &, and for excess holes by &,..
Both parameters have units of #/cm’-s. The excess electrons and holes recombine in
pairs, so the recombination rates must be equal. We can then write

In the direct band-to-band recombination that we are considering, the recombi-
nation occurs spontaneously: thus, the probability of an electron and hole recontbin-
ing isconstant with time. The rate at which electrons recombine must be proportional

Figure6.21 Cregtion of excesselectron and hole densitiesby
photons.

Figure6.31 Recombination of excess carriers
reestablishingtherma equilibrium.
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to theelectron concentration and must also be proportional to the hole concentration.
If there are no electrons or holes, there can be no recombination.
The net rate of change in the electron concentration can be written as

where

T --—-.

The first term. 77, in Equation (6.7)is the thermal-equilibrium generation rate.
Since excess electrons and holes are created and recombine in pairs, we have that
én(t) = p(t). (Excesselectron and hole concentrations are equal so we can simply
use the phrase excess carriers to mean either.) The thermal-equilibrium parameters,
ng and po, being independent of time, Equation (6.7)becomes

Equation (6.9)can easily be solved if we impose the condition of /owm;-levelin-
jection. Low-level injection puts limits on the magnitude of the excess carrier con-
centration compared with the thermal equilibrium carrier concentrations. In an ex-
trinsic n-type material, we generally have nq > py and, in an extrinsic p-type
material, we generally have po 3 ny. Low-level injection means that the excess
carrier concentration is much less than the thermal equilibrium majority carrier con-
centration. Conversely. high-level injection occurs when the excess carrier concen-
tration becomes comparable to or greater than the thermal equilibrium majority car-
rier concentrations.

If we consider a p-type material (py => ng) under low-level injection (§n(z) K
Bo), then Equation (6.9) becomes

The solution to the equation is an exponential decay from the initial excess concen-
tration, or

where 1,4 = (a, po) ! and is a constant for the low-level injection. Equation (6.11)
describes the decay of excess minority carrier electrons o that 1, is often referred
to asthe excess minority carrier lifetine."

'In Chapter 5 we defined 7 as a mean rime between collisions. We definer here as the mean time before
arecombination event occurs. The two parametersare not related.
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Therecombination rate—which is defined as a positive quantity--of excess mi-
nority carrier electrons can be written, using Equation (6.10). as

For the direct hand-to-hand recombination, the excess magjority carrier holes recom-
bine at the same rate, so that for the p-type material

(6.13)

In the case of an n-type material {(ny = po} under low-level injection
(6n(t) « ng), the decay of minority carrier holes occurs with a time constant
T = (e, np) ", where 1,0 is also referred to as the excess minority carrier lifetime.
The recombination rate of the majority carrier electrons will be the same as that of
the minority carrier holes, so we have

The generation rates of excesscarriersare not functionsof electron or hole con- ]
centrations. In general, the generation and recombination rates may be functions of
the space coordinates and time.

TEST YOUR UNDERSTANDING

E6.1 Excesselectronshave been generated in asemiconductor to aconcentrationof x(0) =
10" cm~3. The excesscarrier lifetimeist,o = 107 * s. Theforcing function generating
the excess carriers turnsoff & « = 0 so the semicdnductor is allowed to return to an
equilibrium condition for ¢ = 0. Calcul atethe excess e ectron concentrationfor
@t=0,)t=1 s, and (c) t = 4 us.

[c—wo 01 ¥ €871 (2) e wd 01 x §9°¢ () *_wd 01 () suy]

E6.2 Usng the parameters given in E6.1, calculatethe recombination rate of the excess
eectronsfor (a)t =0, (b)z == | us,and (c) t = 4 us.

[_s WD 0T X €8°1 (2) ' _8 W0 .01 X 89°g (q) '8 W2 Lo (2) suy] |

6.21 CHARACTERISTICS OF EXCESS CARRIERS

The generation and recombination rates of excess carriers are important parameters,
but how the excess carriers behave with time and in spacein the presence of electric
fields and density gradients is of equal importance. As mentioned in the preview sec-
tion, the excess electrons and holes do not move independently of each other, but
they diffuse and drift with the same effective diffusion coefficient and with the same
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effectivemobility. This phenomenon is called amhipolar transport. The question that
must be answered is what is the effective diffusion coefficient and what is the effec-
tive mobility that characterizes the behavior of these excesscarriers? To answer these
guestions, we must devel op the continuity equationsfor the carriers and then develop
the ambipolar transport equations.

The final results show that. for an extrinsic semiconductor under low injection
(this concept will be defined in the analysis). the effective diffusion coefficient and
mobility parameters are those of the minority carrier. This result is thoroughly de-
veloped in the following derivations. As will he seen in the following chapters, the
behavior of the excess carriers has a profound impact on the characteristics of semi-
conductor devices.

1 6.21 Continuity Equations

The continuity equations for electrons and holes are developed in this section.
Figure 6.4 shows a differential volume element in which a one-dimensional hole-
panicle flux is entering the differential element at x and is leaving the element at

xtdx. The parameter F+ is the hole-particle flux, or flow, and has units of hum-
ber of holes/cm?-s. For the x component of the particle current density shown, we

may write

Thisequation isaTaylor expansion of Fpﬁ(wc + dx). wherethe differential length dx
issmall, so that only the first two terms in the expansion are significant. The net in-
crease in the number of holes per unit time within the differential volume element

due to the x-component of hole flux is given by

If Flj;(x) > Flx + dx), for example, there will be a net increase in the num-
ber of holesin the differential volume elemen with time. If wegeneralize to athree-
dimensional hole flux, then the right side of Equation (6.16) may be written as

Figure6.4| Differentid volume showing
x component of the hole-particleflux.
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~V.Frdxdydz, whereV . F isthe divergence of the flux vector. We will limit
ourselves to a one-dimensional analysis.

The generation rate and recombination rate of holes will also affect the hole con-
centration in thedifferential volume. The net increasein the number of holes per unit
timein the differential volume element isthen given by

wherep is the density of holes. Thefirst term on the right side of Equation (6.17) is
theincreasein the number of holes per unit time due to the hole flux, the second term
istheincreasein the number of holes per unit time due to the generation of holes, and
the last term isthe decrease in the number of holes per unit time due to the recombi-
nation of holes. Therecombination rate for holesisgiven by p/z,; where t,, includes
the thermal equilibrium carrier lifetime and the excess carrier lifetime.

If we divide both sides of Equation (6.17) by the differential volume dxdydz,
the net increasein the hole concentration per unit timeis

Equation (6.18) is known as the continuity equation for holes.
Similarly, the one-dimensional continuity equation for electronsis given by

where £ is the electron-particle flow, or flux, also given in units of number of
electrons/cm®-s,
6.2.2 TimeDependent Diffusion Equations

In Chapter 5, we derived the hole and electron current densities, which are given, in
one dimension, by

and

dn
Jp = epnE+eDy— (6.21)
dx

If we divide the hole current density by {(+¢) and the electron current density by
(- e) we obtain each particle flux. These equations become

and



Taking the divergence of Equations (6.22) and (6.23), and substituting back into
the continuity equations of (6.18) and (6.19), we obtain

Keepingin mind that weare limiting ourselves to aone-dimensional analysis, wecan
expand the derivativeof the product as

In amore generalized three-dimensional analysis, Equation (6.26) would have to be
replaced by a vector identity. Equations (6.24) and (6.25) can be written in the form

P
+8—-—=—
P S (6.27)
and
PR R (6.28)
Tar at

Equations (6.27) and (6.28) are the time-dependent diffusion equationsfor holes
and electrons, respectively. Since both the hole concentrationp and the electron con-
centration n contain the excess concentrations, Equations (6.27) and (6.28) describe
the space and time behavior of the excess carriers.

The hole and electron concentrations are functions of both the thermal equilib-
rium and the excess values are given in Equations (6.5a) and (6.5b). The thermal-
equilibrium concentrations, #q and pg, are not functions of time. For the special case
of ahomogeneous semiconductor, ry and p;, are also independent of the space coor-
dinates. Equations (6.27) and (6.28) may then be written in the form

Note that the Equations (6.29) and (6.30) contain terms involving the total concen-
trations, p and 1. and terms involving only the excess concentrations, ép and &x.

6.3lAMBIPOLAR TRANSPORT

Originaly, we assumed that the electric field in the current Equations (6.20) and
(6.21) was an applied electric field. This electric field term appears in the time-
dependent diffusion equations given by Equations (6.29) and (6.30). Ifa pulse of
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Figure65 | The cregtion ot an internd electric field
as excesselectronsand holes rend to separate.

excess electrons and a pulse of excessholesarecreated a a particular point in asemi-
conductor with an applied electric field, the excess holes and electrons will tend to
drift in opposite directions. However, because the electrons and holes are charged
particles, any separation will induce an internal electric field between the two setsof
particles. This internal electric field will create a force attracting the electrons ad
holes back toward each other. This effect is shown in Figure 6.5. The electric fidd
term in Equations (6.29) and (6.30) is then composed of the externally applied fidd
plus the induced internal field. This E-field may be written as

where B, is the applied electric field and Ej,, is the induced internal electric field.

Since the internal E-field creates a force attracting the electrons and holes. this
E-field will hold the pulses of excess electrons and excess holes together. The nege:
tively charged electrons and positively charged holes then will drift or diffuse
together with a single effective mobility or diffusion coefficient. This phenomenon is
caled anibipolar diffusion or ambipelar transport.

6.3.1 Derivation of the Ambipolar Transport Equation

Thetime-dependent diffusion Equations(6.29) and (6.30) describethe behavior of the
excesscarriers. However, athird equationisrequired to relate the excess el ectron and
hole concentrations to the internal electric field. Thisrelation is Poisson's equation,
which may be written as

where; is the permittivity of the semiconductor material.

To make the solution of Equations (6.29), (6.30).and (6.32) more tractable, we
need to make some approximations. We can show that only arelatively small internal
electricfield issufficient to keep the excess electrons and holes drifting and diffusing
together. Hence, we can assume that
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However. the V . E;;, term may not be negligible. We will impose the condition
of charge neutrality: We will assume that the excesselectron concentration isjust bal-
anced by an equal excess hole concentration at any point in space and time. If this
assumptionwereexactly true, there would be noinduced internal electric field to keep
thetwo sets of panicles together. However, only a very small differencein the excess
electron concentration and excess hole concentration will set up an internal E-field
rufficient to keep the particles diffusing and drifting together. We can show that a
| percent difference in 3p and Sn. for example, will result in non-negligible values of
the V. E=V .Ey, term in Equations (6.29) and (6.30).

We can combine Equations (6.29) and (6.30) to eliminate the V . E term. Con-
sidering Equations (6.1) and (6.4), we can define

and considering Equations (6.2) and (6.6), we can define

Thelifetimes in Equation (6.35)include the thermal-equilibrium carrier lifetimes and
theexcess-carrier lifetimes. If weimpose thecharge neutrality condition, then 8n = Sp.
We will denote both the excess electron and excess hole concentrations in Equa-
tions(6.29)and (6.30) by 8x. We may then rewrite Equations(6.29)and (6.30)as

If we multiply Equation (6.36) by 1,n, multiply Equation (6.37) by 1, p, and
add the two equations, the V . E = 9E/dx term will be eliminated. The result of this
addition gives

If we divide Equation (6.38) by the term (1,1 + ttp p), this equation becomes

where
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and

Equation (6.39) is called the ambipolar transport eguarion and describes the be-
havior of the excess electrons and holesin timeand space. The parameter I iscaled
the ambipolar diffusion coefficient and p¢’ is called the antbipolar mobility.

The Einstein relation relates the mobility and diffusion coefficient by

Hn _He €
D, D, kT

Using these relations, the ambipolar diffusion coefficient may be written in the form

The ambipolar diffusion coefficient, D', and the ambipolar mobility, 1’, are func-
tions of the electron and hole concentrations, n and p, respectively. Since hath n
and p contain the excess-carrier concentration §s, the coefficient in the ambipalar
transport equation are not constants. The ambipolar transport equation, given by
Equation (6.39), then, is a nonlinear differential equation.

6.3.2 Limitsof Extrinsc Doping and Low I njection

The ambipolar transport equation may be simplifiedand linearized by considering an
extrinsic semiconductor and by considering low-level injectinn. The ambipolar dif-
fusion coefficient, from Equation (6.43), may be written as

D, Dpl(no + 8n) + (po + dn)]

D = e Fom ¥ D, (po T on)

where 1y and py are the thermal-equilibrium electron and hole concentrations,
respectively. and S is the excess carrier concentration. If weconsider a p-type semi-
conductor, we can assume that py = ro. The condition of low-levelinjection, or just
low injection, means that the excess carrier concentration is much smaller than the
thermal-equilibrium majority carrier concentration. For the p-type semiconductor,
then, low injection impliesthat §# <K py. Assuming that np K py and dn K py. and
assuming that D,, and D, areon the same order of magnitude. the ambipolar diffusion
coefficient from Equation (6.44) reducesto

D'=D, (6.45)

If we apply the conditions of an extrinsic p-type semiconductor and low inj ectl on to
the ambipolar mobility, Equation (6.41) reduces to
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It is important to raote that for an extrinsic p-type semiconductor under low
jection, the ambipolar diffusion coefficient and the ambipoiar mobility coefficient
reduce 10 the minorig-currier electron parameter values, which are constants. The
ambipolar transport equation reduces to a linear differential equation with constant
coefficients.
If we now consider an extrinsic n-type semiconductor under low injection, we
may assume that ps <« ng and dn < np. The ambipolar diffusion coefficient from
Equation (6.43) reduces to

D' =D, (6.47)
and the ambipolar mobility from Equation (6.41)reducesto

uo=—qu, (6.48)

ambipolar parameter5 again reduce to the minorit?-currier values, which are
constants. Note that, for the n-type semiconductor, the amhipolar mobility is a nega-
tive value. The ambipolar mobility term i s associated with carrier drift; therefore. the
sign of thedrift term depends on the charge of the particle. The equivalent amhipolar
particle is negatively charged, as one can see by comparing Equations (6.30) and
(6.39). If the amhipolar mobility reduces to that of a positively charged hole, a nega-
tivesign isintroduced as shown in Equation (6.48).

The remaining terms we need to consider in the ambipolar transport equation are
the generation rate and the recombination rate. Recall that the electron and hole
recombination rates are equal and were given by Equation (6.35) as R, = R, =
"/t = p/Tp = R. where 71, and 7,, are the mean electron and hole lifetimes, re-
spectively. If we consider theinverse lifetime functions, then 1/7,, isthe probability
per unit time that an electron will encounter a hole and recombine. Likewise, 1/7,, is
the probability per unit time that a hole will encounter an electron and recombine. If
we again consider an extrinsic p-type semiconductor under low injection, the con-
centration of majority carrier holes will be essentially constant, even when excess
carriersare present. Then, the probability per unit time of a minority carrier electron
encounteringamajority carrier hole will beessentially constant. Hence t,; = 7,. the
minaority carrier electron lifetime, will remain a constant for the extrinsic p-type
semiconductor under low injection.

Similarly, if we consider an extrinsic n-type semiconductor under low injection,
the minority carrier hole lifetime, . = r,,, will remain constant. Even under the
condition of low injection, the minority carrier hole concentration may increase by
severa orders of magnitude. The probability per unit time of a majority carrier elec-
tron encountering a hole may change drastically. The mgjority carrier lifetime, then,
may change substantially when excess carriers are present.

Consider, again, the generation and recombination terms in the ambipolar trans-
port equation. For electrons we may write

Bi—= R= &y — R,, — (GnO it 8:,) an (.Rn(_] il R;;) (649)

where G,y and g,, are the thermal-equilibrium electron and excess electron genera-
tion rates, respectively. The terms R,y and R,, are the thermal-equilibrium electron
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and excess electron recombination rates, respectively. For thermal equilibrium, we
have that

Gn() = Rn() (650)
so Equation (6.49) reduces to

where 7, is the excess minority carrier €lectron lifetime.
For the case of holes, we may write

where G, and g, are the thermal-equilibrium hole and excess hole generation rates,
respectively. Theterms R,,; and R/, are the thermal-equilibrium hole and excess hole
recombination rates, respectively. Again, for thermal equilibrium, we have that

Gp() - Rp() (653)
so that Equation (6.52) reducesto

where T, is the excess minority carrier hole lifetime.

The generation rate for excess electrons must equal the generation rate for ex-
cess holes. We may then define a generation rate for excess carriers as g', so tha
g, = &, = 9. Wealso determined that the minority carrier lifetime is essentialy a
constant for low injection. Then the term g — R in the ambipolar transport equation
may he written in termsof the minority-carrier parameters.

The ambipolar transport equation, given by Equation (6.39), for a p-type semi-
conductor under low injection then becomes

The parameter ér is the excess minority carrier electron concentration, the parame-
ter T,p isthe minority carrier lifetime under low injection, and the other parameters
are the usua minority carrier electron parameters.

Similarly, for an extrinsic n-type semiconductor under low injection, the ambi-
polar transport equation becomes

The parameter §p is the excess minority carrier hole concentration, the parameter t,,
isthe minority carrier hole lifetime under low injection, and the other parametersare
the usual minority carrier hole parameters.
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Table6.2 | Common ambipolar trangport equation simplifications

Specification Effect
8{dn) o(dp)
Steedy date —0. —0
= at 3t
' itributi ; #(a A5
Uniform distribution of excesscarriers D, ‘(_f) =0. D, '( :‘) =0
(uniformgeneration rate) dx? dx?
Zero dlectricfidd g6 _ o pdlp)
dx dx
No excess carrier generation ¢ =0

No excess Carier recombination
(infinitelifetime)

It isextremely important to note that the transport and recombination parameters
in Equations (6.55) and (6.56) are those of the minority carrier. Equations (6.55)and
6.56) describe the drift, diffusion, and recombination of excess minority carriers as
a function of spatial coordinates and as a function of time. Recall that we had im-
posed the condition of charge neutrality; the excess minority carrier concentration is
equa to the excess majority carrier concentration. Theexcess majority carriers, then,
diffuse and drift with the excess minority carriers; thus, the behavior of the excess
mgjority carrier is determined by the minority carrier parameters. This ambipolar
phenomenon is extremely important in semiconductor physics, and is the basis for
describing the characteristics and behavior of semiconductor devices.

6.3.3 Applicationsof theAmbipolar Transport Equation

We will solve the ambipolar transport equation for several problems. Theseexamples
will helpillustrate the behavior of excesscarriers in asemiconductor material, and the
results will be used later in the discussion of the pn junction and the other semicon-
ductor devices.

The following examples use several common simplifications in the solution of
the ambipolar transport equation. Table 6.2 summarizes these simplifications and
their effects.

Objective

To determinethe time behavior of €XCess carriersas asemiconductor returns to therma equi-
librium.

Condder an infinitely farge, homogeneous n-type semiconductor with zero gpplied elec-
tric fidd. Assumethat at time+ = 0, a uniform concentration of excess carricrs existsin the
crysd, but assume that ¢’ = 0 for ¢ = 0. If wc assume that the concentration of excess
cariers is much smaller than the thermal-equilibriumelectron concentration, then the low-
injection condition applies. Calculate the excess carrier concentration as a function of time
fort = 0.

EXAMPLE 6.1
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B Solution
For the n-type semiconductor, we need to consider the ambipolar transport equation for the
minority carrier holes, which was given by Equation (6.56). The equation is

Weareassuming a uniform concentration of excess holesso that 82 (8p)/adx” = 3(8p)/dx = 0.
Fort > 0, we are also assuming that g' = 0. Equation (6.56) reduces to

Since there is no spatial variation, the total time derivative may be used. At low injection, the
minority carrier hole lifetime, 7,0, isaconstant. The solution to Equation (6.57)is

where 8p(0) isthe uniform concentration of excess carriersthat existsat time: = i, The con-
centration of excess holes decays exponentially with time, with a time constant equal to the
minority carrier hole lifetime.

From the charge-neutrality condition, we have that én = §p, so the excess electron con-
centration is given by

m Numerical Calculation
Consider n-type gallium arsenide doped at N; = 10" ocm~>. Assume that 10'* electron-hole
pairs per cm® have been created at r = 0, and assume the minority carrier hole lifetime is
70 = 10 ns.

We may note that §p(0) <K ng, so low injection applies. Then from Equation (6.58) we
can write

p(t) = 10%e /07 em ™

The excess hole and excess electron concentrations will decay to 1/e of their initial valuein
10 ns.

B Comment
The excess electrons and holes recombine at the rate determined by the excess minority car-
rier hole lifetime in the n-type semiconductor.

EXAMPLE 6.2

Objective

To determine the time dependence of excesscarriers in reaching a steady-state condition.
Again consider an infinitely large, homogeneous n-type semiconductor with a zero ap-
plied electric field. Assume that, for t < 0, the semiconductor is in thermal equilibrium and
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that,for I > 0, a uniform generation rate exists in the crystal. Calculate the excesscarrier con-
centration as a function of time assuming the condition of low injection.

Solution
The condition of a uniform generation rate and a homogeneous semiconductor again implies
that 82(3p)/9x* = 8(8p)/dx = 0 in Equation (6.56). The equation, for this case, reduces to

Thesolution to this differential equation is

1 Numerical Calculation
Considern-typesiticonat T = 300K doped at Ny = 2 X 10" cm™?, Assume that 7,0 = 1077 5
adg =35 x [0*" em™*s~'. From Equation (6.61)we can write

1 Comment
We may note that fort — oo. we will create a steady-state excess hole and electron concen-
trationof 5 x 10'* em™. We may note that §p < ng, so low injection is valid.

The excess minority carrier hole concentrationincreaseswith timewith the same
time constant t,g, which is the excess minority carrier lifetime. The excess carrier
concentration reaches a steady-state value as time goes to infinity, even though a
steady-state generation of excess electrons and holes exists. This steady-state effect
can he seen from Equation (6.60) by setting ¢{dp)/dt = 0. Theremaining tennssim-
ply statethat, in steady state, the generation rateisequal to the recotnbination rate.

TEST YOUR UNDERSTANDING

E63 Siliconat T = 300 K has been doped with boron atoms to a concentration of
N, =5 x 10" cm™*. Excess carriers have been generated in the uniformly doped
material to aconcentration of 10'* cm™>. The minority carrier lifetimeis5 us.

(o) What carrier type is the minority carrier? (b)Assumingg' = E = Ofor ¢ > O,
determine the minority carrier concentration for r = 0.
[ 105 w01 x/=2 501 (q) ‘suonnaja (v) suy]

E64 Consider silicon with the same parameters as given in E6.3. The materia isin *
thermal equilibrium fort < 0. At+ = 0, asource generating excess carriers is turned
on, producing ageneration rate of g' = 10?° em=? s~ !. (@)What carrier type is the
minority carrier? (b) Determine the minority carrier concentration fort > 0. (c) What
is the minority carrier concentration ast — oo?

(oo (01 % §(2) e[ g = 113,01 x 6 (q) ‘'suonddR (v) suy]
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EXAMPLE 6.3

Objective

To determine the steady-state spatial dependence of the excess carrier concentration.

Consider a p-type semiconductor that is homogeneous and infinite in extent. Assume a
zero applied electric field. For aone-dimensional crystal, assume that excess carriers are being
generated at x = O only, as indicated in Figure 6.6. The excess carriers being generated &
x = O will begin diffusing in both the +x and —.x directions. Calculate the steady-state ex-
cess carrier concentration as afunction of x.

Solution
The ambipolar transport equation lor excess minority carrier electrons was given by Equa
tion (6.55), and is written as

32(8n) d(én) . n a(én)
n——- #HE - =
ax? ¢

ax f TR, T

From our assumptions. we have E = 0,g' = 0 for x # 0, and a(3n)/3t = 0 fur steady Sate.
Assuming aone-dimensional crystal, Equation (6.55) reduces to

d*(8n) B 5_!1

dx' Tur

=0

nll

Dividing by the diffusion coefficient, Equation (6.62) may he wrilten as

wherewehave defined Lf, = D,t,y. The parameter L, hasthe unit o length and is called the
minority carrier electron diffusion length. The general solution to Equation (6.63) is

Snix) = Ae 't 4 Betita (6.64)

As the minority carricr electrons diffuse away from X = 0. they will recombine with the ma
jority carricr holes. The minority carrier electron concentration will then decay toward zero &
both x = +oc and x = —oc. These boundary conditions mean that 8 = 0 for » > 0 and
A = Ofor x < 0. The solution (o Equation (6.63) may then he written as

Figure 66 ! Steady-state generation
rate at x = 0.



where §r(0) is the value of the excess electron concentration at x = 0. The steady-dtate
excess electron concentration decays exponentially with distance away from the source a
x=0.

& Numerical Calculation
Consider p-type silicon at T=300 K doped & N, =5 x 10" cm*. Assume that 7,y =
5x 1077 s, D,, = 25 cm®/s, and 8x{0) = 10" cm™3.
The minority carrier ditfusion length is
L= . . .. =+255x10"7) =354 um
Then for x = 0, we have
Sn(x) = 101 /3 4x107¢ (-3
# Comment

We mey note that the steady-state excess concentration decays to 1/¢ of its vdue & x =
B4 jem.

Asbefore, we will assume charge neutrality; thus, the steady-state excess major-
ity carrier hole concentration also decays exponentially with distance with the same
characteristic minority carrier electron diffusion length L,,. Figure 6.7 isa plot of the
total electron and hole concentrationsas afunction of distance. We are assuming low
injection, that is, 7(0) <K py in the p-type semiconductor. The total concentration of
majority carrier holes barely changes. However, we may have da {0} > ng and still
satisfy the low-injection condition. The minority carrier concentration may change
by many orders of magnitude.

TEST YOUR UNDERSTANDING

E6.5 Excesselectronsand holes are generated at the end of aslicon bar (x = 0). The
siliconis doped with phosphorusatoms to aconcentrationdf #; = 10" cm™*. The
minority carrier lifetimeis 1 us, the electron diffusioncoefficientis b, = 25cn¥/ s,
and the hole diffusion coefficient is D, = 10 cm¥/s. If n(0) = 5p(0) = 10" cm ™3,
determine the steady-statee ectron and hole concentrationsin the silicon for x = 0.
(WD Ur ST X 20y M ‘rL._u.l:JH“xgl cie-?01 = (x}dp = (x}ug 'suy)

B6.6 Usng the parametersgiven in E6.5, ca culate the electronand hole diffusion current
densitiesa x = 10 um. (WY 69€°0— = 7 ' WYV 69¢°0+ = “f "suy)

The three previous examples, which applied the amhipolar transport equation to
specific situations, assumed either a homogeneous or a steady-state condition; only
the time variation or the spatial variation was considered. Now consider an example
in which both the time and spatial dependence are considered in the same problem.
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(log scale)
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Figure 6.7 | Steady-state electron and hole concentrations for the case
when excess electrons and holes are generated at » = O.

EXAMPLE 6.4

Objective

To determine both the time dependence and spatial dependence of the excess carrier concen-
tration.

Assume that a finite number of electron-hole pairs is generated instantaneously at time
t=0andat x =10, but assume g'=0 fort > 0. Assume we have an n-type semiconductor
with a constant applied electric field equal to Eg. which is applied in the +x direction. Calcu-
|ate the cxcess carrier concentration as afunction of x and ¢.

Solution
The one-dimensional ambipolar transport equation for the minority carrier holes can be writ-
ten from Equation {6.56) as

The solution to this partial differential equation isof theform
3plx. 1y = p'(x, p)e (6.67)

By substituting Equation (6.67)into Equation (6.66), we arc left with the partial differential
equation

a2 p'(x, 1) g WD 0p(xn)
0

D, & T




6.3 Ambpolar Transport

Equation {6.68) is normally salved using Laplace transform techniques. The solution, without
going through the mathematical details, is

Thetotal solution. from Equations (6.67) and (6.69). for the excess minority carrier hole con-
centrationis

® Comment
We could show that Equation (6.70) isa solution hy direct substitution back into the partial dif-
ferentid equation. Equation (6.66).

Equation (6.70) can be plotted as a function of distance x, for various times.
Figure 6.8 shows such a plot for the case when the applied electric field is zero. For
t > 0, the excess minority carrier holes diffuse in both the +x and —=x directions.
During thistime, the excess majority carrier electrons, which weregenerated, diffuse
at exactly the same rate as the holes. As time proceeds, the excess holes recombine

Figure6.81 Excess-hole concentration versus distance
at various times for zero applied electric field.
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Figure 6.9 | Excess-holeconcentrationversus distance & varioustimesfor a
congtant applied electricfield.

with the excess electrons so that a t = oo the excess hole concentration is zero. In
this particular example, both diffusion and recombination processesare occurring &
the sametime.

Figure 6.9 showsa plot of Equation (6.70) asafunction of distancex at various
times for the case when the applied electric fieldis not zero. In this case, the pulse df
excess minority carrier holesis drifting in the +x direction, which is the direction of
theelectricfield. We till have the samediffusion and recombination processes aswe
had before. An important point to consider is that, with charge neutrality, n = Spat
any instant of time and at any point in space. The excess-electron concentration is
equal to the excess-hole concentration. In this case, then, the excess-electron pulseis
moving in the same direction as the applied electric field even though the electrons
have a negative charge. In the ambipolar transport process, the excess carriers are
characterized by the minority carrier parameters. In thisexample, the excess carriers
behave according to the minority carrier hole parameters, which include 2, tt,, and
7,0. Theexcess majority carrier electrons are being pulled along by the excess minor-
ity canier holes.

TEST YOUR UNDERSTANDING

E6.7 Asagood approximation,the pesk value of a normalized excess canierconcentration,
given by Equation (6.70), occursat x = 1, Eqz. Assumethe following parameters:
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Tpo = 5 us, D, = [0 em?fs, u, = 386 cm*/V-s, and Ey = 10 V/em, Calculatethe
pesk vaued timesdf (a)r = | ps. (h)f =5 pus, ()t =15 ps, and (d)r = 25 us.
What are the corresponding vauesdf x for pans (a)to {d)? W 596 = ¥ *0z1°0 (P)
i giC = xc () gap = XLl () il orge = gl (p) tsuy]

6.8 Theexcess carrier concentration, given by Equation (6.70), isto be calculated & dis-
tancesdf one diffusion length away from the pegk value. Using the parameters given
in E6.7. calculatethe values of 5p for (a)r = | usat (i) 1.093 x 10~ am and
(ii)x ==32L x 10~ cm; byt =5pusa (Hx=264X 107 cm ad
(i)y =21.22x 1072 em; (c)F = W5 us & (i) x = 6.50 x 10~ ¢m and
(ii)x =5.08 x 10" > cm.

[SO 1 () gL (D Y 1L U 11 (D (9) 60z (10 607 (1) () suy]

Eh.9 Usng the parametersgivenin E6.7, () plot épix, 7) from Equaion (6.70)versusx
for (i)r=1gs, (ii)r =5us, and (#i)t = 15 ps, @ (b) pot dp(x. 1) versus time
for (i)x = 1072 cm, (ii)x = 3 x 10 2 em, and (iii)x =6 X 10 ? em.

6.3.4 Didectric Relaxation Time Constant

We have assumed in the previous analysis that a quasi-neutrality conditions exists—
that is, the concentration of excess holesis balanced by an equal concentration of ex-
cesselectrons. Suppose that we have a situation as shown in Figure 6.10, in which a
uniform concentration of holes 8p is suddenly injected into a portion of the surface
of asemiconductor. We will instantly have a concentration of excess holes and a net
positive charge density that is not balanced by a concentration of excess electrons.
How is charge neutrality achieved and how fast?
There are three defining equations to he considered. Poisson's equation is

The current equation, Ohm's law, is

Thecontinuity equation, neglecting the effectsof generation and recombination, is

Figure 6.10| The injection of aconcentration of
holesinto asmal region at the surface of an n-type
semiconductor.

|
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The parameter p isthe net charge density and the initial valueis given by e(8p). We
will assume that 8p is uniform over a short distance at the surface. The parameter ¢
is the permittivity of the semiconductor.

Taking the divergence of Ohm's law and using Poisson's equation, we find

Substituting Equation (6.74) into the continuity equation, we have j

@ _ G0 o4 ©6.75)
e at  dr '

Since Equation (6.75) isafunction of time only, we can write the equation as a tota
derivative. Equation (6.75) can berearranged as i

Equation (6.76) isafirst-order differential equation whose solution is

p1) = p(@e O/ (6.77)
where

and is called the dielectric relaxation time constant.

EXAMPLE 6.5

Objective

Caculatethedielectric relaxation time congtant for a particular semiconductor.
Assume an n-type semiconductor with a donor impurity concentration of N, =
101 cm—3.

H Solution
The conductivity isfound as

where the vaue of mobility is the gpproximatevaue found from Figure5.3. The permittivity
of siliconis

Thedidectricrelaxationtime constant i s then
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E Comment

Equation (6.77) then predicts that in approximately four time constants, or in approximately
2 ps, the net charge dendity is essentially zero; that is, quasi-neutrality has been achieved.
Since the continuity equation, Equation (6.73}, does not contain any generation or recombina-
tion terms, the initial positive charge is then neutrdized by pulling in electronsfrom the bulk
ntype materid to create excesselectrons. This process occurs very quickly compared to the
norma excess carrier lifetimes of approximately 0.1 js. The condition of quasi-charge-
neutrdity is then judtified.

*6.3.5 Haynes-Shockley Experiment

We have derived the mathematics describing the behavior of excess carriers in a
semiconductor. The Haynes—Shockley experiment was one of the first experiments
to actually measure excess-carrier behavior.

Figure 6.11 shows the basic experimental arrangement. The voltage source ¥;
establishes an applied electric field Eq in the -+x direction in the n-type semiconduc-
tor sample. Excess carriers are effectively injected into the semiconductor at contact
A. Contact B is a rectifying contact that is under reverse bias by the voltage source
V,. Thecontact B will collect afraction of the excess carriers as they drift through the
semiconductor. The collected carrierswill generate an output voltage, Vg.

This experiment corresponds to the problem we discussed in Example 6.4.
Figure6.12 shows the excess-carrier concentrationsat contactsA and B for two con-
ditions. Figure 6.12a shows the idealized excess-carrier pulse at contact A at time
¢+ =0. Foragiven electric field Eg;, the excess carriers will drift along the semicon-
ductor producing an output voltage as a function of time given in Figure 6.12b, The
pesk of the pulse will arriveat contact B at time #. If the applied electric field is re-
duced to avalue Egz. Eq2 < Equ, the output voltage response at contact B will ook
approximately as shown in Figure 6.12c. For the smaller electric field, the drift ve-
locity of the pulse of excess carriersissmaller, and so it will takealonger timefor the

PL_;U

Figure 6.111 The basic Haynes-Shockley experimental
arrangement.
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Figure6.12 | (a) Theidedlized excess-carrier pulse a
termina A & ¢ = 0. (b) The excess-carrier pulse versustime
at termind B for agiven gpplied electricfield. (¢) The
excess-carrier pulse versustime a termina B for asmaller
applied eectricfield.

pulse to reach the contact B. During this longer time period, there is more diffusion
and morerecombination. The excess-carrier pulse shapes shownin Figures 6.12b and
6.12c aredifferent for the two electric field conditions.

The minority carrier mobility, lifetime, and diffusion coefficient can be deter-
mined from this single experiment. As a good first approximation, the peak of the
minority carrier pulse will arrive at contact B when the exponent involving distance
and timein Equation (6.70)is zero, or
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In this case x = d, where d is the distance between contacts A and B, and ¢ = #,
where 1, is the time at which the peak of the pulse reaches contact B. The mobility
may be calculated as

Figure 6.13 again shows the output response as a function of time. At times 7,
and 2, the magnitude of the excess concentration ise~" of its peak value. If the time
difference between ¢, and 1> is not too large, e~'/%¢ and (47 D,t)!/? do not change
appreciably during this time; then the equation

F (d — ppEor)? = 4Dyt (6.80)

issatisfied at both s = #; andt = . If wesett =1 and t = 12 in Equation (6.80)
and add the two resulting equations, we may show that the diffusion coefficient is

given by

where
k At=f -4 (6.82)

The area § under the curve shown in Figure 6.13 is proportional to the number
o excess holes that have not recombined with majority carrier electrons. We may
write

where K is a constant. By varying the electric field, the area under the curve will
change. A plot of In(S) as afunction of {¢/1,Es) will yield a straight line whose
dope is (1/z,0), so the minority carrier lifetime can also be determined from this
experiment.

The Haynes-Shockley experiment is elegant in the sense that the three basic
processesof drift, diffusion, and recombination areallobserved in asingle experiment.

Figure 6.13 | The OUtput excess-carrier
pulse versus lime to determinethe
diffusion coefficient.
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The determination of mobility is straightforward and can yield accurate values. The
determination of the diffusion coefficient and lifetime is more complicated and may
lead to some inaccuracies.

6.41 QUASI-FERMI| ENERGY LEVELS

The thermal-equilibrium electron and hole concentrations are functionsof the Fermi
energy level. We can write

=n; exp { fir a {fﬂ\ (6.84a)

and

where £r and E ¢, are the Fermi energy and intrinsic Fermi energy, respectively, ad
r; istheintrinsic carricr concentration. Figure 6.14a shows the energy-band diagram
for an n-type semiconductor in which Ex » Ef;. For this case, we may note from
Equations{6.84a} and (6.84b) that nq > #; and py < r;. as we would expect. Simi-
larly, Figure 6.14b shows the energy-band diagram for a p-type semiconductor in
which Er < Er;. Again we may note from Equations (6.84a) and (6.84b) that
np < n; and po > n;, aswe would expect for the p-type material. These results are
for thermal equilibrivm.

If excess carriers are created in a semiconductor, we are no longer in thermal
equilibrium and the Fermi energy is strictly nolonger defined. However, we may de-
fine a quasi-Fermi level for electrons and a quasi-Fermi level for holes that apply for
nonequilibrium. If én and ép are the excess electron and hole concentrations, re-
spectively, we may write:

Figure6.14 | Thermal -equilibrium energy-band diagrams for (a) n-type
semiconductor and (b} p-type semiconductor.



6.4 Quasi-FermiEnergy Levels

where Er,;, and Er, are the quasi-Fermi energy levels for electrons and holes, re-
spectively. Thetotal electron concentration and the total hole concentration are func-
tions of the quasi-Fermi levels.

Objective

To cdculate the quasi-Fermi energy levels.

Condder an n-type semiconductor & T = 300 K with carrier concentrations of #, =
10%em=?, 1, = 10® ecm™?, and p, = 10° em—*. In nonequilibrium, assume that the excess
carier concentrationsare én = §p = 10" em—?,

m Solution
The Femi leve for thermal equilibrium can be determined from Equation (6.84a). We have

W& can ue Equation (6.83a) to determine the quasi-Fermi level for eectronsin nonequilib-
rium. VA& can write

Equation (5.85b) can be used to calculate the quasi-Fermi level for holes in nonequilibnum.
W& can write

Comment
W& mey note thet the quasi-Fermi level tor electronsis above £;-; while the quasi-Fermi level
for holesis bdow E;;

EXAMPLE 6.6

Figure 6.15a shows the energy-band diagram with the Fermi energy level corre-
sponding to thermal equilibrium. Figure 6.15b now shows the energy-band diagram
under the nonequilibrium condition. Since the mgjority carrier electron concentration
does not change significantly for this low-injection condition, the quasi-Fermi level
for electrons is not much different from the thermal-equilibrium Fermi level. The
guasi-Fermi energy level for the minority carrier holes is significantly different from
the Fermi level and illustrates the fact that we have deviated from thermal equilib-
rium significantly. Since the electron concentration has increased, the quad-Fermi
level for electrons has moved slightly closer to the conduction band. The hole
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(a) {by

Figure 6.151 (a) Thermal-equilibrium energy-banddiagram for ¥, = 10'% em=* and
n, = 10" cm™*. (b) Quasi-Fermi levelsfor eectronsand holesif 10'* cm™ excess
carriersare present.

concentration has increased significantly so that the quasi-Fermi level for holes hes
moved much closer to the valence band. We will consider the quasi-Fermi energy
levelsagain when we discuss forward-biased pn junctions.

TEST YOUR UNDERSTANDING

E6.10 Siliconat 7 = 300K isdoped a impurity concentrationsof ¥, = 10°®* ¢cm~* ad
N, = 0. Excesscartiers are generated such that the steady-statevaluesare
dn=28p =5x 10" cm~. (a) Calculatethe thermal equilibrium Fermi level with
respect t0 E¢;. (b)Determine Ef, and E¢, with respect 1o £5;.

[A2 £69T°0= 7 — 7 A298p£'0 = T —~ “IF (q)
AR ELPEO =Yg — 43(D) suy)

BB11  Impurity concentrations of N, = 10 cm * and N, = 6 x 10'* em™ are added to
dlicon & T = 300 K. Excess carriersare generated in the materid such that the
steady-state concentrationsare sn = sp = 2 x 1¢#* em~*.(a) Find the thermd
equilibrium Fermi level with respect to E,. (b) Calculate £, and £, with repect
to E, . [A2 bOEE0 = 447 — 7 A2 09¥T0 = T — "7 ()

AR PHTE0="3 -" 3 () suy]

#6.5 | EXCESS-CARRIER LIFETIME

The rate at which excess electrons and holes recombine is an impoertant characteris-
tic of the semiconductor and influences many of the device characteristics, as we will
see in later chapters. We considered recombination briefiy at the beginning of this
chapter and argued that the recombination rate isinversely proportional to the mean
carrier lifetime. We have assumed up to this point that the mean carrier lifetime is
simply a parameter of the semiconductor material.

We have been considering an ideal semiconductor in which electronic energy
states do not exist within the forbidden-energy bandgap. This ideal effect is present
in aperfect single-crystal material with an ideal periodic-potential function. In ared



semiconductor material, defects occur within the crystal and disrupt the perfect
periodic-potential function. If the density of thesedefectsis not toogreat, the defects
will create discrete electronic energy states within the forbidden-energy band. These
alowed energy states may be the dominant effect in determining the mean carrier
lifetime. The mean carrier lifetimemay be determined from the Shockley-Read—Hall
theory of recombination.

6.5.1 Shockley-Read-Hall Theory of Recombination

An alowed energy state, also called a trap, within the forbidden bandgap may act as
arecombination center, capturing both electrons and holes with almost equal proba-
bility. Thisequal probability of capture meansthat the capture cross sectionsfor elec-
tronsand holes are approximately equal. The Shockley—Read—Hall theory of recom-
bination assumes that a single recombination center, or trap, exists at an energy E;
within the bandgap. There are four basic processes, shown in Figure 6.16, that may
occur & thissingle trap. We will assume that the trap isan acceptor-type trap; that is,
it is negatively charged when it contains an electron and is neutral when it does not
contain an electron.
The four basic processes are as follows:

Process 1: The capture of an electron from the conduction band by an initially
neutral empty trap.

Process | Process2
— E, E,
Lok
Electron capture Electron emission
Process 3 Process 4
E(.
E,

_'-L:"'—"_% E, [T

Hole capture Hole enmission

Figure 6.16 | The four basic trapping and emission processesfor the case of an
acceptor-typetrap.
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Process 2: Theinverse of process 1—the emission of an electronthatis
initially occupying atrap level back into the conduction band. .

Process 3: The capture of a hole from the valence band by atrap containing an
electron. (Or we may consider the process to be the emission of an electron
from the trap into the valence band.)

Process 4: Theinverse of process 3—the emission of a hole from a neutra trap
into the valence band. (Or we may consider this process to be the capture of an
electron from the valence band.)

In process 1, the rate at which electrons from the conduction band are captured
by the traps is proportional to the density of electrons in the conduction band and
proportional to the density of empty trap states. We can then write the electron cap-
turerate as

R(‘n = Can(l - f}-’(Ez))” (686)
where

R = capture rate (#/cm*-s)
C, = constant proportional to electron-capture cross section
N, = total concentration of trapping centers
n = electron concentration in the conduction band
fe(E;) = Fermi function at the trap energy

TheFermi function at the trap energy is given by

which is the probability that a trap will contain an electron. The function
(1 — fr(E}) is then the probability that the trap is empty. In Equation (6.87), we
have assumed that the degeneracy factor is one, which is the usual approximation
made in this analysis. However, if adegeneracy factor isincluded, it will eventually
be absorbed in other constants later in the analysis.

For process 2, the rate at which electrons are emitted from filled traps back into
the conduction band is proportional to the number of filled traps, so that

where

R., = emission rate (#fcm’-s)
E, = constant
Fr(E;y = probability that the trap is occupied

In thermal equilibrium, the rate of electron capture from the conduction band
and the rate of electron emission back into the conduction band must be equal. Then

Reu == ch (689)



Dthat
E,N; frolE:) = CoN (1 = frolE))ng (6.90)

where frp denotes the thermal-equilibrium Fermi function. Note that, in thermal
equilibrium, the value of the electron concentration in the capture rate term is the
equilibrium vaue np. Using the Boltrmann approximation for the Fermi function,
wecan find £, in termsof C,, as

wheren' isdefined as

The parameter n' is equivalent to an electron concentration that would exist in the
conduction band if the trap energy E, coincided with the Fermi energy Ef.

In nonequilibrium, excess electrons exist, so that the net rate at which electrons
arecaptured from the conduction band is given by

Ry =R, — Run (6.93)

which is just the difference between the capture rate and the emission rate. Combin-
ing Equations (6.86) and (6.88) with (6.93) gives

We may note that, in this equation, the electron concentration = is the total con-
centration, which includes the excess electron concentration. The remaining con-
stantsand termsin Equation (6.94) are the same as defined previously and the Fermi
energy in the Fermi probability function needs to be replaced by the quasi-Fermi en-
ergy for electrons. The constants £, and C,, arerelated by Equation (6.91). so the net
recombinationrate can be written as

If we consider processes 3 and 4 in the recombination theory, the net rate at
which holes are captured from the valence band isgiven by

where C,, is aconstant proportional to the hole capture rate, and p' isgiven by

In asemiconductor in which the trap density is not too large, the excess electron
and hole concentrations are equal and the recombination rates of electronsand holes
areequal. If we set Equation (6.95) equal to Equation (6.96) and solve for the Fermi
function, we obtain
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We may note
Equation (6.95) or (6.96) gives

R =R — C,,C;,N,(np - n%)
T T Gt F Gt )

Equation (6.99) is the recombination rate of electrons and holes due to the recombi
nation center at E = E,. If we consider thermal equilibrium, then s#p = ngpy = nf
sothat R,, = R, = 0. Equation (6.99). then, is the recombination rate of excess elec
trons and holes.

Since R in Equation (6.99) is the recombination rate of the excess carriers, wi
may write

where §» isthe excess-carrier concentration and t isthe lifetime of the excesscarriers. I

6.5.2 Limits of Extrinsc Dopingand Low Injection I

We simplified the ambipolar transport equation, Equation (6.39}, from a nonlinear
differential equation to a linear differential equation by applying limits of extrinsic
doping and low injection. We may apply these same limits to the recombination rate
equation.

Consider an n-type semiconductor under low injection. Then

no>py, ng>dp, no>Sn’. ne>p

where dp is the excess minority carrier hole concentration. The assumptions of
ng > n’ and ng > p’ imply that the trap level energy is near midgap so that n’ and
p' are not too different from the intrinsic carrier concentration. With these assump-
tions, Equation (6.99) reducesto |

R = C,Nidp (6101

The recombination rate of excess carriers in the n-type semiconductor is afunction
of the parameter C,,, which is related to the minority carrier hole capture cross sec-
tion. The recombination rate, then, isafunction of the minority carrier parameter in
the same way that the ambipolar transport parameters reduced to their minority car-
rier values.

The recombination rate is related to the mean carrier lifetime. Comparing Equa
tions (6.100) and (6.101), we may write

where
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d where 1, is defined as the excess minority carrier hole lifetime. If the trap con-
ntration increases, the probability of excess carrier recombination increases; thus
‘me excess minority canier lifetime decreases.
Similarly, if we haveastrongly extrinsic p-type material under low injection, we
assume that

po>no, podn. pon. pe>p
elifetimethen becomes that of the excess minority carrier electron lifetime, or

1

T = 537
Cu Ny

(6.104)

Again note that for the n-type material, the lifetime is a function of Cp, which
isrelated to the capture rate of the minority carrier hole. And for the p-type material,
thelifetime isafunction of C,, which isrelated to the capture rate of the minority
carrier electron. The excess-carrier lifetimefor an extrinsic material under low injec-
tion reduces to that of the minority carrier.

Objective

To determine the excess-carrier lifetimein an intrinsic semiconductor.
If we substitute the definitions of excess-carrier lifetimesfrom Equations (6.103) and
(6.104) into Equation (6.99). the recumbination rate can be written as
(np —n2)

R= .
toln T r) Fro(p+ p) (6.105)

onsider an intrinsic semiconductor containing excess carriers. Then » = », +ér and
p=n,+sn Alsoassumetha n' = p' = n;.

1 Solution

Equation (6 105) now become*
_ 2nnten)?
@+ ) (T F 1)

If wedso assume vay low injection, so that 87 <K 2n;. then we can write

8n
R=—— ="
Tpo 3 Tuo T
an
where r is the excesscarrier lifetime. We see that T = 7, T 1,4 in the intrinsic material

1 Comment
The excess-canier lifetime increases as we change from an extrinsic to an intrinsic
semiconductor.

EXAMPLEG.7

Intuitively, we can see that the number of majority carriers that are available for
recombining with excess minority carriers decreases as the extrinsic semiconductor
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becomes intrinsic. Sincethere are fewer carriers availablefor recombining in thein-
trinsic material, the mean lifetime of an excess carrier increases.

TEST YOUR UNDERSTANDING

E6.12 Consider silicona 7 = 300 K doped a concentrationsdf &, == 10" em=? and
N, = 0. Asumethat n' = p' = n, in theexcesscarrier recombination rate equation |
and assume parameter valuesd z,, = 1,, =5 x 1077 s. Calculatethe recombina-
tien rate of excesscarriersif dn = 8p = 10™ em™, (-8 ;W2 ;01 X €]' 'sUY)

*6.6 1 SURFACE EFFECTS

Inall previous discussions. we have implicitly assumed the semiconductorswerein-
finite in extent; thus, we were not concerned with any boundary conditions at asemi-
conductor surface. In any real application of semiconductors, the materia is not infi-
nitely large and therefore surfaces do exist between thesemiconductor and an adjacent
medium.

6.6.1 SurfaceStates

When asemiconductor isabruptly terminated, the perfect periodic nature of theided-
ized single-crystal lattice ends abruptly at the surface. The disruption of the periodic-
potential function results in alowed electronic energy states within the energy
bandgap. In the previous section, we argued that simple defectsin the semiconductor
would create discrete energy states within the bandgap. The abrupt termination of the
periodic potentia at the surface results in a distribution of allowed energy dates
within the bandgap, shown schematically in Figure 6.17 along with the discrete en
ergy states in the bulk semiconductor.

The Shockley—Read-Hall recombination theory shows that the excess minority
carrier lifetimeisinversely proportiona to the density of trap states. We may argue

Electron
energy

Surface

Figure6.17 | Digtribution of surface
states within the forbidden bandgap.



6.8 Surface Effects

Surface Distance x ——b»=

Figure 618 | Steady-state excess hole
concentration versus distancefrom a
semiconductor surface.

that, since the density of traps at the surface is larger than in the bulk, the excess mi-
nority carrier lifetime at the surface will he smaller than the corresponding lifetime
in the bulk material. If we consider an extrinsic n-type semiconductor, for example,
the recombination rate of excesscarriers in the bulk. given by Equation (6.102), is

where dpg is the concentration of excess minority carrier holesin the bulk material.
We may write asimilar expressionfor the recombination rate of excesscarriersat the
surfaceas

where &p, is the excess minority carrier hole concentration at the surface and 4, is
the excess minority carrier hole lifetime at the surface.

Assume that excess carriers are being generated at aconstant rate throughout the
entire semiconductor material. We showed that, in steady state, the generation rate is
equal to the recombination rate for the case ot a homogeneous, infinite semiconduc-
tor. Using this argument, the recombination rates at the surface and in the hulk mate-
fid must beequal. Since 7,5, < 70, then theexcess minority carrierconcentration at
the surface is smaller than the excess minority carrier concentration in the bulk re-
gion, or 8p, < &py. Figure 6.18 shows an example of the excess-carrier concentra-
tion plotted as a function of distance from the semiconductor surface.

Objective |

To determine the Steady-state excess-carrier concentration as a function of distancefrom the
surfaceof a semiconductor.

Congider Figure 6.18, in which the surface isa x = 9. Assumethat in the n-type semi-
oonductor 8pg = 10" em~* and 7,4 = 107% s in the bulk, and 1,4, = 1077 s & the surface.
Assume zero applied electric fidd and let D,, = 10 cms.

EXAMPLE 6.8
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Solution
From Equations{e.106) and (6.107), we have

S0 that

From Equation (6.56). we can write

The generdationrate can be determinedfrom the steady-stateconditionsin the bulk, or !

5 19 .,
g= e — = [0 em 357!
T 10 &
The solution to Equation (6.107)isd the form I

ASx — +oo, 8p(x) = dpg = g1, = 10" cm™*, which impliesthat A = 0. At .x =0. we
have

0 tha B = -9 x 10'*. The entire solution for the minority casrier hole concentration as a
function of distance from the surfaceis

Spix) = 10 (1 — 0.9e */Lr)
where

L, = /Doty = YAO(10-%) = 31.6 ym

m Comment
Theexcesscarrier concentrationis smaller a the surface then in the bulk.

6.6.2 Surface Recombination Ve ocity i

A gradient in the excess-carrier concentration exists near the surfaceas shown in Fig-
ure 6.18; excess carriersframthe bulk region diffuse toward the surface where they
recombine. This diffusion toward the surface can be described by the equation

where each side of the equation is evaluated at the surface. The parameter # is the
unit outward vector normal to the surface. Using the geometry of Figure 6.18,



d(ép)/dx is a positive quantity and 7 is negative, so that the parameters is a posi-
tive quantity.
Adimensional analysis of Equation (6.110) shows that the parameters has units
| of cm/sec, or velocity. The parameters is called the surface recombination velocity
If the excess concentrationsat the surface and in the bulk region were equal, then the
gradient term would be zero and the surface recombination velocity would be zero.
As the excess concentration at the surface becomes smaller, the gradient term be-
comes larger, and the surface recombination velocity increases. The surface recom-
bination velocity gives some indication of the surface characteristics as compared
with the bulk region.
Equation (6.110) may be used as a boundary condition to the general solution
- given by Equation (6.109) in Example 6.8. Using Figure 6.18, we havethat 1 = —1,
and Equation (6.110) becomes

) We have argued that the coefficient A is zero in Equation (6.109). Then, from Equa-
tion (6.109), we can write that

8psurt = 8p(0) = g'1p0 + B (6.112a)

-—= (6.112b)

Substituting Equations (6.112a) and (6.112b) into Equation (6.111) and solving for
the coefficient B, we obtain

| The excess minority carrier hole concentration can then be written as

Objective EXAMPLE 6.9

To determine the steady-state excess concentration versus distancefrom the surface of a semi
conductor as afunction of surface recombination velocity.
Congder, initialy, the case when the surfacerecombination velocity is zero, or s = 0.

Solution
Subgtituting s = 0 into Equation (6.114), we obtain

BP(X) = g"rp()
Now consider the case when the surface recombination velocity is infinite, or s = oco.
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W Solution
Substitutings = oc into Equation (6.114), we obtain

Comment
For the case when s = 0, the surface has no effect and the excess minority carrier concentra:
tion & the surfaceis the sameas in the bulk. In the other extremewhen s = no, the excessmi-
nority carrier hole concentrationat the surfaceis zero.

An infinite surface recombination velocity implies that the excess minority car-
rier concentration and lifetime at the surface are zero.

EXAMPLE 6.10

Objective

To determine the value of surface recombinaion velocity corresponding to the parameten
given in Example6.8.

From Example 6.8, we have that g'z,q = 10" em™*, D, = 10cm’/s, L, = 316 um,
and 8p(0) = 10" ecm™*,

B Solution
Writing Equation (6.114) a the surface, we have

r ¢ 1

Solving for the surface recombination velocity, we find that

which becomes

B Comment

This example shows that asuriace recombinationvelocity of approximately s = 3 x L0* cmis
could serioudly degrade the performance of semiconductor devices, such as solar cells, Snce
these devicestend to be fabricated closeto asurface.

In the above example, the surface influences the excess-carrier concentration to
the extent that, even at a distance of L, = 31.6 um from the surface, the excess-
carrier concentration is only two-thirds of the valuein the bulk. We will see in later
chapters that device performance is dependent in large part on the properties d
excess carriers.

1

I

|



Glossary d Important Terms

6.7 SUMMARY

B Theprocessesof excesselectron and hole generation and recombination were
discussed. The excess carrier generation rate and recombination rate were defined.

1 Excesselectrons and holes do not move independently of each other, but move together.
This common movement is called ambipolar transport.

1 Theambipolar transport equation was derived and limits of low injection and extrinsic
doping were applied to the coefficients. Under these conditions, the excesselectrons
and holes diffuse and drift together with the characteristics of the minority carrier, a
result that is fundamental to the behavior of semiconductor devices

1 Theconceot of excesscarrier lifetime was develoned.

Examples of excess carrier behavior asafunction of time, as afunction of space, and as
afunction of both time and space were examined.

B Thequasi-Fermi level for electrons and the quasi-Fermi level for holes were defined.
These parameters characterize the total electron and hole concentrations in a semicon-
ductor in nanequilibrium.

The Shockley-Read-Hall theory of recombination was considered. Expressions for the
excess minority carrier lifetimewere developed.

* The effect of a semiconductor surface influences the behavior of excess electrons and
holes. The surface recombination velocity was defined.

GLOSSARY OF IMPORTANT TERMS

ambipofar diffusion coefficient Theeffective diffusion coefficient of excesscamers.

amhipolar mebility The effectivemobility of excesscamers.

amhipolar transport The process whereby excesselectrons and holes diffuse, drift, and re-
combine with the same effective diffusion coefficient, mobility, and lifetime.

amhipolar transport equation The equation describing the behavior of excess carriers as a
function of time and space coordinates.

carrier generation The process of elevating electrons from the valence band into the con-
duction band, creating an electron-hole pair.

carrier recombination The process whereby an electron "fals" into an empty state in the
vaence hand (a hole) so that an electron-hole pair are annihilated.

excesscarriers The term describing both excess electrons and excess holes.

excesselectrons  The concentration of electrons in the conduction band over and above the
thermal-equilibrium concentration.

excess holes  The concentration of holes in the valence band over and above the thermal-
equilibrium concentration.

excessminority carrier lifetime The average time that an excess minority carrier exists be-
foreit recombines.

generation rate The rate (#/cm"-s) at which electron—hole pairs are created.

low-level injection  The condition in which the excess-carrier concentration ismuch smaller
than the thermal-equilibrium majority carrier concentration.

minority carrier diffusion length The average distance a minority carrier diffuses before
recombining: a parameter equal to +/ Dt where 2 and T are the minority carrier diffusion
coefficient and lifetime, respectively.
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quasi-Fermi level  The quasi-Ferni level for elcctrons and the quasi-Fermi level for holes
relate the nonequilibrium electron and hole concentrations, respectively, to the intrinsic
carrier concentration and the intrinsic Fermi level.

recombination rate  Therate (#/cm*-s) at which electron—hole pairs recombine.

surface recombination velocity A parameter that relates the gradient of the excess carrier
concentration at a surface to the surface concentration of excess carriers.

surface states Theelectronic energy states that exist within the bandgap at a semiconductor
surface.

CHECKPOINT

After studying thischapter, the reader should have the ability to:

Describe the concept of excess generation and recombination.

Describe the concept of an cxcess carrier lifetime.

Describe how the time-dependent diffusion equations for holes and electrons are derived. !
Describe how the antbipolar transport equation is derived.

Understand the consequence of the coefficients in the ambipolar transport equation
reducing to the minority carrier values under low injection and extrinsic semiconductors. |}
Apply the ambipolar transport equation to various problems.

Understand the conceot of the dielectric relaxation time constant.

Calcuiatc the quasi-Fermi levels lor electrons and holes.

Calculate the cxcess carrier recombination rate for agiven concentration of excess
carriers.

Understand the effect of a surface on the excess carrier concentrations.

REVIEW QUESTIONS

1. Why are theelectron generation rate and recombination rate equal in thermal
equilibrivm?

2. Explain how the density of holes, for example, can change as a result of achange in the
flux of particles.

3. Why isthe general ambipolar transport equation nonlinear?

4. Explain qualitatively why a pulse of excess electrons and hales would move together in
the presence of an applied clectric field.

5. Explain qualitatively why the excess carrier lifetime reduces to that of the minority
carrier under low injection.

6 What isthe time dependence of the density of excess carriers when the generation rate
becomes zero?

7. Inthe presence of an external force, why doesn't the density of excess carriers continue
to increase with time?

8. When aconcentration of one type of excess carrier is suddenly created in a semicon-
ductor, what is the mechanism by which the net charge density quickly becomes zero?

9. Statethe definition of the quasi-Fermt level for electrons. Repeat for holes.

10. Why, in general. is the concentration of excess carriers less at the surface of a semi-
conductor than in the bulk?



PROBLEMS

(Note: Use the semiconductor parameters listed in Appendix B if they are not specifically
given in a problem. Assume T = 300 K.)

Section 6.1 Carrier Generation and Recombination

6.1

6.2

6.3

64

Consider a semiconductor in which n, = 10% cm=* and n, = 10" em~. Assume
that the excess-carrier lifetimeis 10~% s. Determine the electron—hole recombination
rateif the excess-hole concentration issp = 5 x 10" em™*.

A semiconductor, in thermal equilibrium, has a hole concentration of py = 10" cm™3
and an intrinsic concentration of n, = 10*® em™*. The minority carrier lifetime is

2% 10 7 s (a)Determine the thermal-equilibrium recombination rate of electrons.
() Determinc the change in the recombination rate of electrons if an excesselectron
concentration of 1 = 10'? ¢m™* exists.

An n-type silicon sample contains adonor concentration of &, = 10'® cm=3. The
minority carrier hole lifetimeisfound to be 7,, = 20 us. (a)What isthe lifetime of
the majority carrier electrons? (h) Determine the thermal equilibrium generation rate
for electrons and holes in this materid. (¢) Determine the thermal equilibrium
recombination rate for electrons and holes in this material.

(a)A sampleof semiconductor has a cross-sectional areaof 1 ¢m® and a thickness of
0.1 cm. Determine the number of electron-hole pairs that are generated per unit
volume per unit time by the uniform absorption of | watt of light a a wavelength of
6300 A. Assume each photon creates one electron-hole pair. (b) If the excess minority
carrier lifetimeis 1( us. what is the steady-state excess carrier concentration?

Section 6.2 Mathematical Analysisof ExcessCarriers

6.5
6.6

6.7

Derive Equation (6.27) from Equations {6.18) and (6.20).

Consider aone-dimensional hole flux as shown in Figure 6.4. If the generation rate of
holesin this differential volumeis g, = 10°° cm #-s~! and the recombination rate is
2 x 10" em™*-s~!, what must be the gradient in the particle current density to main-
tain a steddy-state hole concentrdtiun?

Repeat Problem 6.6 if the generation rate becomes zero.

Section 6.3 Ambipolar Transport

6.8

6.9

6.10

Starting with the continuity equations given by Equations (6.29) and (6.30), derive the
ambipolar transport equation given by Equation (6.39).

Asampleof Ge a T = 300 K has auniform donor concentration of 2 x 10" ecm=3.
Theexcesscarrier lifetime isfound to be 5 = 24 s, Determine the ambipolar
diffusion coefficient and the ambipolar mobility. What are the electron and hole
lifetimes?

Assume that an n-type semiconductor is uniformly illuminated, producing a uniform
excess generation rateg'. Show that in steady state the change in the semiconductor
conductivity isgiven by
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6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

Light isincident on a silicon sample starting a I = ¢ and generating excess carriers
uniformty throughout the silicon for r > 0. The generation rateisg’ = 5 x

10" em~* s~'. Thesilicon (7 = 300 K) is n type with Ny, =5 x 10! ¢cm * and

N, =0.Letn, =15x 10" cm™, 7,0 = 10 %5, and 1,0 = 1077 5, Also let

i, = 1000 cm*/V-s and p,, = 420 cm*/V-s. Determine the conductivity of the silicon
asafunction of timefor ¢ = 0.

An n-type gallium arsenide semiconductor isdoped with #; = 10'® ¢m~* and

N, = 0. The minority carrier lifetimeis 7, = 2 x 1077 s. Calculate the steady-state
increase in conductivity and the steady-state excess carrier recombination rate if a
uniform generation rate, g’ = 2 x 107! em *-s~ !, isincident on the semiconductor

Asilicon sampleat T = 300K isn typewith ¥y =5 x 10" em™ and ¥, = 0. The
sample has a length of 0.1 cm and a cross-sectional area of 10-* em®. A voltage of
5V is applied between the ends of the sample. Fort < 0. the sampie has been
illuminated with light. producing an excess-carrier generation rateof g' = 5 x

10"" em™ *-s~! uniformly throughout the entire silicon. The minority carrier lifetime
ist,e =3 x 1077 s.Att =0, thelight isturned off. Derive the expression for the
current in the sample asafunction of time I = 0. (Neglect surface effects.)

Consider a homogeneous gallium arsenide semiconductor at T = 300 K with

N, = 10" ¢m™? and ¥; = 0. A light source is turned on at + = 0 producing a uni-
form generation rateof g’ = 10% em~3-s~!. Theelectric field is zero. {a) Derivethe
expression for the excess-carrier concentration and excess carrier recombination rate
asafunction of time. (&) If the maximum, steady-state, excess-carrier concentration is
tobel x 10" em~?, determine the maximum value of the minority carrier lifetime.
(c) Determine the times at which the excess minority carrier concentration will be
equal to (i) three-fourths, (i) one-half, and (iii) one-fourth of the steady-state vaue.
In asilicon semiconductor material a T = 300 K, the doping concentrations are A, =
10" em~* and N, = 0. The equilibrium recombination rateis R, = 10! cm=3-s7",
A uniform generation rate produces an excess-carrier concentration of én = dp =
10" ¢m~*. (a) By what factor does the total recombination rate increase? (h) What is
the excess-carrier lifetime?

Consider asilicun material doped with 3 x 10'® cm=" donor atoms. At ¢ = 0, alight
source is turned on, producing auniform generation rate of g" = 2 x 10" cm™*-57!
Att = 1077 s, the light source is turned off. Determine the excess minority carrier
concentration as afunction oftfor0 < ¢ < co. Let t,, = 177 s. Plot the excess
minority carrier concentration as afunction of time.

A semiconductor has the following properties:
D, = 25 lefs Ty = 10705
D, = 10 em’/s T = 10773

The semiconductor isa homogeneous. p-type (N, = 10'T ¢m™?} material in thermal
equilibrium for ¢+ = 0. Ats = 0, an external source is turned on which produces excess
carriers uniformly at therateof g = 10°% em~*-s~'. AtI = 2 x 107 s, the external
source isturned off. (a) Derive the expression for the excess-electron concentretion as
afunction of timefor 0 < r < m. () Determine the value of the excess-electron
concentration at (1)1 =0, (ii)r = 2 x 10 ® s, and (iii) t = oo. (¢) Plot theexcess-
electron concentration as afunction of time.

Consider a bar of p-typesilicon material that is homogeneously doped to a value of
3x 10" em— a T = 300 K. Theapplied electric field is zero. A light source is



6.19

6.20

6.21

6.22

*6.23

Problems

Figure6.19 | Figure for Problems 6.18
and 6.20.

incident on the end of the semiconductor as shown in Figure 6.19. The excess-carrier
concentration generated at x = 0 isdp(0) = &»(0) = 10"* ecm~*. Assume the follow-
ing parameters (neglect surface effects):

Hn = 1200 szN-S Th) = 5x ]077 5
iy = 400 cm? V-5 To=1x10"7s

(a)Calculate the steady-state cxcess electron and hole concentrations as a function of
distance into the semiconductor. (5} Calculate the electron diffusion current density as
afunction of x.

Thex =0endof an N,, = | x 10" em~* doped semi-infinite (x = 0) bar of silicon
maintained a T = 300 K is attached tu a ""minority carrier digester which makes

n, =0a x = 0(n, isthe minority carrier electron concentration in ap-type
semiconductor). The electric field is zero. {a) Determine the thermal-equilibrium
values of n, and ppa. (B) What is the excess minority carrier concentration at x = 07
(c) Derive the expression for the steady-state excess minority carrier concentration as
afunction of x.

In ap-type silicon semiconductor, excess carriers are being generated at the end of the
semiconductor bar a x = () asshown in Figure 6.19. The doping concentration is

N, =5 x 10 cm~* and N, = 0. The steady-state excess-carrier concentration at

x = 0is 10" cm™?. (Neglect surface effects.) The applied electric field is zero.
Assumethat 7,0 = 1,0 = 8 x 1077 s, (@) Calculate 8. and the electron and hole
diffusion current densities at x = 0. (&} Repeat part (a) forx = L,,

Consider an n-type silicon sample. Excesscarriers are generated at x = (0 such as
shown in Figure 6.6. A constant electric field Eq isapplied in the 4-x direction. Show
that the steady-state excess carrier concentration is given hy

Sp{x) = Aexp(s_x) x>0 and Epx) = Aexp (s, x) x <0

wherc

b

and

Plot the excesscarrier concentration p(x} versus x from Problem 6.21 for (a)Ep =0 =
and (h)E, = 10 Vicm.

Consider the semiconductor described in Problem 6.18. Assume a constant electric
field Eq, is applied in the 4+-x direction. {a) Derive the expression for the steady-state
excess-electron concentration. (Assumethe solution is of the form ¢=“*.) (h) Plot &»

“h

S

-

)
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6.24

*6.25

6.26

6.27

6.28

Figure6.20 | Figure for Problem 6.25

versus x for (i) E; = 0 and (ii) Ey = 12 V/cm. (C) Explain the general characteristics
of the two curves plotted in pan (b).

Assume that a p-type semiconductor isin thermal equilibrium fort < 0 and hasan
infinite minority carrier lifetime. Also assume that the semiconductor is uniformly
illuminated, resulting in a uniform generation rate, g'(¢). which isgiven by

¢t = Gy forO<t=<T
gm =0 forr <OQandr>T

where G isaconstant. Find the excess minority carrier concentration as a function of
time.

Consider the n-type semiconductor shown in Figure h.20. liumination produces a
constant excess-carrier generation rate, Gy,, intheregion L < x < +L. Assume thet
the minority carrier lifetime is infinite and assume that the excess minority carrier
hole concentration iszeroat x = —3L and at x = +3L. Find the steadv-state excess
minority carrier concentration versus x, for the case of low injection and for zero
applied electric field.

An n-type germanium sampleis used in the Haynes—Shockley experiment. The length
of the sampleis 1 cm and the applied voltage is V, = 2.5V The contacts A and B are
seoarated bv 0.75 cm. The oeak of the pulse arrives at contact B 160 us after carrier
injection at contact A. The width of the pulseis Ar = 75.5 us. Determine the hole
mobility and diffusion coefficient. Compare the results with the Einstein relation.
Consider the function f(x,r) = (47 D1)~"2 exp (—x?/4Dr). (a) Show that this
function is asolution to the differential equation D(d° f/8x*) = af/dt. (b) Show that
theintegral of the function f (x, ) over x from —oo to + e is unity for all values of
time. (r )Show that this function approaches aé function as: approaches zero.

The basic equation in the Haynes—Shockley experiment is given by Equation (6.7().
(a) Plot p(x, r) versus x for various values of t and for E, = 0 aswell asfor Ey # 0.
(b) Plot &p(x, 1) versus I for various values of x and for E, = 0 aswell asfor Eq # 0.

Section 6.4 Quasi-Fermi Energy Levels

6.29

An n-type silicon sample with N, = 10'% cm~* is steadily illuminated such that

g = 10" em™ 57" If 1,0 = 1,0 = 107 5, calculate the position of the quasi-Fermi
levelsfor electrons and hales with respect to the intrinsic level (assumethat n; =
1.5 X 10" em~?). Plot these levels on an energy-hand diagram.



6.30

6.31

6.32

6.33

6.34

6.35

Problems

Consider a p-type silicon semiconductor at T = 300K doped a N,, = § x 10" cm™*.

(a)Determine the position of the Fermi level with respect to the intrinsic Fermi level.

(b) Excess catriers are generated such that the excess-carrier concentration is 10 per-

cent of the thermal-equilibrium majority carrier concentration. Determine the quasi-

Fermi levels with respect to the intrinsic Fermi level. (C) Plot the Fermi level and
guasi-Fermi levels with respect to the intrinsic level.

Consider an n-type gallium arsenide semiconductor a& T = 300 K doped a1 &, =

5x 10' ecm~*. (a)Determine £, — Er if the excess-carrier concentration is0.1 N,.

(b) Determine Er, — Eg,.

Ap-type gallium arsenide semiconductor a T = 300K isdoped at ¥, = 10'® cm™>.

The excess-carrier concentration varies linearly from 10'* cm~? torero over a

distance of 50 yem. Plot the position of the quasi-Fermi levels with respect to the

intrinsic Fermi level versus distance.

Consider p-type silicon a& T = 300K dupedto ¥, = 5 x 10" cm™*. Assume excess
carriers arc present and assume that £5 — Er, = (0.0134T. (a) Does this condition
correspond to low injection? Why or why not? (&) Determine Er, — Er,

An n-type silicon sample is doped with donors at aconcentration of ¥, = 10" cm—. =
Excess carriers are generated such that the excess hole concentration is given by
Sp(x) = 10" exp (—x/10*) cm™3, Plot thefunction E¢; — E;,, versusx over the
range 0 < x <4 x 1074,

For a p-typesilicon material doped at N,, = 10" em™*, plot £¢, — £ versusén
over therange 0 = &n = 10" cm™. Use alog scale for dn.

i

) Q

|
I
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Section 6.5 ExcessCarrier Lifetime

6.36

6.37

Consider Equation (6.99)and the definitionsof z,; and 7,4 hy Equations (6.103) and
(6.104). Let w" = p’ = n;. Assume that in a particular region of asemiconductor,

n = p = 0. (a) Determine the recomhination rate 8. (h) Explain what this result
means physicaly.

Again consider Equation (6.99) and the definitions of z,,; and z,» given by

Equations (6.103) and (6.104). Let 7,9 = 1077 sand 7,0 =5 X 1077 s Alsoletn' =
p' = n; = 10" cm—*. Assume very low injection so that §n < n;. Calculate R/3n
for a semiconductor which is (0) n-type (sry = pqa), (h) intrinsic {(ny = ps =n,) ,and
(c) p-type (py 2 no).

Section 6.6 Surface Effects
#§,38 Consider an n-type semiconductor as shown in Figure 6.21. doped at N; = 10'¢ cm™3

and with a uniform excess-carrier generation rate equal tog' = 10*' cm *-s7'.

Assumethat P, = 10 cm¥sand 1,9 = 1077 s. The electric field isrero.

Figure 621 | Figure for Problem 6.38.
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Figure6.22 | Figure for Problem 6.39. Figure6.23 | Figure for Problem 6.40.

[flumination

Figure6.24§ Figurefor Problem 6.41.

(a) Determine the steady-state excess minority carrier concentration versus x if
the surface recombination velocity at x = 0 is(i) s = 0. (ii) s = 2000 ¢m/s, and
(iii) s = o0. () Calculate the excess minority carrier concentration at x =0 for
(i) s =0, {iiy s = 2000 c/s, and (iii) s = oc.

*6.39 (a) Consider the p-type semiconductor shown in Figure 6.22 with thefollowing
parameters: &, = 5 x 10" ¢m™?, D, = 25 cm’/s, and 1,0 = 5 x 10 7 5. The surface
recombination velocities at the two surfaces are shown. The electric field is zero. The
semiconductor isilluminated at x = O with an excess-canier generation rate equal to
g =2 x 10" em*-s~!. Determine the excess minority carrier electron concentration
versus x in steady state. () Repeat part (&) for z,; = 0.

*6.40 Consider the n-type semiconductor shown in Figure 6.23. Assume that D, = 10cm’/s
and 7,y = oo. Theelectric field is zero. Assume that aflux of excesselectrons and
holesisincident a x = 0. Let the flux of each carrier type be 10" carriersicm’-s.
Determine the minority carrier hole current versusx if the surface recombination
velocity is (a) s{(W) = oc and (b) s(W) = 2000 cm/s.

*6.41 A p-type semiconductor is shown in Figure 6.24. The surface recombination velocities
are shown. The semiconductor is uniformly illuminated for —W < x < 0 producing a
constant excess-carrier generation rate G . Determine the steady-state excess-carrier
concentration versusx if the minority carrier lifetimeis infinite and if the electric field
is zero.

6.42 Plot 3p(x) versus.x for various values of s using Equation (6.113). Choose reasonable
parameter values.

Summary and Review

*6.43 Consider an n-type semiconductor asshown in Figure 6.21. The material isdoped at
Ny =3x 10%cm?and N, = 0. Assumethat 0, = [2em¥sand 7,0 =2 x 107 7s,
Theelectric field is zero. "' Design™ the surface recombination velocity so that the
minority carrier diffusion current density at the surface is no grealer than J, =
—0.18 A/em® with a uniform excess-carrier generation rate cqual to g’ =
3x 108 em™3-s7".



f Reading Ligt
6.44 Consider asemiconductor with excesscarriers present. From the definition of carrier
lifetimes and recombination rates, determine the average time that an electron staysin
the conduction band and the average time that a hole stays in the valence band. Discuss
theserelationsfor (a) an intrinsic semiconductor and (h)an n-type semiconductor.
645 Designagallium arsenide photoconductor that is 5 pm thick. Assumethat 7,5 =
F 7,0 = 1077 sand Ny, =5 x 10%cm *. Withan excitation of g' = 10*' cm s~
i a photocurrent of at least 1 A isdesired with an applied voltage of | V.
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The pn Junction

PREVIEW

p to this point in the text, we have been considering the properties of the

semiconductor material. We calculated electron and hole concentrations in

thermal equilibrium and determined the position of the Fermi level. We then
considered the nonequilibrium condition in which excess electrons and holes are pre-
sent in the semiconductor. We now wish to consider the situation in which a p-type
and an n-type semiconductor are brought into contact with one another to form a
pn junction.

Most semiconductor devices contain at least one junction between p-type and
n-type semiconductor regions. Semiconductor device characteristics and operation
are intimately connected to these pn junctions, so considerable attention is devoted
initially to this basic device. The pn junction diode itself provides characteristics that
areused in rectifiersand switching circuits. In addition, theanalysis of the pn junction
device establishes some basic terminology and concepts that are used in the discus-
sion of other semiconductor devices. The fundamental analysis techniques used for
the pnjunction will also be applied to other devices. Understanding the physics of the
pn junction is, therefore, an important step in the study of semiconductor devices.

Theelectrostatics of the pn junction isconsidered in thischapter and the current—
voltage characteristics of the pn junction diode are developed in the next chapter. m

7.11 BASIC STRUCTURE OF THE pn JUNCTION

Figure 7.1a schematically shows the pn junction. It isimportant to realize that theen-
tire semiconductor is asingle-crystal material in which one region is doped with ac-
ccptor impurity atoms to form the p region and the adjacent region is doped with
donor atoms to form the n region. The interface separating the n and p regions is
referred to as the metallurgical junction.
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idedl uniformly doped pn junction. forces acting on the charged carriers.

The impurity doping concentrations in the p and n regions are shown in Fig-
ue 7.1b. For simplicity, we will consider a step junction in which the doping con-
centrationis uniform in each region and there is an abrupt change in doping at the
junction. Initially, at the metallurgical junction, there is a very large density gradient
in bath the electron and hole concentrations. Majority carrier electrons in the n re-
gion will begin diffusing into the p region and majority carrier holesin the p region
will begin diffusing into the nregion. If we assume there are no external connections
to the semiconductor, then this diffusion process cannot continue indefinitely. As
electrons diffuse from the n region, positively charged donor atoms are left behind.
Similarly, as holes diffuse from the p region, they uncover negatively charged ac-
ceptor atoms. The net positive and negative chargesin the n and p regions induce an
eectric field in the region near the metallurgical junction, in the direction from the
positive to the negative charge, or from the n to the p region.

The net positively and negatively charged regions are shown in Figure 7.2.
Thesetwo regionsare referred to asthe space charge region. Essentially al electrons
and holes are swept out of the space charge region by the electric field. Since the
gpace charge region is depleted of any mobile charge, this region is also referred to
asthedepletion region: these two termswill be used interchangeably. Density gradi-
ents till exist in the majority carrier concentrations at each edge of the space charge
region. We can think of a density gradient as producing a " diffusion force™ that acts
o the majority carriers. These diffusion forces, acting on the electrons and holes at
theedgesof the space charge region, are shown in the figure. Theelectric field in the

,giace charge region produces another force on the electrons and holeswhich isin the

Figure 7.21 The space charge region, the dectric field, and the
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opposite direction to the diffusion force for each type of particle. In thermal equilib-
rium, the diffusion force and the E-field force exactly balance each other.

7.21ZERO APPLIED BIAS

We have considered the basic pn junction structure and discussed briefly how the
space charge region isformed. In this section we will examine the properties of the
step junction in thermal equilibrium, where no currents exist and no external cxcita-
tion is applied. We will determine the space charge region width, electric field, ax
potential through the depletion region.

7.2.1 Built-in Potential Barrier

If we assume that no voltage isapplied across the pn junction, then the junction isin
thermal eguilibrium — the Fermi energy level is constant throughout the entire sys
tem. Figure 7.3 shows the energy-band diagram for the pn junction in thermal equi-
librivm. The conduction and valance band energies must bend as we go through the
space charge region, since the relative position of the conduction and valence hands
with respect to the Fermi energy changes between p and n regions.

Electronsin the conduction band of the n region see a potential barrier in trying
to move into the conduction hand of the p region. This potential barrier is referred to
as the built-in potential harrier and is denoted by Vj;. The built-in potential barrier |
maintains equilibrium between majority carrier electrons in then region and minority |
carrier electrons in the p region, and also between majority carrier holes in thel
p region and minority carrier holesin then region. This potential difference acrossthe
junction cannot be measured with avoltmeter because new potential barriers will be
formed between the probes and the semiconductor that will cancel V;,;. The potential
Vs; maintains equilibrium, so no current is produced by this voltage.

The intrinsic Fermi level is equidistant from the conduction hand edge through
the junction, thus the built-in potential barrier can be determined as the difference

Figure 7.3 | Energy-band diagram of apn junctionin
therma equilibrium.
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between the intrinsic Fermi levelsin the pand n regions. We can definethe potentials
¢r» and ¢, asshown in Figure 7.3, so we have

Ve = |@rnl + 14, (7.1)
In then region, the electron concentration 1n the conduction band is given by

which can also be written n the form
Ry = N,exp (7.3)

wheren; and Eg; are the intrinsic carrier concentration and the intrinsic Fermi en-
respectively. We may define the potential ¢, in the n region as
ed)Fn =Ep — EF (74)

Equation (7.3) may then be written as

Taking the natural log of both sides of Equation (7.5), setting #y = N, and solving
for the potential, we obtain

Similarly, in the p region, the hole concentration is given by
po =N, =n; exp (7.7)

where N, is the acceptor concentration. We can define the potential ¢, in the p re-
gion as
eprp = Epi — Er (7.8)

Combining Equations (7.7)and (7.8), we find that

Findly, the built-in potential bamer for the step junction is found by substitut-
ing Equations (7.6)and (7.9)into Equation (7.1}, which yields

where V, = £7 /e and is defined as the thermal voltage.
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At thistime, we should note a subtle but important point concerning notation.
Previously in the discussion of a semiconductor material, &4 and N, denoted donor
and acceptor impurity concentrations in the same region, thereby forming a compen-
sated semiconductor. From this point on in the text, &, and ¥, will denote the net
donor and acceptor concentrationsin the individual n and p regions, respectively. If
the p region, for example, is a compensated material, then N, will represent the dif-
ference between the actual acceptor and donor impurity concentrations. The parame-
ter N, is defined in asimilar manner for the n region.

EXAMPLE 7.1

Objective

To calculatethe built-in potential barrier in a pn junction.
Consider asilicon pn junction at T = 300K with doping densities¥, = I x 10'* em™3
and Ny =1 x 10" em™*. Assumetha r; = 1.5 x 109 em™*

W Solution
The built-in potentia barrier is determined from Equation (7.10) as

1 we changetheacceptordopingfrom N, =1 x 10 cm3toN, =1 x 10" cm’, butkep
al other parameter val ues constant, then the built-in potentia barrier becomes V,; = 0.635V.

¥ Comment
The built-in potentia barrier changes only dightly as the doping concentrations change by
ordersdf magnitude because of the logarithmicdependence.

TEST YOUR UNDERSTANDING

E7.1 Caculatethe built-in potential barrierin asilicon pn junctiona T = 300K for
(@ N, =5x 107 cm™*, Ny = 10%em™ and (B N, = 109 cm ™,
Ny =2 x 100 cm3. [A £55°0(9) A 96L'0 (P) suy]

E7.2 Repeat E7.1for aGaAs pnjunction. [A Z1'T (9)°A 9T'1 (#) 'suy]

7.2.2 Electric Field

An electric field is created in the depletion region by the separation of positive and
negative space charge densities. Figure 7.4 shows the volume charge density distrib-
ution in the pn junction assuming uniform doping and assuming an abrupt junction
approximation. We will assume that the space charge region abruptly ends in the
n region at x = +x, and abruptly endsin the pregion at X = x , , (x, is a positive
quantity).



Figure 7.41 The space charge density in
a uniformly doped pn junction assuming
the abrapt junction approximation.

The electric field is determined from Poisson's equation which, for a one-
dimensional analysis, is

where ¢{x} is the electric potential, E{x) is the electric field, p(x) is the volume
charge density, and «; isthe permittivity of the semiconductor. From Figure 7.4, the
charge densities are

plx) = —eN, —xp <X <0 (7.12a)
and
plx) =eNy ocxcx, (7.12b)

The electric field in the p region is found by integrating Equation (7.11). We
have that

x t ¢ (7.13)

where C'; isa constant of integration. The electric field is assumed to be zero in the
neutral p region for x < —x, since the currents are zero in thermal equilibrium. As
thereare no surface charge densities within the pn junction structure. theelectric field
is a continuous function. The constant of integration is determined by setting E = 0
& x = —x,. Theelectricfieldin the p region isthen given by

In the nregion, the electric field is determined from
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where 'y is again aconstant of integration. The constant C, is determined by setting
E =0a x = X,,,since the E-field is assumed to be zero in then region and is a con-
tinuous function. Then

Theelectricfield isalso continuous at the metallurgical junction, or at x = 0. Setting
Equations (7.14) and (7.16) equal to each other a x = 0 gives

Equation (7.17) states that the number of negative charges per unit areain thep re
gion isequal to the number of positive charges per unit areain the n region.

Figure7.5isaplot of theelectric field in the depletion region. The electric field
direction isfrom the n to the p region, or in the negative x direction for this geome-
try. For the uniformly doped pn junction, the E-field is a linear function of distance
through the junction, and the maximum (magnitude) electric field occurs at the met-
alurgical junction. An electric fieldexistsin the depletion region even when no volt-
ageis applied between the p and n regions.

The potential in the junction is found by integrating the electric field. In the
p region then, we have

where C| is again a constant of integration. The potential difference through the
pnjunction is the important parameter, rather than the absclute potential, so we may
arbitrarily set the potential equal to zero at x = —x,. The constant of integration is

Figure 75 | Electricfieldin the space
charge region of a uniformly doped pn
junction.
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thenfound as

(7.20)

S0 that the potential in the p region can now be written as

The potential in then region isdetermined by integrating the electric field in the
n region, or

Then

where C; is another constant of integration. The potential is a continuous function,
S0 setting Equation (7.21) equal to Equation (7.23) at the metallurgical junction, or at
x =0, gives

The potential in then region can thus be written as

Figure 7.6 isaplot of the potential through the junction and shows the quadratic
dependence on distance. The magnitude of the potential at x = x, isegual to the

Figure 7.6 | Electric potentia through the space charge
regton Of auniformly doped pn junction.
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built-in potential barrier. Then from Equation (7.25), we have
14
Vi = 19(x = x)| = 7 (Nax; + Nox))

The potential energy of an electron is given by E = —e¢, which means that the
electron potential energy also varies as a quadratic function of distance through the
space charge region. The quadratic dependence on distance was shown in the energy-
band diagram of Figure 7.3, although wedid not explicitly know the shape of the curve
at that time.

7.2.3 Space Charge Width

We can determine the distance that the space charge region extends into the p ad
n regionsfrom the metallurgical junction. This distance is known as the space charge
width. From Equation (7.17). we may write, for example,

Then, substituting Equation (7.27) into Equation (7.26) and solving for x,,, weobtain

Equation (7.28) gives the space charge width, or the width of thedepletion region, x,
cxtending into the n-type region for the case of zero applied voltage.

Similarly, if we solve for x, from Equation (7.17) and substitute into Equation
(7.26), we find

where x,, isthe width of the depletion region extendinginto the p region for the case
of zero applied voltage.
Thetotal depletion or space charge width Wisthe sum of the two components, or

W=x, *x, (7.30)
Using Equations (7.28) and (7.29), we obtain

The built-in potential barrier can he determined from Equation (7.10), and then the
total space charge region width is obtained using Equation (7.31).
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Objective

To calcul ate the space charge width and electric field in a pn junction.
Consider a silicon pn junction a& T = 300K with doping concentrations of ¥, =
10% em™* and Ny = 10" em—3.

B Solution
In Example 7.1. we determined the built-in potential barrier as V,; = 0.635 V. From Equa-
tion (7.31), the space charge width is

Using Equations (7.28) and (7.29). we can find r,,= 0.864 xm, and x, = 0.086 pm.
The peak electric field a the metallurgical junction, using Equation (7.16) for exam
ple.is
—eNgXy —(1.6 x 1071)(10%)(0.864 x 1074

Eiii = - =1.34x 10" Vicm
€5 (11.7)(8.85 x 10-1)

&

i Comment
The peak electric field in the space charge region of a pn junction is quite large. We must
kespin mind. however, that thereis no mobile charge in this region; hence there will be no
drift current. We may also note, from thisexample, that the width of each space charge region
isareciprocal function of the doping concentration: The depletion region will extend further
into the lower-doped region.

TEST YOUR UNDERSTANDING

E7.3 Asilicon pn junction at T = 300 K with zero applied bias has doping concentrations
of N;=5x 10"%em* and ¥, = 5 x 10" cm™?. Determine x,,, x,, W, and |Epa |-
(WA H1 X 8T = Mg ‘wo . g1 X 7€ = M W 0f X [['p= ¥
‘W 01 X 1T = “x suy)

E74 Repeat E7.3for aGaAs pnjunction. (/A .01 % 98C = [

W O] X 91'9 = M WA _0[ X 09°¢ = ¥ WD, 0] X 09°¢ = “x 'suy)

7.31 REVERSE APPLIED BIAS

Ifwe apply a potential between the p and n regions, we will nolonger bein an equi-
librium condition — the Fermi energy level will no longer he constant through the
system. Figure 7.7 shows the energy-band diagram of the pn junction for the case

EXAMPLE 7.2
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Figure7.7 1 Energy-band diagram of a pn junction under
reverse bias.

when a positive voltage is applied to the n region with respect to the p region. Asthe
positive potential isdownward, the Fermi level on then sideis below the Fermi level
on the p side. The difference between the two isequal to the applied voltage in units
of energy.

The total potential barrier, indicated by V. hasincreased. The applied poten-
tial isthe reverse-bias condition. The total potential harrier is now given by

Vtolal = )¢Fn] + I¢Fﬂ' + VR (732)

where V¢ is the magnitude of the applied reverse-bias voltage. Equation (7.32) can
he rewritten as

mel == be + VR (733) !

where Vi, 1s the same built-in potential bamer we had defined in thermal

equilibrium. I

731 Space ChargeWidth and Electric Field !
Figure 7.8 showsa pn junction with an applied reverse-bias voltage V. Also indicated
inthefigurearetheelectricfield in the space charge region and the electric field By,
induced by the applied voltage. Theelectricfieldsin the neutral p and nregions arees:
sentially zero, or at least very small, which means that the magnitude of the electric
field in the space charge region must increase above the thermal-equilibrium value
due to the applied voltage. The electric field originates on positive charge and termi-
nates on negative charge; this meansthat the number of positive and negative charges
mustincreaseif theelectric field increases. For given impurity dopingconcentrations,
the number of positiveand negative chargesin the depletion region can be increased
only if the space charge width W increases. The space charge width W increases,
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Figure7.81A pn junction, with an applied reverse-bias
voltage, showing the directions of the electric field induced
by Vi and the space charge electric field.

therefore, with an increasing reverse-bias voltage Vz. We are assuming that the elec-
tric fieldin the hulk nand pregionsiszero. Thisassumption will becomeclearer in the
next chapter when we discussthe current-voltage characteristics.

In all of the previous equations, the built-in potential barrier can be replaced by
the total potential barrier. The total space charge widrh can he written from Equa-
tion (7.31) as

showing that the total space charge widrh increasesas we apply a reverse-bias volt-
age. By substituting the total potential barrier ¥ into Equations (7.28) and (7.29),
the space charge widths in the n and p regions, respectively, can befound as afunc-
tion of applied reverse-bias voltage.

Objective

To calculate the width of the space charge region in a pn junction when a reverse-bias voltage
isapplied.

Again consider a silicon pn junction a T = 300 K with doping concentrations of
N,=10"enriand ¥, = 10" cm'. Assumethat n; = 1.5x 10" ecm™ and let Ve =5 V.

B Solution
The built-in potential barrier was calculated in Example 7.1 for thiscase and is V,; = 0.635 V.
The space charge width is determined from Equation (7.34).We have

EXAMPLE 7.3
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B Comment

The space charge width has increased from0.951 um & zero biasio 2.83 jum & areverse biss
of 5 V.

The magnitude of the electric field in the depletion region increases with an 8p
plied reverse-bias voltage. The electric field is still given by Equations{7.14) and
(7.16) and is still alinear function of distance through the space charge region. Since
Xy, and x, increase with reverse-bias voltage. the magnitude of the electric field dso
increases. The maximum electric field still occursat the metallurgical junction.

The maximum electric field at the metallurgical junction, from Equations (7.1
and (7.16), is

E . — —eNgx, —eN,ux,
max — -

.. . (7.3

If we use either Equation (7.28) or (7.29) in conjunction with the total potential bar
rier, Vi T Ve, then

We can show that

R |

where Wisthe total space charge width

DESIGN
EXAMPLE 7.4

1 A

Objective

Todesign apn junction to meet maximum electric field and voltage specifications.

Congider a silicon m junction at T = 300 K with a p-type doping concentratiol
N, = 10"® cm™*. Determine then-type doping concentrationsuch that the maximum ele
fidd is [Em.| = 3 x 10° V/cm a areverse-biasvoltageof ¥z = 25 V.

W Solution
The maximum electric field is given by Equation (7.36). Neglecting V,; compared to vy
can write
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which yields
N;=118x 10'¢ em™?
B Conclusion
A smdler value of N, resultsinasmaller value of |E,,| for agiven reverse-bias voltage. The

vaued N, determined in this example, then, is the maximum value that will meet the speci-
fications.

TEST YOUR UNDERSTANDING

E75 ({a)Asilicon pnjunctiona T = 300K isreverse-biased a Vx = 8V. The doping
concentrationsare N, = 5 X 10" em=* and ; =5 x 10" cm~?. Determine
Xn, Xp, W, and |Epl. (b} Repeat pan (a)for areversebias voltage of vy = 12 V.
(WA OF x $ET=1"™g|'wo,_ 0l x 06’1 =M "W> . Q] X gL'1 = x
WAL Q1 X ELT = “XAG) WA 0T X TT'T = ™5 "W 01 X 46T = M
WA X gp'l = WD, 0T X €' = ¥ (7) suy]

E7.6 Themaximum electric field in areverse-biased GaAs pn junction at 7 = 300K isto
be |Emay| = 2.5 x 10° V/em. The doping concentrations are Ny = 5 x 10" em~* and
N, =8 x 10" em~?. Determine the reverse-hias voltage that will produce this maxi-
mum electric field. (A §'T4 suy)

7.3.2 Junction Capacitance

Since we have a separation of positive and negative charges in the depletion region,
acapacitance is associated with the pn junction. Figure 7.9 shows the charge densi-
tiesin the depletion region for applied reverse-bias voltagesof ¥z and Vg +dVe. An
increase in the reverse-bias voltage d ¥x will uncover additional positive chargesin
then region and additional negativechargesin the p region. Thejunction capacitance
is defined as

dQ' = eN,dx, = eN,dx, (7.39)

Thedifferential charge d Q" isin units of C/cm? so that the capacitance C' 1s in units
of faradsper square centimeter (F/cm?}, or capacitance per unit area.
For the total potential barrier, Equation (7.28) may be written as

The junction capacitance can be written as
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L —— With applied v, + dVy——— :

Figure7.91 Differential change in the space charge width with
adifferential change in reverse-bias voltage for aunitormly
doped pn junction.

so that

Exactly the same capacitance expression isobtained by considering the space charge
region extending into the p region x,,. The junction capacitance is also referred to as
the depletion layer capacitance. ’

EXAMPLE75 | Objective

To calculate the junction capacitance of a pn junction.
Consider the same pn junction as that in Example 7.3. Again assume that Vg =5V.

W Solution
The junction capacitance is found from Equatiun (7.42) as
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If the crosssectiond area of the m junction is, for example, A = 10~* c¢m?. then the total
junction capacitanceis

5 C=C'".A =0.366x 107" F= 0.366 pF

¥ Comment
The vadueofjunctioncapacitanceis usudly in the pF, or smaller, range.

If we compare Equation (7.34) for the total depletion width W of the space
chargeregion under reverse bias and Equation (7.42) for the junction capacitance C,
wefindthat we can write

Equation (7.43) is the same as the capacitance per unit areaof a parallel plate capac-
itor. ConsideringFigure 7.9, we may have cometo this same conclusion earlier. Keep
in mind that the space charge width is a function of the reverse bias voltage so that
the junction capacitance is also afunction of the reverse bias voltage applied to the
pn junction.

73.3 One-Sided Junctions

Condder a specia pn junction called the one-sided junction. If, for example,
N, > Ny, thisjunction isreferred toasap™n junction. Thetotal space charge width,
from Equation (7.34), reduces to

Considering the expressions for x, and X,, we have for the p*n junction

xp L Xy (7.45)
ad

W= x, (7.46)

Almost the entire space charge layer extends into the low-doped region of the junc-
tion. Thiseffect can be seen in Figure 7.10.
Thejunction capacitance of the p*n junction reduces to

The depletion layercapacitance of aone-sidedjunction isafunction of thedoping con-
centration in the low-doped region. Equation (7.47) may be manipulated to give
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Figure 7.10 | Spacecharge dendity of a Figure7.111(1/C")* versus v, ofa
one-sided p™n junction. uniformly doped pn junction.

which shows that the inverse capacitance sguared is a linear function of applied
reverse-bias voltage.

Figure 7.11 shows a plot of Equation (7.48). The built-in potential of the junc
tion can be determined by extrapolating the curve to the point where (1/C")* =0.
The slope of the curve is inversely proportional to the doping concentration o the
low-doped region in the junction; thus, this doping concentration can be experimen-
tally determined. The assumptions used in the derivation of this capacitance include
uniform doping in both semiconductor regions, the abrupt junction approximation,
and a planar junction.

EXAMPLE 7.6

Objective

To determine the impurity doping concentrationsin ap*n junction given the parametersfrom
Figure 7.11

Assume a silicon p+njunction a T = 300 K with n, = 15 x 10'° cm—3. Assumethat
the intercept of the curve in Figure 7.11 gives Vv, =0.855 V and that the dope is
1.32 x 10" (Frem?)~2 (V) L,

W Solution
Thedoped thecurvein Figure7.11 isgiven by 2/ee, N, so we may write

or



n theexpression for ¥, which is

N, Ng\ kT
Vb{ :V, ln(—‘—z—‘i) = IH(M&)
n[

n e
‘:e cansolve for N, as

N — n exp( £ | = (15X 10°)
? T Ng kT ) 9.15x 10'5 exp (%)
0

yidds

# Comment
Tre results of this example show that N, > N;; therefore the assumption of a one-sided
jundion wes vdid.

A one-sided pn junction is usefu! for experimentally determining the doping
concentrations and built-in potential.

TEST YOUR UNDERSTANDING

E7.7 Asdliconmnjunctionat T = 300 K hasdoping concentrationsof ¥; = 3 x 146 em~*
ad N, =8 x 10" cm™*, and hesacross-sectional area of A = 5 x 107% cm?®. Deter-
mine thejunction capacitanceat (a) Vy =2V ad (b) V, =5V.

[dd 8210 () '4d $69°0 (7) suv]

E7.8 Theexperimentaly measured junction capacitanced aone-sided siliconn™p junc-
tionbiased a Vz =4V & T = 300K isC = 1.10 pF. The built-inpotential barrier
isfoundto be v, = 0.782V . The cross-sectiona areais A = 10~ em?. Find the
doping concenlrations.{ ;W2 , |G X L1'F = N "M 0T X L = "N "SUV)

*7.4 ) NONUNIFORMLY DOPED JUNCTIONS

In the pn junctions considered so far, we have assumed that each semiconductor re-
gion has been uniformly doped. In actual pn junction structures, thisis not always
true. In some electronic applications, specific nonuniform doping profilesare used to
obtain specia pn junction capacitance characteristics.

74.1 Linearly Graded Junctions

If we start with a uniformly duped n-type semiconductor, for example, and diffuse
acceptor atoms through the surface, the impurity concentrations will tend to be like
those shown in Figure 7.12. The point X = x' on the figure corresponds to the
metallurgica junction. The depletion region extends into the p and n regions from
the metallurgical junction as we have discussed previously. The net p-type doping
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e (Clem?y
p region nreg
Figure 7.121 Impurity concentrationsof
apn junction with a nonuniformly doped Figure7.13| Space charged:
p region. linearly graded pn junction.

concentration near the metallurgical junction may be approximated as a linear fu

tion of distance from the metallurgical junction.

the net n-type doping concentration is also a linear function of

into the n region from the metaliurgical junction. This effective doping profile

referred to asalinearly graded junction. I
Figure 7.13 shows the space charge density

early graded junction. For convenience, the metallurgical junction is placed atx =

The space charge density can he written as

pix) = eax (7.4

wherea is the gradient of the net impurity concentration. :
The electric field and potential in the space charge region can be detenni
from Poisson's equation. We can write

(.
so that the electric fieldcan be found by integration as
(7.

The electric field in the linearly graded junction is a quadratic function of dist
rather than the linear function found in the uniformly doped junction. The maximw
electricfield again occurs at the metallurgical junction. We may note that theelectri
field is zero at both x = +4xg and at X = —xq. The electric field in a nonuniformh
doped semiconductor is not exactly zero, but the magnitude of thisfield is small,so
setting E = 0 in the bulk regionsis still agood approximation.

The potential isagain found by integrating the electric fieldas
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i we arbitrarily set ¢ = 0 at x = —xq, then the potentia through the junction is

(7.53)

The magnitudeof the potential at X = +.x, will equal the built-in potential barrier for
thisfunction. We then have that

Anocther expression for the built-in potential harrier for a linearly graded junc-
tion can be approximated from the expression used for a uniformly doped junction.
W& can write

where Na{xp) and N,(—xy) are the doping concentrations at the edges of the space
charge region. We can relate these doping concentrations to the gradient, so that

ad
N, (—xg) = axg (7.56b)

Then the built-in potential barrier for the linearly graded junction becomes

. Vi = V. In (”:‘2) (1.57)
Ry

There may be situations in which the doping gradient is not the same on either side
d thejunction, but we will not consider that condition here.

If areverse-biasvoltageisapplied tothejunction, the potential barrier increases.
The built-in potential barrier V;; in the above equations is then replaced by the tota
potentia harrier v, + V. Solving for xq from Equation (7.54) and using the total
potential bamer, we obtain

Thejunction capacitance per unit area can be determined by the same method as
we usad for the uniformly doped junction. Figure 7.14 shows the differential charge
4" which is uncovered as a differential voltage d Vi is applied. The junction capaci-
tenceis then
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Figure7.14 | Differential changein space charge width with
adifferential changein reverse-biasvoltagefor alinearly
graded pn junction.

Using Equation (7.58), we obtain!

We may note that C' is proportional to (V,; T Vz)~'/* for the linearly graded
junction as compared to C'a(V,; T Vz)~"2 for the uniformly doped junction. In the
linearly graded junction, the capacitance is less dependent on reverse-bias voltage
than in the uniformly doped junction.

7.4.2 Hyperabrupt Junctions

The uniformly doped junction and linearly graded junction are not the only possble
doping profiles. Figure 7.15 shows a generalized one-sided p*n junction where the
generalized n-type doping concentration for x = Q isgiven by

The case of m = 0 corresponds to the uniformly doped junction and m = +| corre-
sponds to the linearly graded junction just discussed. The cases of m = +2 ad
m = 43 shown would approximate a fairly low-doped epitaxial n-type layer grown
onamuch more heavily doped n* substrate |ayer. When the valueof misnegative, we
have what is referred to as a hiyperabrupt junction. In this case, the n-type doping is
larger near the metallurgical junction than in the bulk semiconductor. Equation (7.61)
i s used toapproximate the n-type doping over asmall region near x = xy and doesnat
hold at x = 0 when misnegative.

'In a more exact analysis, Vy, in Equation {7.60) is replaced by a gradient voltage. However. this
analysis is beyond the scope of this text.
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n-type
doping
profilcs

Figure7.15 | Generalized doping profilesof a one-sided
NN junction.
{From Sze f14].}

The iunction caoacitance can be derived using the same analvsis method as be-

en M is negative, the capacitance becomes a very strong function of reverse-bias
voltage, a desired characteristic in varactor diodes. The term varacter comes from
the words variable reuctor and means a device whose reactance can be varied in a
controlled manner with bias voltage.
If a varactor diode and an inductance are in parallel, the resonant frequency of
the LCcircuit is

The capacitance of the diode, from Equation (7.62). can be written in the form

Inacircuit application. we would, in general, like to have the resonant frequency be
linear function of reverse-bias voltage Vx, so we need

Cux V™ (7.65)
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From Equation (7.64). the parameter m required isfound from
—_— =2 (7.66
a

or

m=—c (7.6

A specific doping profilewill yield the desired capacitance characteristic.

751 SUMMARY

B A uniformly doped pn junction was initially considered. in which one region of a
semiconductor is uniformly duped with acceptor impurities and the adjacent region is
uniformly doped with donor impuritics. This type of junction is called a homojunction.

8 A space charge region, or depletion region, is formed on either side of the metallurgical
junction separating then and p regions. Thisregion isessentially depleted of any |
mobile electrons or holes. A net positive charge density, due to the positively charged
donor impurity ions, existsin the n region and a net negative charge density, due to the
negatively charged acceptor impurity ions, existsin the p region.

B Anelectric field exists in the depletion region due to the net space charge density. The
direction of theelectric field isfrom the n region to the p region,

M A potential difference existsacross the space-charge region. Under zero applied bias,
this potential difference. known as the built-in potentia barrier, maintains thermal
equilibrium and holds back majority carrier electrons in the n-region and mgjority
carrier holesin the p region.

B An applied reverse bias voltage (n region positive with respect to the p region) increas&s]
the potential barrier. increases the space charge width, and increases the magnitude of
the electric field.

B Asthereverse bias voltage changes, the amount of charge in the depletion region
changes. This change in charge with voltage defines the junction capacitance.

R The linearly graded junction represents a nonuniformly doped pn junction. Expressions |
for theelectric field, built-in potential harrier, and junction capacitance were derived.
The functional relationships differ from those of the uniformly doped junction.

W Specific doping profiles can be used to obtain specific capacitance characteristics. A
hyperabrupt junction is one in which the doping decreases away from the metallurgical
junction. This type ofjunction is advantageous in varactor diodes that are used in
resonant circuits.

GLOSSARY OF IMPORTANT TERMS

abrupt junction approximation Theassumption that thereisan abrupt discontinuity in Space
charge density between the space charge region and neutral semiconductor region.

built-in potential harrier Theelectrostatic potential differencebetween the p and n regions
of apn junction in thermal equilibrium.

depletion layer capacitance Another term for junction capacitance.
depletion region Another term for space charge region.



hyperabrupt junction A pn junction in which the doping concentration on one side de-
creases away from the metallurgical junction to achieve n specific capacitance-voltage
characteristic.

junction capacitance T he capacitance of the pn junction under reverse bias.

linearly graded junction A pn junction in which the doping concentrations on either side of
the metallurgical junction are approximated by a linear distribution.

metallurgical junction The interface between the p- and n-doped regions of a pn junction.

une-sided junction A pn junction in which one side of the junction is much more heavily
doped than the adjacent side.

reversebias Thecondition in which a positive voltage isapplied to the nregion with respect
to the p region of a pn junction so that the potential barrier between the two regions in-
creases above the thermal-equilibrium  built-in potential barrier.

spacechargeregion Theregion on either side of the metallurgical junction in which there
isanet charge density dueto ionized donors in the n-region and ionized acceptors in the p
region.

space charge width The width of the space charge region, afunction of doping concentra-
tionsand applied voltage.

raractor diode A diode whose reactance can be varied in a controlled manner with bias
voltage.

CHECKPOINT
After studying this chapter, the reader should have the ability to:

Describe why and how the space charge region isformed.

Draw the energy band diagram of a zero-biased and reverse-biased pn junction.

Define and derive the expression of the built-in potential barrier voltage.

Derive the expression for the electric field in space charge region of the pn junction.
Describe what happens to the parameters of the space charge region when areverse bias
voltageis applied.

Define and explain the junction capacitance.

Describe the characteristics and properties of aone-sided pn junction.

Describe how alinearly graded junction is formed.

Define ahyperabrupt junction.

REVIEW QUESTIONS

Define the built-in potential voltage and describe how it maintains thermal eguilibrium.

Why is an electric field formed in the space charge region? Why is the electric field a
linear function of distance in a uniformly doped pn junction?

Where does the maximum electric field occur in the space charge region?

Why is the space charge width larger in the lower doped side of a pn junction?

What isthe functional dependence of the space charge width on reverse bias voltage?
Why does the space charge width increase with reverse bias voltage?

Why does a capacitance exist in areverse-biased pn junction? Why dues the capacitance
decrease with increasing reverse bias voltage?
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What is aone-sided pn junction? What parameters can be determined in a one-sided
pn junction?
What isa linearly graded junction?

What is a hyperabrupt junction and what is one advantage or characteristic of such a
junction'?

PROBLEMS

Section7.2 ZeroApplied Bias

7.1

7.2

7.3

7.4

75

7.6

7.7

7.8

7.9

{a) Calculate V,,; in asilicon pn junction at 7 = 300 Kfor {a) N, = 105 cm™}

and ¥, = (i) 10'%, (i) 10'®, (i) 10V, (iv) 10'* em~". (b) Repeat part (a)for

Ny = 10" em~%,

Calculate the built-in potential harrier, V;,, for Si. Ge, and GaAs pn junctions if they
cach have the following dopant concentrations at 7 = 300 K:

@ N, =10"em? N, =107 em™?
(M N;=5x 10"% N, =5x10%
() N, = 107 N, = 107

(a)Plat the buiki-in potential barrier for asymmetrical (N, = N, ) silicon pn junction
a 7 = 300K over therange 10" < N, = Ny < 10" cm~3. (b) Repeat pan (a) for a
GaAs pnjunction.

Consider a uniformly doped GaAs pn junction with doping concentrations of N, =
5x 10'% em™ and Ny =5 x 10'"® cm~3, Plot the built-in potential barrier voltage.
¥;,;. versus temperature for 200 = 7 < 500 K.

An abrupt silicon pn junction at zero bias has dopant concentrations of &, = 10" ¢m~?
and ¥y =5 X 10" em~. T = 300 K. (a) Calculate the Fermi level on each side of the
junction with respect to theintrinsic Fermi level. (&) Sketch the equilibrium energy-
band diagram for the junction and determine ¥;,; from thediagram and the results of
pan («). (¢) Calculate Vi; using Equation (7.10). and compare the results to pan{5).

(dy Determiner,,, r,, and the peakelectric field for thisjunction.

Repent problem 7.5 for the case when the doping concentratinns are N, = ¥; =

2 x 10 cm™,

A silicon abrupt junction in thermal equilibrium at 7 = 300K is doped such that
E.— E;, =021 eV inthenregionand £, — E, = 0.18¢V in the p region.

(«2) Draw the energy band diagram of the pn junction. (b) Determine the impurity
doping concentrations in each region. (¢} Determine Vi, .

Consider the uniformly doped GaAs junction at T = 300 K. At zero bias, only

20 percent of the total space charge region is to he in the p region. The built-in
potential barrier is V;,; = 1.20 V. For zero bias, determine () N,,. (b) N;. (€} x,,
{d} Xpa and (€) Ejax.

Consider the impurity doping profile shown in Figure 7.16 in asilicon pn junction.
For rero applied voltage, (¢) determine V,,;, (b) calculate x,, and x,,. (¢} sketch the
thermal cquilihrium energy band diagram, and (d) plot the electric field versus
distance through the junction.
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Figure7.16 | Figure for Problem 7.9. Figure 7.17 | Figure for Problem 7.12.

A uniformly doped silicon pn junction is doped lo levels of Ny =5 x 10'% em™ and
N, = 10" em~3. The measured built-in potential barrier is V., = 0.40 V. Determine
the temperature at which this result occurs. (You may have to use trial and error to
solve thir problem.)

Consider a uniformly doped silicon pn junction with duping concentrations N, =

5 x 10" ¢cm~* and N, = 107 em™*. (a) Calculate Vi, at T = 300 K. {) Determine
the temperature a which V;, decreases by | percent.

An "isotype™ step junction is one in which the same impurity type doping changes
from one concentration value to another value. An n-n isotype doping profile is shown
in Figure 7.17. (@) Sketch the thermal equilibrium energy band diagram of the isotype
junction. (b) Using the encrgy band diagram. determine the built-in potential barrier.
(c) Discuss the charge distribution through the junction.

A particular type of junction isan n region adjacent to an intrinsic region. This
junction can he modeled as an n-type region to alightly doped p-type region. Assume
the doping concentrations in siliconat T = 300K are ¥y = 10" em *and N, =
102 em~? . For zero applied bias. determine («) Vy,, (b) X,,. {¢) x,, and (d) E -
Sketch the electric field versus distance through the junction.

We are assuming an abrupt depletion approximation for the space charge region. That
is, no free carriers exist within the depletion region and the semiconductoer abruptly
changes to a neutral region outside the space charge region. This approximationis
adequate for most applications. but the abrupt transition does not exist. The space
charge region changes over adistance of afew Debye lengths, where the Debye
length in then rcgion is given by

Calculate L, and find the ratio of L, /x, for the following conditions. The p-type
doping concentration is ¥, = 8 x 10" em™* and the n-type doping concentration is
(@) Ny =8 x 10% cm™?, (b)N; =2.2x 10" em*and (c) ¥y == 8 x 107 em ™7,
Examine how the electric field versus distance through a uniformly doped pn
junction varies as the doping concentrations vary. For example, consider Ny = 10'#
cm~? and let 10" < N, < 10" em~*, then consider N, = 10" em™ and let

b

\

.
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10" < N, < 10'® cm™*. and finally consider ¥, = 10’ ¢cm~* and let 10" < N, <
10"® cm~—*. What can be said about the results for N, = 100N, or Ny = 100N,?
Assume zero applied bias. i

Section 7.3 ReverseApplied Bias

7.16 An abrupt silicon pnjunction has dopant concentrations of N,, = 2 x 10" ¢m™ and
N;=2x 10" em™ a T = 300 K. Calculate (a) Vs, ()W a Vi = 0 and
vV = 8V, and (¢) the maximum electric field in the space charge region & ¥, = 0
and V; =8 V.

7.17 Consider thejunction described in Problem 7.11. The junction has a cross-sectional
areaof 107* em? and has an applied reverse-bias voltage of V; = 5 V. Calculate
(@) Vs (P) £y, xp. W. {c) Emax» and i d) the total junction capacitance.

7.18 Anideal one-sided silicon n*p junction has uniform doping on both sides of the
abrupt junction. The doping relation is Ny = 50N,. The built-in potentia barrier is
V,: = 0.752 V. The maximum electric field in thejunction isE,x = 1.14 x 10' V/em
for areverse-bias voltage of 13 V. T = 300 K. Determine {a) N,. N, (b) x, for
Vy = 10, and {c) ij for ¥, = 10.

7.19 Asilicon n*p junctionisbiased at V; = 10V. Determine thc percent changein
(a)junction capacitance and (&) built-in potential if the doping in the p region
increases by a factor of 2.

7.20 Consider two p™n silicon junctionsat ¥ = 300 K reverse biased at ¥z =5 V. The
impurity doping concentrations in junction A are ¥, = 10'* cm~ and
Ny = 10" em*, and thosein junction B are N, = 10" cm™* and Ny = 10" em ™.
Calculate the ratio of the following parameters for junction A to junction B: {a) W.
(b) |Emax/, and (c} C;

721 (a)The peak electric field in areverse-biased silicon pn junction is
|Emax] = 3 x 10° Vlem. The doping concentrations are N, = 4 x 10% ¢cm~* and
N, = 4x 107 em™ . Find the magnitude of the reverse-bias voltage. (b) Repeat
pan (a) for N; =4 X 10%cm~ and N, =4 x 107 ¢ m. (r) Repeat part (n)for
Ny=N, =4x 107 em™

7.22 Consider a uniformly doped GaAs pn junction a 7" = 300 K. The junction capaci-
tance at zero biasis G (0) and the junction capacitance with a 10-V reverse-bias
voltage is C; (10). Theratio of the capacitances is

Also under reverse bias, the space charge width into the p region is 0.2 of the totdl
space charge width. Determine (&) Vi, and () N,,, Ny.

7.23 GaAspnjunctionat T = 300 K hasimpurity doping concentratians of N, = 10'¢ cm™3
and &y =5 x 10'® ern=?, For aparticular device application, the ratio ofjunction
capacitances at two values of reverse bias voltage must he C; (Vg )/ C;(Vk:) = 3 where
the reverse bias voltage Vg, = 1 V. Determine V..

7.24 Anabrupt silicon pn junctionat T = 300 K is uniformly doped with N,, = 10** em™?
and N, = 10" cm~*, The pn junction areais6 x 10 ! cm?. An inductance of 2.2
millihenry is placed in parallel with the pn junction. Calculate the resonant frequency
of thecircuit for reverse-bias voltages of (¢} Vi =1V and (b) Vz = 10 V.



Figure 7.18 | Figure for Problem 7.27.

1.25

7.26

127

7.28

7.29

7.30

731

Figure7.19 1 Figure for Problem 7.28

A uniformly doped silicon p+n junction a 7 = 300 K isto bc designed such that at a
reverse-bias voltage of ¥z = 10V, the maximum electric field islimited to
Emy = 10° V/em. Determine the maximum doping concentration in the n region.

A silicon pn junction isto be designed which meets the following specifications at

T =300 K. At areverse-bias voltage of 1.2 V, 10 percent of the total space charge
region is to be in then region and the total junction capacitance isto be 3.5 x 10~ F
with a cross-sectional areaof 5.5 x 107* ¢m®. Detennine {a) N,. () Ny, and (C) V.
A silicon pn junction a 7 = 300 K has the doping profile shown in Figure 7.18.
Calculate (&) V,:. () x, and x,, & zero bias. and (c)the applied bias required so that
£y = 30 pm.

Consider asilicon pn junction with the doping profile shown in Figure 7.19.

T = 300 K. (a)Calculate the applied reverse-bias voltage required so that the space
charge region extends entirely through the p region. (h)Determine the space charge
width into the n* -region with the reverse-bias voltage calculated in pan (a).

{¢) Calculate the peak electric field for this applied voltage.

(a) A silicon p*n junction has doping concentrations of N, = 10'* em™* and

Ny =5 x 10** em™*. The cross-sectional areaof thejunctionisA = 5 x 10~% cmZ.
Calculate the junction capacitance for (/) Ve = 0. (i) Vg =3V, and (iii)Vg =6 V.
Plot 1/C2 versus V. Show that the slope uf the curve can be used to find ¥4 and that
theintersection with the voltage axis yields V,,;. (b) Repeat part (a)if the n-type
doping concentration changesto N; =6 X 10 cm’.

The total junction capacitance of a one-sided silicon pn junctionat 7 =300 K is
measured at ¥V = 50 mV and found (v be 1.3 pF. The junction areais 10~% cm? and
Vi, = 0.95V. (a)Find the impurity doping concentration of the low-doped side of the
junction. (&) Find the impurity doping concentration of the higher-doped region.
Examine how the capacitance C' and the function (1/C’)? vary with reverse-bias
voltage V asthe doping concentrations change. In particular, consider these plots
versus N, for N, > 100N, and versus N; for Ny = 100N,

*7.32 A pn junction has the doping profile shown in Figure 7.20. Assume that x, = xy for

all reverse-bias voltages. (a)What is the built-in potentia across the junction? (%) For

i

<

"\\

Wi

a
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Figure7.201 Figuge for Problem 7.32. Figure7.21 | Figure for Problem 7.33.
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_ fhe abrupt junction approximation, cketch the charge density through the junction.
(&) Derive tte expression for the electric field through the space charge region.
eon

*7.33- Mg

r junction has the doping profile shown in Figure 7.21. The "I" corre-
spohds to an ideal intrinsic region in which thereis no impurity doping concentration
A reverse-hias voltage is applied to the PIN junction so that the total depletion width
extends from —2 pm to +2 um. () Using Poisson's equation, calculale the magni-
tude of the electric field at x = 0. (b) Sketch theelectric field through the PIN junc-
tion. (¢} Calculate the reverse-hias voltage that must be applied.

Section 7.4 Nonuniformly Doped Junctions

7.34

7.35

Consider alinearly graded junction. (a) Starting with Equation {7.49), derivethe |

expression for the electric field given in Equation (7.51). (&) Derive the expression
for the potential through the space charge region given hy Equation (7.53).

The built-in potential barrier of alinearly graded silicon pn junctiona T = 300K is
¥,; = 0.70 V Thejunction capacitance measured at V; = 35VisC =7.2 x
F/emy’. Find the gradient, a, of the net impurity concentration.

Summary and Review

7.36

7.37

*7.38

*7.39

Anne-sided p+n silicon diode at 7 = 300 K isdoped & N, = 10" em™. Design the
junction sothat C, = 0.95pF at ¥ = 3.5 V. Calculate the junction capacitance when
VR = 15 V.

A one-sided p*n junction with a cross-sectional areaof 10~* cm? has a measured
built-in potential of Vj,; = 0.8 Vat T = 300K. A plot of (l/C,-)2 versus Vg islinear
for Ve < | V and isessentially constant for ¥, = 1 V. The capacitance isC, =
0.082 pF at Vr = 1V Determine the doping concentrations on either side of the
metallurgica junction that will produce this capacitance characteristic.

Silicon, a T = 300 K, isdoped at N7, = 10! cm ™3 for x <0and Ny =5 x

10'¢ em™ for x = 0 to form an n — # step junction. {a) Sketch the energy-band
diagram. (») Derive an expression for Vy,. (¢} Sketch the charge density, electric held,
and potential through the junction. (¢} Explain where the charge density came from
and islocated.

A diffused silicon pn junction has a linearly graded junction on the p side with
a =2 x 10" cm~*, and a uniform doping of 10'* ¢cm~* on the nside. (a) If the
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depletion width on the p sideis 0.7 xm at zero bias, find the total depletion width,
built-in potential, and maximum electric field at zero bias. (b) Plot the potential
function through the junction.
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CHAPTER

The pn Junction Diode

PREVIEW

equilibriumand under reverse bias. We determined the built-in potential barrier

at thermal equilibrium and calculated the electric field in the space charge region.
We also considered the junction capacitance. In this chapter, we will consider the pn
junction with aforward-bias voltage applied and will determine the current—voltage
characteristics. The potential barrier of the pn junction islowered when a forward-
bias voltage is applied, allowing electrons and holes to flow across the space charge
region. When holes flow from the p region across the space charge region into the
n region, they become excess minority carrier holes and are subject to the excess
minority carrier diffusion, drift, and recombination processesdiscussed in Chapter 6.
Likewise, when electrons from the n region flow across the space charge region into
the p region, they become excess minority carrier electrons and are subject to these
same processes.

When semiconductor devices with pn junctions are used in linear amplifiers, for
example, time-varying signals are superimposed on the dc currents and voltages. A
small sinusoidal voltage superimposed on a dc voltage applied across a pn junction
will generate asmall-signal sinusoidal current. The ratio of the sinusoidal current to
voltage yields the small-signal admittance of the pn junction. The admittance of a
forward-biased pn junction contains both conductance and capacitance terms. The
capacitance, called a diffusion capacitance, differs from the junction capacitancedis-
cussed in the last chapter. Using the admittance function, the small-signal equivalent
circuit of the pn junction will be devel oped.

The last three topics considered in this chapter are junction breakdown, switch-
ing transients. and the tunnel diode. When a sufficiently large reverse-bias voltage is
applied across a pn junction, breakdown can occur, producing a large reverse-bias
current in the junction, which can cause heating effectsand catastrophic failure of the
diode. Zener diodes, however, are designed to operate in the breakdown region.

I n the last chapter, we discussed the electrostatics of the pn junction in thermal
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Breakdown puts limits on the amount of voltage that can he applied acrossa pn junc-
tion. When a pn junction is switched from one conducting state to the other, tran-
sentsin the diode current and voltage occur. The switching time of the pn junction
will he discussed here, and again in later chapters which deal with the switching of
tranggtors..

8.1 I pn JUNCTION CURRENT

When aforward-bias voltage is applied to a pn junction, acurrent will heinduced in
the device. We initially consider a qualitative discussion of how charges flow in the
m junction and then consider the mathematical derivation of the current-voltage
relationship.

8.1.1 QualitativeDescription of ChargeFlow in a pn Junction

We can qualitatively understand the mechanism of the current in a pn junction by
again considering the energy hand diagrams. Figure §.1a shows the energy band di-
agram of apn junction in thermal equilibrium that was developed in the last chapter.
We argued that the potential barrier seen by the electrons, for example, holds hack
thelarge concentration of electrons in the n region and keeps them from flowing into
the p region. Similarly, the potential harrier seen by the holes holds hack the large

Hole flow
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concentration of holesin the p region and keeps them from flowing into then regios.
The potential barrier, then, maintains thermal equilibrium.

Figure 8.1b shows the energy band diagram of areverse-biased pn junction. The
potential of the n region is positive with respect to the p region so the Fermi energy
in the n region is lower than that in the p region. The total potential harrier is row
larger than for the zero-bias case. We argued in the last chapter that the incre:
potential barrier continues to hold back the electrons and holes so that there is «iill
essentially no charge flow and hence essentially no current.

Figure 8.1¢ now shows the energy band diagram for the case when a positive
voltage is applied to the p region with respect to the n region. The Fermi level in the
p region is now lower than that in the n region. The total potential barrier is now
reduced. The smaller potential barrier means that the electric field in the depletion
region is also reduced. The smaller electric field means that the electrons and holes
are nolonger held hack in then and p regions, respectively. There will be adiffusion
of holesfrom the p region across the space-charge region where they now will How
into the n region. Similarly, there will he a diffusion of electrons from the n region
across the space-charge region where they will flow into the p region. The flow of
charge generates a current through the pn junction.

The injection of holes into the i region means that these holes are minority car-
riers. Likewise, the injection of electrons into the p-region means thar these electron
are minority carriers. The behavior of these minority carriers is described by the am-
bipolar transport equations that were discussed in Chapter 6. There will be diffusion
aswell as recombination of excess carriers in these regions. The diffusion of carriers
implies that there will be diffusion currents. The mathematical derivation of t
pn junction current—voltage relationship is considered in the next section.

8.1.2 Ideal Current-VoltageRelationship

Theideal current—voltage relationship of apn junction isderived on the basisof four
assumptions. (The last assumption has three parts, but each part deals with current.)
They are:

1

1. The abrupr depletion layer approximation applies. The space charge regions
have abrupt boundaries and the semiconductor is neutral outside of the J

depletion region.
2. The Maxwell-Boltzmann approximation appliesto carvier statistics. {
3. The concept of low injection applies.
d4a. The total current isaconstant throughout the entire pn structure.
4b. Theindividual electron and hole currents are continuous functions through the
pn structure.
de. Theindividua electron and hole currents are constant throughout the depletion |
region.

Notation can sometimes appear to be overwhelming in the equations in this
chapter. Table 8.1 lists some of the various electron and hole concentration terms thet
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Table 81 | Commonly used terms and notation for this chapter

Term Meaning

N, Acceptor concentration in the p region of the pn junction

Ny Donor concentration in then region of the pn junction

o = Ny Therma equilibrium majority carrier electron concentration in the n region

Ppn = Na Thermd equilibrium majority carrier hole concentration in the p region

n = /N, Therr_nal equilibrium minority carrier electron concentration in the
pregion

o = 12/ Ny Therma equilibrium minority carrier hole concentration in then region

n, Total minority carrier electron concentration in the p region

m Total minority carrier hole concentration in the n region

n,(—x,) Minority carrier electron concentration in the p region at the space-
charge edge

Palxy) Minority carrier hole concentration in then region a the space charge
edge

§n, =n, —n,  EXCESsminority carrier electron concentration in thep region
Wih = Pn — Png EXCESSMinority carrier hole concentration in the n region

appear. Many terms have already been used in previous chapters but are repeated
herefor convenience.

8.1.3 Boundary Conditions

Figure 8.2 shows the conduction-band energy through the pn junction in thermal
equilibrium. T hen region contains many more electronsin the conduction band than
the pregion; the built-in potential barrier preventsthislargedensity of electronsfrom
flowing into the p region. The built-in potential barrier maintains equilibrium be-
tween the carrier distributions on either side of the junction.

An expression for the built-in potential barrier was derived in the last chapter
and was given by Equation (7.10) as

Figure 8.2 | Conduction-band energy through a pn junction.
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If we divide the equation by V; = kT /e, take the exponential of both sides, an’
then take the reciprocal, we obtain

If we assume complete ionization, we can write

where n,,q is the thermal-equilibrium concentration of majority carrier electronsin
then region. In the p region, we can write

where n is the thermal-equilibrium concentration of minority carrier electrons.
Substituting Equations (8.2) and (8.3) into Equation (8.1} yields

Thisequation relates the minority carrier electron concentration on the p side of the
junction to the majority camer electron concentration on the n side of the junctionin
thermal equilibrium.

If apositivevoltageisapplied to the p region with respect to the n region, the po-
tential barrier is reduced. Figure 8.3a showsa pn junction with an applied voltage V,.
Theelectricfield in the bulk p and n regions is nermally very small. Essentially all of
theapplied voltageis across thejunction region. Theelectric field E,,, induced by the
applied voltage is in the opposite direction to the thermal equilibrium space charge
electric field, so the net electric fieldin the space charge region is reduced below the
equilibrium value. The delicate balance between diffusion and the E-field force

Figure8.31(a) A mn junction with an applied forward-bias voltage showing the directionseof the electric fidd induced
by v, and the space charge éectricfield. (b) Energy-band diagram of the forward-biased pn junction.



achieved at thermal equilibriumis upset. The electric field force that prevented ma-
jority carriersfrom crossing the space charge region is reduced; majority carrier elec-
tronsfrom the n side are now injected across the depletion region into the p material,
and mgjority carrier holes from the p side areinjected acrossthe depletion region into
then material. As long as the bias V,, is applied, the injection of carriers across the
gpace charge region continues and a current is created in the pn junction. This bias
condition is known as forward bias; the energy-band diagram of the forward-biased
m junction is shown in Figure 8.3b.

The potential barrier V,,; in Equation (8.4) can be replaced by (V;, — V) when
the junctionisforward biased. Equation (8.4) becomes

If we assume low injection, the majority carrier electron concentration g, for ex-
ample, does not change significantly. However, the minority carrier concentration,
n,. can deviate from its thermal-equilibrium value n g by orders of magnitude. Using
Equetion {8.4), we can write Equation (8.5) as

When aforward-bias voltageis applied to the pnjunction, thejunction isno longer
in thermal equilibrium. The left side of Equation (8.6)is the total minority carrier elec-
tron concentration in the p region, which is now greater than the thermal equilibrium
vaue The forward-bias voltage lowers the potential bamer so that majority carrier
electronsfrom the n region are injected across the junction into the p region, thereby
increasing the minority carrier electron concentration. We have produced excess
minority carrier electrons in the p region.

When the electrons are injected into the p region, these excess carriers are sub-
ject to the diffusion and recombination processes we discussed in Chapter 6. Equa-
tion (8.6). then, is the expression for the minority carrier electron concentration at the

1edgedf the space charge region in the p region.

Exactly the same process occurs for majority carrier holesin the p region which
are injected across the space charge region into the n region under a forward-bias
voltage. We can write that

where p,, is the concentration of minority carrier holesat the edge of the spacecharge
region in the n region. Figure 8.4 shows these results. By applying a forward-bias
voltage, we create excess minority carriers in each region of the pn junction.
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Figure 8.4 Excess minority carrier concentrations at the i
spacc charge edges generated by the forward-bias voltage.

EXAMPLE 8.1

| Objective

To calculate the minority carrier hole concentration at the edge of the space charge regiond a
pn junction when aforward biasis applied.

Consider asilicon pn junction at T = 300K so that #; = 1.5 x 10" em™. Assume the
n-type doping is | x 10!% em~* and assume that a forward bias of (.60 V is applied to the
pn junction. Calculate the minority carrier hole concentration at thr edge of the space chart
region.

m Solution
From Equation (8.7) we have

The thermal-equilibrium minority carrier hole concentration is

i} _(15x

s =225 x 10t em”?
Ny 1056

an -

B Comment

The minority carrier concentration can increase by many orders of magnitude when a forward-
bias voltage is applied. Low injection still applies. however, since the excess-electron concen-
tration (equal to the excess-hole concentration in order to maintain charge neutrality) is much
less than the thermal-equilibrium electron concentration.

TEST YOUR UNDERSTANDING

E8.1 Asilicon pnjunctionat T = 300 K isdoped with impurity concentrations of N; =5x
10 em~* and ¥, = 2 x 10" em™*. Thejunction is forward biasedat ¥, =0.610 V.
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Determinethe minority carrier concentrationsa the spacecharge edges.

lewd 01 X 061 = (“x=)%u w01 x 297 = (“x}'d suy)
E8.2 Theimpurity doping concentrationsin asilicon pn junctiona T = 300K arc ¥, =
5x 10 em™ and N, = 5 x 10'® cm™". The minority carrier concentration at either
gpace chargeedge is to be no larger than 10 percent of the respectivemajority carrier
concentration. Calculate the maximum forward bias voltage that can be applied to
this junction and still meet the required specifications. [A 66¢°0 = (xeun}’g ‘suy]
E83 Reped E8.2for aGaAs pn junction with the same doping concentrations.

[A L9071 = (xpu) "4 "Suy]

Theminority carrier concentrations at thespace chargeedges, given by Equations
(8.6) and (8.7), were derived assuming aforward-bias voltage (V, > 0) was applied
across the pn junction. However, nothing in the derivation prevents v, from being
negative (reverse bias). If a reverse-bias voltage greater than afew tenths of avolt is
applied to the pn junction, then we see from Equations (8.6) and (8.7) that the minor-
ity carrier concentrations at the space charge edge are essentially zero. The mino-
rity carrier concentrations for the reverse-bias condition drop below the thermal-
eailibnum values.

8.1.4 Minority Carrier Distribution

W& developed, in Chapter 6, the ambipolar transport equation for excess minority
carrier holesin an n region. This equation, in one dimension, is

whae dp, = pn — puo iS the excess minority carrier hole concentration and is the
difference between the total and thermal equilibrium minority carrier concentrations.

- Theambipolar transport equation describes the behavior of excess carriers as a func-
tion of time and spatial coordinates.

In Chapter 5, we calculated drift current densities in a semiconductor. We deter-
minad that relatively large currents could be created with fairly small electric fields.
As afirst approximation, we will assume that the electricfield is zero in both the neu-
trd pand nregions. In the nregion forx > x,,, wehavethat E = 0andg' = 0. If we
alsoassume steady state so 2(5p,)/0t = 0. then Equation (8.8) reducesto

wherg Lf, = D,7,. For the same set of conditions, the excess minority carrier elec-
tron concentration in the p region is determined from
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The boundary conditions for the total minority carrier concentrationsare

eV,
Xn) = Pao €X
Puloin) = o p(kT) nl
eV,
np(—Xp) = Rpo exXp ( T ) (8.111
Prlx — 400 = puo (8.11
nplx = —00) =npy (8.11

Asminority carriersdiffuse from the space charge edgeinto the neutral semicondu
tor regions, they will recombine with majority carriers. We will assume tha
lengths W, and W, shown in Figure 8.3a are very long, meaning in particular t
W, > L, and W, > L,. The excess minority carrier concentrations must gpproa
zero at distances far from the space charge region. The structureis referred to s g
long pn junction.

The general solution to Equation (8.9) is

apﬂ'(x) = ]),,(.X) = Pro = AEX}LP + BE_X/LF (x = Xrt)
and the general solution to Equation (8.10) is ]

Applying the boundary conditionsfrom Equations (8.11c) and (8.11d), the
ficients A and D must be zero. The coefficients B and C may be determined fromrhei
boundary conditions given by Equations (8.11a) and (8.11b). The excess carrier con+
centrations are then found to be, for {x = x,),

8pn(x) = pp(X) _ pao = Puo [exp )_ _ 1] exp ("D)— (8.14)

and, for {x = —x,), 1
V. T~ |

np(x) =np(x) —npp =npo [exp (%) - IZ' exp (if—;r—i) (8.15)

The minority carrier concentrations decay exponentially with distance away fromthe
junction to their thermal-equilibrium values. Figure 8.5 shows these results. Again,
we have assumed that both the n-region and the p-region lengths are long compared
to the minority carrier diffusion lengths.

To review, a forward-bias voltage lowers the built-in potential barrier of am
junction so that electrons from the n region are injected across the space charge re
gion, creating excess minority carriers in the p region. These excess electrons begin
diffusing into the bulk p region where they can recombine with majority carier
holes. The excess minority carrier electron concentration then decreases with
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digtance from the junction. The same discussion applies to holesinjected across the
gpace charge region into the n region.

8.15 Ideal pn Junction Current

The approach we use to determine the current in a pn junction is based on the three
patsaof the fourth assumption stated earlier in this section. The total current in the
junction is the sum of the individual electron and hole currents which are constant
through the depl etion region. Sincetheel ectron and hole currents are continuousfunc-
tionsthrough the pn junction, thetotal pnjunction current witl be the minority carrier
holediffusioncurrent at x = x, plusthe minority carrier electron diffusion current at
x = ~x,. Thegradientsin the minority carrier concentrations, asshownin Figure8.5,
produce diffusion currents, and since we are assuming the electric field to be zero at
the space charge edges, we can neglect any minority carrier drift current component.
Thisapproach in determining the pn junction current is shown in Figure 8.6.

E Figure 85 | Steady-stateminority carrier concentrationsin a
pn junction under forward bias.

Current 4
density !

/

ol = Jp(""n) + Jn{ixp) g .I',,(x,,)

J(—x,) / i
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I
]
b
I
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Figure8.61 Electron and hole current densities through the
space charge region of am junction.
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We can calculate the minority carrier hole diffusion current density a x =
from the relation

dpu{x)

v=x,

Jo(x,) = —eD, (8]

Since we are assuming uniformly doped regions, the thermal-equilibrium cam
concentration isconstant, so the hole diffusion current density may be written as

Jp(xp) = —eDy

Taking the derivative of Equation (8.14) and substituting into Equation (8.17). W'
obtain

The hole current density for thisforward-biascondition isin the +x direction, whiclk
isfrom the p to the nregion.

Similarly, we may calculate the electron diffusion current density at x = —x,j
This may be written as

Using Equation (8.15). we obtain I

DM Vﬂ
Jol=x,) = e an(] |iexp (icT) — 1:| it

The electron current density isalsoin the +x direction.

An assumption we made at the beginning was that the individual electron ad
hole currents were continuousfunctions and constant through the space charge region
The total current isthe sum of the electron and hole currents and is constant throu
the entire junction. Figure 8.6 again shows a plot of the magnitudesof these curre

Thetotal current density in the pn junction is then

D, Ve
S = Jp(xn) + Jn(*xp) = [P I 0 + . ano][exp(ekT) - l:| (82
p #

Equation (8.21) isthe ideal current—voltage relationship of a pn junction.
We may define a parameter J; as

p

eDpopyy €Dyngo 62
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Figure87 ! Ided -V characteristic of a m junction diode

0 that Equadon (8.21) may he written as

- Equation (8.23), known as the ideal-diode equation, gives a good description of the
current—voltagecharacteristics of the pn junction over a wide range of currents and
voltages. Although Equation (8.23) was derived assuming a forward-bias voltage
(Ve > 0}, thereis nothing to prevent V, from being negative (reverse bias). Equation
(8.23) isplotted in Figure 8.7 asafunction of forward-biasvoltage V. If the voltage

'V, becomes negative (reverse bias) by afew kT /e V, then the reverse-bias current

- density becomes independent of the reverse-bias voltage. The parameter J, is then

- referred to as the reverse saturation current density. The current—voltage characteris-

t ticsof the pn junction diode are obviously not bilateral.

Objective
l To determine the idedl reverse saturation current dengity in asilicon m junctiona T = 300 K.
Consider the following parametersin asilicon pr junction:
N, = Ny = 10" cm—* #=15%x 10" em™?
D, = 25cm’/s T =T =3 x1077s
D, = 10cm®/s e, =117

B Solution
Theideal reverse saturation current dendity is given by

EXAMPLE 8.2
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which may be rewritten as

Substituting the parameters, we obtain J, = 4.15 x 107! Alcn?

m Comment

The ideal reverse-bias saturation current density is very small. If the pn junction cross-
sectional area were A = 10~* cm?, for example, then the ideal reverse-bias diode current
would be |, = 4.15 x 107 A.

Figure881Ided 1-V

characteristic of a

pn junction diode with
the current plotted on

alog scale.

If the forward-bias voltage in Equation (8.23) is positive by more than a few
kT jevolts, then the (—1) term in Equation (8.23) becomes negligible. Figure 8.8
shows the forward-bias current—voltage characteristic when the current is plotted i
a log scale. Ideally, this plot yields a straight line when V, is greater than a few
kT fevolts. The forward-bias current is an exponential function of the forward-bias
voltage.

DESIGN
EXAMPLE 8.3

Objective

To design a pn junction diode to produce particular electron and hole current densitiesd a
given forward-bias voltage.

Consider a silicon pn junction diode & T = 300 K. Design the diode such tha J, =
20 Afem® and J, = 5 Afem” &t V, = 0.65 V. Assumetheremaining semiconductor parameters
areas given in Example 8.2.



8.1 pn Junction Current

1 Solution
Theelectron diffusion current density isgiven by Equation (8.20) as

Comment

%‘The relative magnitude of the electron and hole current densities through a diode can be var-
ied by changing the doping concentrations in the device.

TEST YOUR UNDERSTANDING

B4 Asiliconpnjunctionat T = 300 K hasthefollowing parameters: ¥, =5 X 10'® cm™
Ny =1 x 10" em™, D,, = 25cm?/s, D,, = 10 em?/fs, 1,0 =5 x 1077 s5,and

I T,0 = | x 1077 s.Thecross-sectional areaisA = 10~ cm*and the forward-bias volt-
ageisV, = 0.625 V. Cdculate the (=) minority electron diffusion current at the space
chargeedge, (b) minority holediffusion current at the spacecharge edge, and (¢} total
currentinthe pn junction diode. [VW £2°T (2) ‘YW 60°T (9} ‘YW $61°0 () "suy]

E8.5 Repeat EB. 4for aGaAs pn junction diode biased at V, = 1.10 V.
[VWw €91 {(2) VW 11 () “VU $07°0 (P) "suv]

8.1.6 Summary of Physics

We have been considering the case of a forward-bias voltage being applied to a pn

junction. The forward-bias voltage lowers the potential barrier so that electrons and
L



CHAPTER 8 Thepn Junction Diode l

holes areinjected acrossthe spacecharge region. Theinjected carriersbecome min;*

ity carriers which then diffusefrom thejunction and recombine with majority cani
We calculated the minority carrier diffusion current densities at the edge of the

space charge region. We can reconsider Equations (8.14) and (8.15) and dete

the minority carrier diffusion current densities as a function of distance

p- and n-regions. These results are

eD Pro [ evu Xy — .
Jp(x) = -—Ep— exp (k——T-) - I]exp (—TX) (x = x2)  (824)

and

X
Jlxy= ?DE{?E {exp ('ﬁ;) - 1} exp (E) (x < —xp) (829
kT L,

The minority carrier diffusion current densities decay exponentially in each
region. However, the total current through the pn junction is constant. The difference
between total current and minority carrier diffusion current is a majority carrier cur-
rent. Figure 8.9 shows the various current components through the pn structure. The
drift of majority carrier holesin the p region far from the junction, for example, isto
supply holesthat are being injected across the space charge region into the n region
and also to supply holes that are lost by recombination with excess minority carrier
electrons. The samediscussion appliesto the drift of electronsin the n region.

We have seen that excess caniers are created in a forward-biased pn junction.
From the results of the ambipolar transport theory derived in Chapter 6, the behavior
of the excess carriers is determined by the minority carrier parameters for low injec-
tion. In determining the current-voltagerelationship of the pn junction, we consider
the Row of minority carriers since we know the behavior and characteristics o these

Current 4
density :
P | n
Majority carner Majority carrier
hole current electron current
Electron diffusion Hdediffusion
current current
-x, x=0 x

Figure8.91 Ideal eectronand hole current components through a pn junction under
forward bias.
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particles. It may seem strange, at times, that we concern ourselves so much with
minority carriers rather than with the vast number of majority carriers, but thereason
for thiscan he found in the results derived from the ambipolar transport theory.

TEST YOUR UNDERSTANDING

E86 Consider the silicon pn junction diode described in E8.4. Calculate the electron and
holecurrents at (¢) X = x,., (b)x =x,, ¥ L,,and (c)x = x, T 10L,, (see Figure8.9).
(0= % 'VWHpT [ = "1 (2) 'YW (040 = VW €480 = 7 (@)
WWG('T = U vw vSlg = 11 (p) suy)

Thefact that we now have drift current densitiesin the p and n regions implies
that the electric field in these regions is not zero as we had originally assumed. We
can calculate theelectric field in the neutral regions and determinethe validity of our
zero-field approximation.

Objective

To calculate the electric field required to produce a given majority carrier drift current.
Consider asilicon pn junction at T = 300 K with the parameters given in Example 8.2
and with an applied forward-hias voltage V, = 0.65 V.

1 Solution
Thetotd forward-hias current density is given by

We determined the reverse saturation current density in Example 8.2, so we can write

J=415% 107"

Ihe totd current far from the junction in the n-region will he majority carrier electron drift
current. so we can write

J=1, e.u-.'rNdE

The doping concentration isN, = 10" em™*, and. if we assume i, = 1350 cm?/V-s, then the
electric field must he

1 Comment
; Weassumed. in the derivation of the current-voltage equation, that the electric field in the neu-
“tral pand n regions was rero. Although the electric field is not zero, this example shows that
the magnitudeis very small —thusthe approximation of zero electric fieldis very good.

EXAMPLE 84
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8.1.7 TemperatureEffects

Theideal reversesaturation current density J, given by Equation (8.22), isafunctic
of the thermal-equilibrium minority carrier concentrations# o and p,o. These mina
ity carrier concentrations are proportional to nf, which is a very strong function
temperature. For asilicon pnjunction, theideal reversesaturation current density w:
increase by approximately afactor of four for every 10°C increase in temperature.
The forward-bias current-voltage relation was given by Equation (8.23). Th
relation includes J; as well as the exp (eV,/kT) factor, making the forward-bi
current—voltage relation afunction of temperature also. As temperature increases, le
forward-bias voltage isrequired to obtain the same diode current. 1f the voltage ishe
constant, the diode current will increase as temperature increases. The changein fc
ward-bias current with temperature isless sensitive than the reverse saturation curret

EXAMPLE 85

Objective

To determinethe change in the forward-biasvoltage on a m junction with a changein tet
perature.

Congder aslicon pn junction initially bissed & 0.60V & T = 300 K. Assume thete
peratureincreasesto T = 310 K. Calculate the change in the forward-bias voltage required
maintain aconstant current through the junction.

W Solution
Theforward-bias current can be written as follows:

J cen - e eV
PLar )P\ ar
If thetemperaturechanges, we may taketheratio of thediodecurrentsa the twotemperatun
Thisratiois

If currentisto behdd constant, then J, = J, and we must have

Le 7, = 300K, 7> = 310K, E, =112 ¢V, ad V,, = 0.60 V. Then, solving for V.., ,
obtain V. = 0.5827 V.

B Comment
The changein the forward-biasvoltageis —17.3 mVv for a 10°C temperature change.

8.1.8 The" Short" Diode

We assumed in the previous analysis that both p and n regions were long compar
with the minority carrier diffusion lengths. In many pn junction structures, oneregi
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) 0 x

Figure8.10i Geometry of a™shon"
diode.

mey. in fact. he shon compared with the minority carrier diffusionlength. Figure 8.10
shows one such example: the length W, is assumed to be much smaller than the mi-
nority carrier hole diffusion length, L,.

The steady-state excess minority carrier hole concentration in then region isde-
termined from Equation (8.9), which was given as

Theoriginal houndary condition at x = x,, still applies, given by Equation (8.11a} as

A second boundary condition needs to be determined. In many cases we will as-
ume that an ohmic contact exists at x = (x,, + W,,),implying an infinite surface-
recombination velocity and therefore an excess minority carrier concentration of
zero. The second boundary condition is then written as

Prlx = xp + W) = pye (826)
The general solution to Equation (8.9) is again given by Equation (8.12). which
Was
i 8pa(x) = pu(Xx) — puo = Ae*!tr + Beﬂ"[LP (x > x,)

In thiscase, because of the finite length of the n region, both terms of the general so-
lution must be retained. Applying the boundary conditions of Equations(8.11b) and
(8.26), the excess minority carrier concentration is given by

sinhl(x, T W, —x)/L,)
sinh[Wn/Lp]

(8.27)

Equation (8.27)is the general solution for the excess minority carrier hole concentra-
tionin then region of aforward-biased pnjunction. If W, = L, theassumption for the
long diode, Equation (8.27) reducesto the previous result given by Equation (8.14). If
W, < L., we can approximate the hyperbolic sine termshby

sinh { %n + W, —x %(x"—}_wnfx)
— T
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and

. ( W,,) ( W, )
sinh{ — | = [ —
L, L,
Then Equation (8.27) becomes

= fon (90) 1] (4 222)

W)?

The minority carrier concentration becomesa linear function of distance
The minority carrier hole diffusion current density isgiven by

so that in the short n region, we have

The minority carrier hole diffusion current density now contains the length W, ir
denominator. rather than the diffusion length L,,. Thediffusion current density isla
for ashort diode than for along diode since W, < L ,. In addition, since the min
carrier concentration is approximately a linear function of distance through the:
gion, the minority carrier diffusion current density is aconstant. This constant cut
implies that there is no recombination of minority carriersin the short region.

TEST YOUR UNDERSTANDING

E8.7 Condderthesliconpn junction diodedescribedin ER.4. Thep region islong and the
n region isshort with W, = 2 um.( a) Caculatethe dectron and holecurrents in the

|

depletion region. (») Why hasthe hole current increased compared to that found in E8.4?

[pasearaur sey Juarpess A1Isuap 2oy 21 (¢) (WU pp'¢ = 97 "YW pg1 0 = *} (1) suy]

8.2ISMALL-SIGNAL MODEL OF THE
pn JUNCTION

We have been considering the dc characteristics of the pn junction diode. When semi-

conductor devices with pn junctions are used in linear amplifier circuits, for example,
sinusoidal signals are superimposed on the dc currents and voltages, so that the

small-signal characteristics of the pn junction become important.

8.2.1 Diffusion Resistance

The idea current-voltage relationship of the pn junction diode was given by Equa
tion (8.23), where J and J; are current densities. If we multiply both sides of the
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Figure811 | Curve showing the concept of the
small-sgnd diffusion resistance.

equation by the junction cross-sectional area, we have

where I, isthe diode current and I; isthe diode reverse saturation current.

Assume that the diode is forward-biased with a dc voltage V, producing a dc
diode current {p . If we now superimposessmall, low-frequency sinusoidal voltage
asshown in Figure 8.11, then a small sinusoidal current will be produced, superim-
posed on thedc current. Theratio of sinusoidal current to sinusoidal voltage iscalled
the incremental conductance. In the limit of a very small sinusoidal current and
voltage, the small-signal incremental conductanceisjust the slope of the dc current-
voltagecurve, or

Thereciprocal of theincremental conductance istheincremental resistance, defined as

where Ipg isthe dc quiescent diode current.
If we assume that the diode is biased sufficiently far in the fonvard-bias region,
then the (—1) term can be neglected and the incremental conductance becomes
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The small-signal incremental resistance is then the reciproca function, or

The incremental resistance decreases as the bias current increases, and is inversdy
proportional to the slope of the |-V characteristic as shown in Figure 8.11. Thein
cremental resistance is also known as the diffusion resistance.

8.2.2 Small-Signal Admittance

In the last chapter, we considered the pn junction capacitance as a

reverse-bias voltage. When the pn junction diode is forward-hiased,

tance becomes a factor in the diode admittance. The small-signal admittance, or i
pedance, of the pn junction under forward bias is derived using the minority
diffusion current relations we have already considered.

QualitativeAnalysSs Before we delveinto the mathematical analysis, we can quil
itatively understand the physical processesthat lead to adiffusion capacitance, whi
is one component of the junction admittance. Figure 8.12a schematically shows?
pn junction forward biased with adc voltage. A small ac voltage is a so superimposed
on the dc voltage so that the tota forward-biased voltage can he written ai
V, = Vg + Vsinat,

As the voltage across the junction changes, the number of holes injected acrosj
the space charge region into the n region also changes. Figure 8.12b shows the hol
concentration at the space charge edge asa function of time. At ¢ = ¢, the ac vol

Time

(a) Ve Ve = P SID wr () =0

Figure8.121(3 A pn junction with an ac voltage superimposed on aforward-biased
de value; (b) the hole concentration versustime at the space charge edge; (c) the
hole concentrationversusdistancein then regionat three different times.
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is zero so that the concentration of holes at x = is just given by p,(0) =
Pan eXp(Vue/ Vi), which is what we have seen previously.

Now, as the ac voltage increases during its positive half cycle, the concentration
d holesat x = 0 will increase and reach a peak value at t = #;, which corresponds
to the peak value of the ac voltage. When the ac voltage is on its negative haf cycle,
the total voltage across the junction decreases so that the concentration of holes at
x = 0 decreases. The concentration reaches a minimum value at t = r», which corre-
spondsto the time that the ac voltage reaches its maximum negative value. The mi-
nority carrier hole concentration at x = 0, then, has an ac component superimposed
on the dc value as indicated in Figure 8.12b.

As previously discussed, the holes at the space charge edge (x = () diffuse into
the n region where they recombine with the majority carrier electrons. We will as-
sume that the period of the ac voltage is large compared to the time it takes carriers
to diffuse into the n region. The hole concentration as a function of distanceinto the
n region can then be treated as a steady-state distribution. Figure 8.12¢ shows the
steady-state hole concentrations at three different times. At t = 1, the ac voltage is
zero, so the r = 1, curve corresponds to the hole distribution established by the dc
voltage. The r = ¢, curve corresponds to the distribution established when the ac
voltage has reached its peak positive value, and the + = t> curve corresponds to the
distribution established when the ac voltage has reached its maximum negative
vaue. The shaded areas represents the charge A Q that is alternately charged and dis-
charged during the ac voltage cycle.

Exactly the same process isoccurring in the p region with theelectron concentra-
tion. The mechanism of charging and discharging of holesin then region and electrons
inthe pregion leadsto acapacitance. Thiscapacitanceiscalled diffusiem capacitance.
The physical mechanism of this diffusion capacitance is different from that of the
junction capacitance discussed in the last chapter. We will show that the magnitude of
the diffusion capacitance in a forward-biased pn junction is usually substantially
larger than the junction capacitance.

Mathematical Analysis The minority carrier distribution in the pn junction will
he derived for the case when a small sinusoidal voltage is superimposed on the dc
junction voltage. We can then determine small signal, or ac, diffusion currents from
these minority carrier functions. Figure 8.13 shows the minority carrier distribution
in a pn junction when a forward-biased dc voltage is applied. The origin, x =0,
is set at the edge of the space charge region on the n-side for convenience.
The minority carrier hole concentration at X =0 is given by Equation (8.7) as
Pa(0) = po exp (eV,/kT), where V, is the applied voltage across the junction.
Now let

V. =Vt o) (8.36)

where V; is the dc quiescent bias voltage and v (¢) is the ac signal voltage which is
superimposed on this dc level. We may now write
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n

‘|/— pu(o) = Puo EXP

= Pno

=0

Figure 8.13 | The dc characteristicsof aforward-biased
pn junction used in the small-signal admittancecal culations.

Equation (8.37) may he written as

pn(os I) = Pdc EXP (GUI(F))
where T

EVO
Pde = Pno €XP ﬁ

If we assume that |v;(f)| K (kT/e) = V;. then the exponential term in Eg
tion (8.38) may be expanded into a Taylor series retaining only the linear terms,
the minority carrier hole concentration at x = (¥ can he written as

@

If we assume that the time-varying voltage v1(¢) isa sinusoidal signal, we can
write Equation (8.40) as

where V; isthe phasor of the applied sinusoidal voltage. Equation (8.41) will he used
as the boundary condition in the solution of the time-dependent diffusion equetion
for the minority canier holesin the n region.

In the neutral n region (x = 0), the electric field is assumed to be zero, thusthe
behavior of the excess minority carrier holesis determined from the equation

where dp, isthe excess hole concentration in the n region. We are assuming that the
ac signal voltage v, (¢} issinusoidal. We then expect the steady-state solution for ép,
to he of the form of asinusoidal solution superimposed on the dc solution, or



8.2 Small-Signal Modd d the pn Junction

where 8pp{x ) isthe de excess carrier concentration and p; {x) isthe magnitude of the
a component of the excess carrier concentration. The expression for §pg(x) is the
same as that given in Equation (8.14),

Substituting Equation (8.43) into the differential Equation (8.42), we obtain

= jopi(x) e’ (8.44)

D #6py)) | 3*pi(x) pie| Spo(x) + pi(x) e’
P ax? dx2 oo

We may rewrite this equation, combining the time-dependent and time-independent
terms, as

If the ac component, p((x), is zero, then the first bracketed term isjust the differen-
tial Equation (8.10). which is identically zero. Then we have. from the second brack-
eted term.

?Ioting that L, = D,1,,. Equation (8.46)may be rewritten in the form

where

The general solution to Equation (8.48) is

One boundary condition isthat p,(x — +o¢) = 0, which implies that the coef-
ficient K; = 0. Then

prix) = Kje (8.51)

Applying the boundary condition at x = 0 from Equation (8.41)we obtain
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Thehole diffusion current density can he calculated at x = 0. Thiswill begive

by

If we consider a homogeneous semiconductor, the derivative of the hole concentra
tion will be just the derivative of the excess hole concentration. Then

We can write this equation in the form

Jp = Jp() + jp(l)

_ eDppno [exp (ﬁfg) -~ I]
x=0 LP kT (856]

where

d(8palx))

Jpg = *EDP 95

Equation (8.56) isthe dc component of the hole diffusion current density and isex-
actly thesame asin theideal /-V relation derived previously.
The sinusoidal component of the diffusion current density is then found from

where fp is the current density phasor. Combining Equations (8.57). {8.51), and
(8.52), we have

We can write the total ac hole current phasor as

whereA isthe cross-sectiona areaof the pnjunction. Substituting the expression for
C,,, weobtain

If wedefine

then Equation (8.60) becomes
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We can go through the same type of analysis for the minority carrier electronsin
the p region. We will obtain

where

Thetota ac current phasor is the sum of fp and /. The pn junction admittance
is the total ac current phasor divided by the ac voltage phasor, or

There is not a linear, lumped, finite, passive, bilateral network that can be syn-
thesized to give this admittance function. However, we may make the following
approximations. Assume that

These two assumptions imply that the frequency of the ac signal is not too large.
Then we may write

Substituting Equations (8.67a) and (8.67b) into the admittance Equation (8.65)

yields

If we combine the real and imaginary portions, we get

Equation (8.69) may be written in the form

Y =ga+ joly (8.70)



Figure8.14 | Minority carrier concentration changes with changing
forward-biasvoltage.

The parameter g is called the diffusion conductance and is given by

| i
8d = (T/,-) (]pl') + Fa) = DTrQ (873

where fp; is the dc bias current. Equation (8.71) isexactly the same conductance
we obtained previously in Equation (8.34). The parameter Cy is called thediffusi
capacitance and is given by

(8.72)

The physics of the diffusion capacitance may be seen in Figure 8.14. Thedc va-
ues of the minority carrier concentrations are shown along with the changes due to
the ac component of voltage. The A Q charge is aternately being charged and dis-
charged through the junction as the voltage across the junction changes. The change
in the stored minority carrier charge as afunction of the changein voltage isthe dif-
fusion capacitance. One consequence of the approximationswt,y <K | and wt,g « 1
isthat there are no"wiggles" in the minority carrier curves. The sinusoidal frequency
islow enough so that the exponential curves are maintained at all times. |

EXAMPLE 86

Objective

To calculatethe small-signal admittance of a pn junction diode. 1

This exampie is intended to give an indication of the magnitudeof the diffusion capad-
tance as compared with the junction capacitanceconsidered in the last chapter. The diffuson
resistancewill alsobe caculated. Assumethat N, > N, sothat pnp > n,,. Thisassumption
impliesthat 1,,, > . Let T=300K, 1,0 = 1077 s,and |,,,, = Ing = | mA.
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¥ Solution
The diffusion capacitance, with these assumptions, is given by

Thediffusionresistance is

V, 00259V

= — = - = 25.QQ
Ing | mA

Fa

B Comment

The vaue of 1.93 »F for the diffusion capacitance of a forward-biased pn junction is 3 to 4
orders of magnitude larger than the junction capacitance of the reverse-biased pn junctiun,
which we calculated in Example 7.5.

The diffusion capacitance tends to dominate the capacitanceterms in a torward-
biased pn junction. The small-signal diffusion resistance can be fairly small if the
diode current is a fairly large value. As the diode current decreases, the diffusion
resistance increases. We will consider the impedance of forward-biased pn junctions
again when we discuss bipolar transistors.

TEST YOUR UNDERSTANDING

E8.8 Asilicon mn junctiondiodeat T = 300K hasthe Following parameters: &; = 8 x

0% em™*, N, =2 % 10" em™*, D,, = 25em’/s, D, = 1D cm?/s, 1,5 =5 x 1077 s,
- and z,, = 1077 s. The cross-sectional areaisA = 10~ cm?. Determine thediffusion

resistance and diffusion capacitance if the diode isforward biased & (a} ¥, = 0.550 V

and (1) V, = 0.610 v.

(U607 =D "B Y11= Pa(q) U LT = 7D B 811 = M {v) suy]

E8.9 A GaAspnjunctiondiodeat T = 300 K has the same parameters given in E8.8 except
thet D, = 207 cm'ls and D, = 9.80 cm¥s. Determine the diffusion resistance and
diffusioncapacitance if the diode isforward biased at(a) ¥, = 0.970vand (b) ¥, =
1045V ULl ="3 B9+l = (g} U 0re'0 = "3 "B £97 = " (v) suy]

823 Equivalent Circuit

Thesmall-signal equivalent circuit of the forward-biased pn junctionisderived from
Equation (8.70).Thiscircuit isshown in Figure 8.15a. We need to add thejunctionca-

E pacitance, which will bein parallel with the diffusion resistance and diffusion capac-
itance. The last element we add, to complete the equivalent circuit, is a series resis-
tance. The neutral n and p regions have finite resistances sothe actual pn junction will
include a series resistance. The complete equivalent circuitisgiven in Figure 8.15b.
The voltage across the actual junction is ¥, and the total voltage applied to
Lthe pn diode is given by V,,,. The junction voltage V, is the voltage in the ideal
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Figure8.15| (a) Small-signd equivalent circuit of ided forward-biased
pn junction diode; (b) Complete small-signal equivalent circuit of pn
junction.

Figure8161 Forward-biased |-V
characterigticsof am junction diode
showing the effect of series resistance.

current—voltage expression. We can write the expression
V:lpp =V + fr,

Figure8.16 isaplot of the current—voltagecharacteristic from Equation (8.73) show-
ing the effect of the series resistance. A larger applied voltage is required to achieve
the same current value when a series resistance isincluded. In most diodes, the series
resistance will be negligible. In some semiconductor devices with pn junctions, how-
ever, the series resistance will be in a feedback loop: in these cases, the resistance is
multiplied by a gain factor and becomes non-negligible.
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TEST YOUR UNDERSTANDING

E8.10 A slicon pn junctiondiodea T = 300 K hesthe same parameters as those described
in ER.8. The neutral n-region and neutrd p-region lengths are 0.01 cm. Estimate the
scries resistanceof the diode (neglect ohmic contacts).(z5 9 = ¥ “suy)

(8.3 GENERATION-RECOMBINATION CURRENTS

2 In the derivation of the ideal current—voltage relationship, we neglected any effects
*occurring within the space charge region. Since other current components are gener-
aed within the space charge region, the actual I-V characteristics of a pn junction
diode deviate from the ideal expression. The additional currents are generated from
the recombination processes discussed in Chapter 6.
The recombination rate of excess electrons and holes, given by the
Shockley—Read—-Hatl recombination theory, was written as

i The parameters # and p are, as usual. the concentrations of electrons and holes,

3.1 Reverse-Bias Generation Current

“For apn junction under reverse bias, we have argued that the mobile electrons and
holes have essentially been swept out of the space charge region. Accordingly, within
kl:espace charge region, n = p = 0, The recombination rate from Equation (8.74)

comes

The negative sign implies a negative recombination rate; hence, we are really
generating el ectron—hole pairs within the reverse-biased space charge region. The re-
combination of excess electrons and holes is the process whereby we are trying to
reestablish thermal equilibrium. Since the concentration of electrons and holes is es-
sentialy zero within the reverse-biased space charge region. electrons and holes are
being generated via the trap level to also try to reestablish thermal equilibrium. This
generation process is schematically shown in Figure 8.17. Asthe electrons and holes
are generated. they are swept out of the space charge region by the electric field. The
flow of charge is in the direction of a reverse-bias current. This reverse-biasgenera-
non current, caused by the generation of electrons and holes in the space charge
region. is in addition to the ideal reverse-bias saturation current.

We may calculate the density of the reverse-bias generation current by consider-
ing Equation {8.75). If we make a simplifying assumption and let the trap level be at

ltheintrinsic Fermi level, then from Equations (6.92) and {6.97), we havethat n' = n;
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i

e

- —--—

Figure8.17 | Generation processin a reverse-biasedpn
junction.

and p’ = n,. Equation (8.75) now becomes

Using the definitionsof lifetimes from Equations (6.101) and (6.104), we
Equation (8.76) as

R=—1"
Tpoy + Tho

If we definea new lifetimeas the average of 7,0 and 7. Or

then the recombination rate can he written as

—H;

21'()

The negative recombination rate implies ageneration rate, so G isthe generationrate.
of electrons and holesin the space charge region.
The generation current density may he determined from

w
Joen = eG dx (8.80)
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where the integral is over the space charge region. If we assume that the generation
rateis constant throughout the space charge region, then we obtain

The total reverse-bias current density isthe sum of theideal reverse saturation
current density and the generation current density, or

The ideal reverse saturation current density J; is independent of the reverse-bias
voltage. However, J.., isafunction of the depletion width W. which in turn isafunc-
tion of the reverse-bias voltage. The actual reverse-bias current density, then, is no
longer independent of the reverse-bias voltage.

¥ Objective

To determine the relative magnitudes of the ideal reverse saturation current density and the
generation current density in asilicon pn junctiona T = 300 K.

Consider the silicon pn junction described in Example 8.2 and J&t 74 = Tpp = 70 =
5x 1077 s,

B Solution

The idedl reverse saturation current density was calculated in Example 8.2 and was found to
be/J, = 4.15 x 10~"" Afem?. The generation current density iSagain given by Equation (8.81)
&

and the depletion width is given hy

If we assume. for example, that Vi, + Ve =3 V. then using the parameters given in
Example 8.2 we find that W = 1.14 x 10~* cm. and then calculate the generation current
density to he

Joen = 2,74 x 1077 Adem’

B Comment

Comparing the solutions for the two current densities, it isobvious that. for the silicon pn junc-
tion diode & room temperature, the generation current density is approximately four orders of
magnitude larger than the ideal saturation current density. The generation current is the domi-
nant reverse-biascurrent in asilicon pn junctiondiode.

EXAMPLE 8.7
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TEST YOUR UNDERSTANDING

E8.11 A GaAs pn junction diode hasthe same parameters as describedin E8.9. (a) Cdar
late the reverse-biasgeneration current if the diode is reversebiesed & vy =5V.
(b) Determinethe ratio of 1., calculatedin part («) to the ideal reverse-saturation "
current 5. [,0T x €6'1 (g} 'V 5-QI X €0°'T = Uy (D) 'suv] |

8.3.2 Forward-Bias Recombination Current

For the reverse-biased pn junction, electrons and holes are essentially completely
swept out of the space charge region so that # == p = @. Under forward bias, how
ever, electrons and holes are injected across the space charge region, so we do, i
fact, have some excess carriers i n the space charge region. The possibility existstha
some of these electrons and holeswill recombine within the space charge region am
not become pan of the minority carrier distribution.

The recombination rate of electrons and holes is again given from Egua
tion (8.74) as

C,CoN, (np — n?)

k= Contn)+Colp+ p)

Dividing both numerator and denominator by C,C,#, and using the definitionso
T.o and T,p, We may write the recombination rate as

Figure 8.18 shows the energy-band diagram of the forward-biased pn junction
Shown in the figure are the intrinsic Fermi level and the quasi-Fermi levels fo

i

Figure8.18! Energy-banddiagram of aforward-biased pn
junction including quasi-Fermi levels.
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electrons and holes. From the results of Chapter 6, we may write the electron con-
centration as

and the hole concentration as

where £¢,, and Er,, are the quasi-Fermi levelsfor electrons and holes, respectively.
From Figure 8.18, we may note that

where V,, isthe applied forward-biasvoltage. Again, if we assumethat thetrap level
is a the intrinsic Fermi level, then n' = p’ = n;. Figure 8.19 shows a plot of the
relative magnitude of the recombination rate as a function of distance through the
gpace charge region. This plot was generated using Equations (8.83), (8.84). (8.85),
and (8.86). A very sharp peak occurs at the metallurgical junction (x = 0).

At the center of the space charge region, we have

eV,
Efpn — Epi = Epi — pp = 2a (8.87)
Redive
recombination
rate
Rddivedistance through space
charge region

Figure8.19 | Relative magnitude of the
recombination rate through the space
charge region of aforward-biasedpn

junction.
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Equations (8.84) and (8.85) then become
and

If we assume that n' = p" — 11, and that 1,4 = 1,0 = 19, then Equation (8.83)
becomes
n; [exp(eV,/kT) — 1]
21y [exp (eV,/2kT) T 1]
which is the maximum recombination rate for electrons and holes that occurs & t
center of the forward-biased pn junction. If we assume that V, > kT /e, we

neglect the (—1) term in the numerator and the (+1) term in the denomina
Equation (8.90} then becomes

Roux = pi A exp (i)

R max —

kT
The recombination current density may be calculated from !
W
dres =[ eRdx (892
0

where again the integral isover the entire space charge region. In this case, however,
the recombination rate is not a constant through the space charge region. We havg
caleulated the maximum recombination rate at the center of the space charge region,
SO we may write

where x’ is a length overwhich themaximum recombination rate i seffective. However
since 7y may not be awell-defined or known parameter, it iscustomary to write

where W is the space charge width.

TEST YOUR UNDERSTANDING

E8.12 Considerasilicon pnjunctiondiode at T = 300 K with the same parameters given in
E%.8. Thediodeisforward biased & v, = 0.50V. (a)Cdculatethe forward-biased
recombination current. (b) Determinethe ratio of 1. calculatedin pan () to the
ided diffusioncurrent. ;01 * 174 (q) v ¢ OL % 0£'g = ™ (#) suy]
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Figure 8.20| Because of recombination, additiona holes
from the p region must be injected into the gpace charge
region to establish the minority carrier hole concentrationin
the n region.

8.3.3 Total Forward-BiasCurrent

The total forward-bias current density in the pn junction is the sum of the recombi-
nation and the ideal diffusion current densities. Figure 8.20 shows a plot of the mi-
nority carrier hole concentration in the neutral n region. Thisdistribution yields the
ided holediffusion current density and isafunction of the minority carrier hole dif-
fusion length and the applied junction voltage. The distribution is established as a
result of holes being injected across the space charge region. If, now, some of the in-
jected holesin the space charge region are lost due to recombination, then additional
holes must be injected from the p region to make up for thisloss. The flow of these
additional injected carriers, per unit time, results in the recombination current. This
added component is schematically shown in the figure.

3 The total forward-bias current density is the sum of the recombination and the

. idedl diffusion current densities, so we can write

J=detin (8.95)

where Jc isgiven by Equation (8.94) and J/;; isgiven by

(8.96)

The (—1} term in Equation (8.23) has been neglected. The parameter J, is the ideal
reverse saturation current density, and from previous discussion, the value of J.o
from the recombination current is larger than the value of J;.
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1o (J) o=t

Total
current. J
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Figure 8.21 | Ideal diffusion.recornhination,and tota
current in aforward-biasedpn junction.

If we take the natural log of Equations (8.94)and (8.96).weobtain

eV v
NJee =Indyo Tt —= =InJj, + =2
rec 0 kT 079y
and
Vi

'V
=inst+ S =iyt
InJg In J; T InJ, v,

Figure 8.21 shows the recombination and diffusion current components plotted o

log current scale as a function of V,/V,. The slopes of the two curves are not

same. Also shown in the figureis the total current density —thesum of the twoc

rent components. We may notice that, at alow current density, the recombination cur-

rent dominates, and at ahigher current density, the ideal diffusion current dominates.
In general, the diode current-voltage relationship may he written as

where the parameter # is called the idealitv factor. For alarge forward-bias voltage.
n 2z 1 when diffusion dominates, and for low forward-bias voltage, » = 2 when
recombination dominates. There is a transition region where | < n < 2.
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41 JUNCTION BREAKDOWN

theideal pn junction, a reverse-bias voltage will result in asmall reverse-bias cur-

[rcnt through the device. However, the reverse-bias voltage may not increase without

" it; & some particular voltage, the reverse-bias current will increase rapidly. The
lied voltage at this point iscalled the breakdown voltage.

Two physical mechanisms give rise to the reverse-bias breakdown in a pn junc-
on; the Zener effect and the avalanche effect. Zener breakdown occurs in highly
oped pn junctions through a tunneling mechanism. In a highly doped junction, the

conduction and valence bands on opposite sides of the junction are sufficiently close
during reverse bias that electrons may tunnel directly from the valence band on the
p Sdeinto the conduction band on the nside. Thistunneling processis schematically
shown in Figure 8.22a.

The avalanche breakdown process occurs when electrons and/or holes, moving
across the space charge region, acquire sufficient energy from the electric ticld tocre-
ae electron-hole pairs by colliding with atomic electrons within the depletion
region. The avalanche process is schematically shown in Figure 8.22b. The newly
created electrons and holes move in opposite directions due to the electric field and
thereby add to the existing reverse-bias current. In addition, the newly generated
electrons and/or heles may acquire sufficientenergy to ionize other atoms, leading to
the avalanche process. For most pn junctions, the predominant breakdown mecha-
nism will be the avalanche effect.

If we assume that a reverse-bias electron current {,,, enters the depletion region
a x = 0 asshown in Figure 8.23, the electron current |,, will increase with distance
through the depletion region due to the avalanche process. At x = W, the electron

p region n region

P Space charge region

ot ——

of dedrons N

~IF of holes

Figure8.22 { (a) Zener breskdown mechaniam in a reverse-biased pn junction; (b) avaanche breskdown

processin a reverse-biascd pn junction.
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P Spacecharge region n
f 1 —

Figure 8.231 Electron and hole current
components through the space charge
region during avalanche multiplication.

current may he written as

where M, isa multiplication factor. The hole current is increasing through the de-|
pletion region from the n to p region and reaches a maximum value at x = 0. The
total current is constant through the pn junction in steady state.

Wecan writean expression for the incremental electron current at some point x as

dl,(x) = L(Da,dx T 1,(x)e, dx (8.100)

where ,, and a, are the electron and hole ionization rates, respectively. The ioniza-
tion rates are the number of electron-holepairs generated per unit length by an elec-
tron (a,,)or by ahole (w,). Equation (8.100) may he written as

Thetotal current I isgiven by
I =5Lx)+ I(x) (8.102)

which is a constant. Solving for {,{x} from Equation {8.102) and substituting into
Equation (8.101), we obtain

If we make the assumption that theelectron and hole ionization rates areequal so



then Equation (&.103} may be simplified and integrated through the space charge
region. We will obtain

Using Equation (8.99), Equation (8.105) may bc written as
Since M, I, = | and since 1, (0) = I,,. Equation (8 106) becomes

The avalanche breakdown voltage is defined to be the voltage a which M,, ap-
proaches intinity. The avalanche breakdown condition is then given by

(8.108)

Theioniration ratesare strong functionsof electricfield and, since theelectricfieldis
notconstant through the space charge region. Equation (8.108} is not easy toeval uate.

If we consider, for example, a one-sided p+n junction, the maximum electric
field isgiven by

The depletion width r,, 15 given approximaiely as

where Vg is the magnitude of the applied reverse-hias voltage. We have neglected the
built-in potential V,.

If we now dctine Vx to he the hreakdown voltage Vg, the maximum clcctric
field. Eyax. Will be defined asacritical electric field, E.:, a breakdown. Combining
Equations(8.109) and (8.110), wc may write

f where N is the semiconductordoping in the low-doped region of the one-sided junc-

tion. The critical clcctric field, plotted in Figure 8.24, is a slight function of doping.

We have been considering a uniformly doped planar junction. The breakdown

P voltage will decrease for alinearly graded junction. Figure 8.25 shows a plot of the

breakdown voltage for a one-sided abrupt junction and a linearly graded junction. If

we takeinto account the curvature of a diffused junction as well, the breakdown volt-
age will be further degraded.
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8.5 Charge Storageand Diode Transents

For adoping concentrationd 4 x 10** em™, the critical dectric field, from Figure 8.24,
isgpproximately 3.7 x 10° ¥/cm. Then from Equation (8.111), the breskdownvoltageis 110 V,
which correlates quite well with theresultsfrom Figure 8.25.

E Conclusion
#s Figure 8.25 showc. the breakdown Vvoltageincreasesas the doping concentrationdecreases
in the low-doped region.

TEST YOUR UNDERSTANDING

E813 Aone-sided, planar, uniformly doped silicon pn junction diode is required to have
areverse-biasbreskdown voltage of v, = 60 V. Whd is the maximum doping
concentration in the low-doped region such that this specification is mel
(¢-wo (01 X § == TN SUY)

ES814 Repeat E8.13for aGaAs diode. (W2 01 X §'T =~ N "suvy)

*8.51 CHARGE STORAGE AND DIODE TRANSIENTS

The m junction is typically used as an electrical switch. In forward bias, referred to
astheon state, arelatively large current can be produced by a small applied voltage;
inreverse bias, referred to as the off state, only a very small current will exist. Of pri-
may interest in circuit applications is the speed of the pn junction diode in switching
dtates. We will qualitatively discuss the transients that occur and the charge storage
effects.We will simply state the equations that describe the switching times without
ay mathematical derivations.

85.1 TheTurn-off Transient

Supposewe want to switch adiode from theforward bias on stateto the reverse-bias
off state. Figure 8.26 shows a simple circuit that will switch theapplied biasatt = O.
Fort < O, theforward-biascurrent is

The minority carrier concentrationsin the device, for the applied forward voltage Vg,
are shown in Figure 8.27a. There isexcess minority carrier charge stored in both the
pand nregions of the diode. The excess minority carrier concentrations at the space
charge edges are supported by the forward-biasjunction voltage V,,. When the volt-
age is switched from the forward- to the reverse-bias state, the excess minority car-
rier concentrations at the space charge edges can no longer be supported and they
dart to decrease, as shown in Figure 8.27b.

The collapse of the minority carrier concentrations at the edges of the space
charge region leads to large concentration gradients and diffusion currents in the
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Figure 8.26 | Simplecircuit for switching a diode from |
forward to reverse bias.

reverse-bias direction. If we assume, for the moment, that the voltage acrosst
diode junction is small compared with V¢, then the reverse-bias current is
approximately

Thejunction capacitancesdo not allow the junction voltage to changeinstantaneoudly.
If the current f, were larger than this value, there would be a forward-bias voltage]
across the junction, which would violate our assumption of a reverse-bias current. If
the current /;z were smaller than this value, there would be a reverse-bias voltage]
across the junction, which means that the junction voltage would have changed in-
stantaneously. Since the reverse current is limited to the vaue given by Equation
(8.113), the reverse-bias density gradient is constant; thus, the minority carrier con-
centrations at the space charge edge decrease with time as shown in Figure 8.27b.

Thisreversecurrent {z will be approximately constant for 0% < ¢ < ¢;, wheret,
is called the storage ti ne. The storage time is the length of time required for the
minority carrier concentrations at the space charge edge to reach the thermal-
equilibrium values. After this time, the voltage across the junction will begin to
change. The current characteristic isshown in Figure 8.28. The reverse current isthe
Row of the stored minority carrier charge, which is the difference between the minor-
ity carrier concentrationsat + = 0~ andt = oo, as was shown in Figure 8.27b.

The storage time £, can be determined by solving the time-dependent continuity
equation. If we consider a one-sided p*n junction, the storage time is determineolI
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A AN
Forward bias Forward bias
diffusion diffusion
of elecarons of hules
Pty
PR Reverse bias} Reverse bias
diffusion diffusion
ot electrons of holes
(b)

Figure8.27 | (a) Steady-state forward-bias minority carrier
concentrations: (b) minority carrier concentrations at various
times during switching.

Figure8.28 | Current characteristic
versus time during diode switching.
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from the equation

whereerf (x) is known as the error function. An approximate solution for the
time can he obtained as

The recovery phase fort = ¢, is the time required for the junction to reach its
steady-state reverse-bias condition. The remainder of the excess charge is bei
removed and the space charge width is increasing to the reverse-bias value. ...
decay time #; is determined from

Thetota turn-off timeisthesum oft, and t-.

To switch the diode quickly, we need to he able to produce a large reverse cur-
rent as well as have a small minority carrier lifetime. In the design of diode circuits.
then, the designer must provide a path for the transient reverse-bias current pulsc i
order to he able to switch the diode quickly. These same effects will be considered
when we discuss the switching of bipolar transistors.

TEST YOUR UNDERSTANDING g

E8.15 A one-dded p*n dlicon diode, that hasa forward-biascurrent of 1, = 1.75mA, is
switched to reverse bias with an effectivereverse-biasvoltageof V; = 2V ad an
effectiveseries resistanceof R, = 4 k2. The minority carrier hole lifetimeis
1377 s. (a) Determinethestoragetimes,. (5 Caculatethe decay time ¢ (<) Whet
isthe turn-off time of the diode?

[5,-01 X Z=(3}'s , 01 x6T1(g) 'S, 01 X 9pL 0 (?) su¥]

8.5.2 TheTurn-on Trandgent

Theturn-on transient occurs when the diode is switched from its " off" state into the
forward-hias "on" staie, The turn-on can be accomplished by applying a forward-
bias current pulse. The first stage of turn-on occurs very quickly and is the length of
time required to narrow the space charge width from the reverse-bias value to i
thermal-equilibrium value when V, = 0. During this time, ionized donors and
ceptors are neutralized as the space charge width narrows.

The second stage of the turn-on process is the time required to establish th
minority-carrier distributions. During this time the voltage across the junction isin-
creasing toward its steady-state value. A small turn-on time isachieved if the minar-
ity carrier lifetime issmall and if the forward-bias current is small. J
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*8.6 | THE TUNNEL DIODE

The runnel diodeis a pn junction in which both the n and p regions are degenerately
doped. As we discuss the operation of this device, we will find a region that exhibits
anegativedifferential resistance. The tunnel diode was used in oscillator circuitsin
the past, but other types of solid-state devices are now used as high-frequency oscil-
lators. thus, the tunnel diodeisreally only of academic interest. Nevertheless, thisde-
vice does demonstrate the phenomenon of tunneling we discussed in Chapter 2.

Recall the degenerately doped semiconductors we discussed in Chapter 4: the
Fermi level isin the conduction band of adegenerately doped n-type material and in
the valence band of a degenerately doped p-type material. Then, even at T = 0 K,
electrons will exist in the conduction hand of the n-type material, and holes (empty
states) will exist in the p-type material.

Figure 8.29 shows the energy-band diagram of a pn junction in thermal equilib-
rium for the case when both the nand p regions are degenerately doped. The deple-
tion region width decreases as the doping increases and may be on the order of
approximately 100 A for the case shown in Figure 8.29. The potential barrier at the
junction can be approximated by a triangular potential barrier, as is shown in Fig-
ure 8.30. This potential harrier is similar to the potential barrier used in Chapter 2 to
illugtrate the tunneling phenomenon. The barrier width is small and the electric field
in the space charge region is quite large; thus, afinite probability exists that an elec-
tron may tunnel through the forbidden band from one side of the junction to the other.

We may qualitatively determine the current—voltage characteristics of the
tunnel diode by considering the simplified energy-band diagrams in Figure 8.31.

Potential
p region

|

boa

I l

| |

| Spa;e 1

charge region

Figure 8.291 Energy-hand diagram of an junctionin Figure 8.30| Triangular potential
thermal equilibrium in which both the nand p regions are harrier approximation of the potential

degenerately doped. harrierin the tunndl diode.
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Figure 8.31 | Simplified enetgy-band diagrams and -V characteristics of the tunnel
diode a (a) zero bias; {b) adight forward bias; () aforward bias producing
maximum tunneling current.



8.6 The Tunnel Diode

(e}

Figure 8.31 | (concluded} (d) A higher forward bias showing less tunneling current; () a
forward bias for which the diffusion current dominates.

Figure 8.31a shows the energy-band diagram at zero bias, which produces zero
current on the /-V diagram. If we assume, for simplicity, that we are near 0 K, then
al energy states!are filled below E; on both sides of the junction.

Figure 8.31b shows the situation when asmall forward-biasvoltage is applied to
the junction. Electrons in the conduction band of the n region are directly opposite to
empty statesin the valence band of the p region. Thereisafinite probability that some
of these electrons will tunnel directly into the empty states, producing a forward-
bias tunneling current as shown. With a slightly larger forward-bias voltage, as in
Figure 8.31¢, the maximum number of electrons in the nregion will be opposite the
maximum number of empty states in the p region; this will produce a maximum tun-

As the forward-bias voltage continues to increase, the number of electrons on
the nside directly opposite empty states on the p side decreases, asin Figure 8.31d,
and the tunneling current will decrease. In Figure 8.31e, there are no electrons on the



CHAPTER 8 The on Junction Diode l

Figure 8.32 | (a) Smplified energy-band diagram of atunne diode with areverse-
bias voltage: (b) I~V characteristic of a tunnel diode with areverse-biasvoltage.

n side directly opposite available empty states on the p side. For this forward-bi
voltage, the tunneling current will be zero and the normal ideal diffusion current wi
exist in the device as shown in the 7-V characteristics.

The portion of the curve showing a decrease in current with an increase in volt-
ageistheregion of differential negative resistance. The range of voltage and current
for thisregion isquite small; thus, any power generated from an oscillator using this
negative resistance property would also befairly small.

A simplified energy-band diagram of the tunnel diode with an applied reverse-
bias voltage isshown in Figure 8.32a. Electronsin the valence band on the p sideare
directly opposite empty states in the conduction band on the n side, so electronscan
now tunnel directly from the p region into the n region, resulting in a large reverse-
bias tunneling current. Thistunneling current will exist for any reverse-bias voltage.
The reverse-bias current will increase monotonically and rapidly with reverse-bias
voltage as shown in Figure 8.32b.

8.7 ITSUMMARY

m  When aforward-biasvoltage is gpplied acrossa m junction (p region positive with
respect to the n region), the potentia barrier is lowered so that holes frem the p region
and electrons from the n region can Row across the junction.

m Theboundary conditionsrelating the minority carrier hole concentration in then region
a the space charge edge and the minority carrier electron concentrationin the p region
a the space charge edge were derived.

m Theholestha are injected into then region and theelectronsthat are injectedinto the
p region now become excess minority carriers. The behavior of the excess minority
carrier is described bv the ambipolar transoon eauation develooed and described in
Chapter 6. Solving the ambipolar transpon equation and using the boundary conditions.
the steady-state minority carrier hole and electron concentrationsin the n region ad
p region, respectively, were derived.
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Glossary of Important Terms

|  Gradients exist in the minority carrier hole and electron concentrations so that minority
carrier diffusion currents exist in the pn junction. These diffusion currents yield the
ideal current—voltage relationship of the pn junction diode.

I Thesmal-signa equivalent circuit of the pn junction diode was developed. The twu
parameters of interest are the diffusion resistance and the diffusion capacitance.

B Excesscarriers are generated in the space charge region of a reverse-biased pn junction.
These carriersare swept out by theelectric field and create the reverse-bias generation
current that isanother component of the reverse-bins diode current. Excess carriers
recombine in the space charge region of aforward-biased pn junction. Thisrecombination
pmcess creates the forward-bias recombination current that is another component of the
forward-biasdiode current.

I Avalanche hreakdown occurs when a sufficiently large reverse-bias voltage is applied to
thepn junction. A large reverse-hiascursent may then beinduced in the pn junction.
The breakdown voltage as a function of the doping levels in the pn junction was
derived. In aone-sided pn junction, the breakdown voltage is a function of the doping
concentration in the low-doped region.

B Whenapnjunction is switched from forward bias to reverse bias, the stored excess
minority carrier charge must be removed from the junction. The time reguired to
remove this charge is called the storage time and is a limiting factor in the switching
speed of adiode.

GLOSSARY OF IMPORTANT TERMS

avalanche breakdown The process whereby a large reverse-bias pn junction current is cre-
ated due to the generation of electron—hole pairs by the collision of electrons andfor holes
with atomic electrons within the space charge region.

carrier injection The flow of carriers across the space charge region of a pn junction when
avoltage isapplied.

critical electricfield The peak electric field in the space charge region at breakdown.

diffusioncapacitance The capacitance of aforward-biased pn junction dueto minority car-
rier storage effects.

diffusionconductance Theratio of alow-frequency, small-signal sinusoidal current to volt-
age in aforward-biased pn junction.

diffusionresistance Theinverse of diffusion conductance.

forward bias The condition in which a positive voltage is applied to the p region with re-
spect to then region of a pn junction so that the potential barrier between the two regions
islowered below the thermal-equilibrium value.

generation current The reverse-bias pn junction current produced by the thermal genera-
tion of electron-hole pairs within the space charge region.

"long'" diode A pn junction diode in which both the neutral p and n regions are long com-
pared with the respective minority carrier diffusion lengths.

recombination current The forward-bias pn junction current produced as a result of the
How of electronsand holes that recombine within the space charge region.

reversesaturation current Theideal reverse-biascurrent in a pn junction.

"short" diode Apnjunctiondiode in which at least one of the neutral porn regionsis short
compared to the respective minority carrier diffusion length.
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storage time  The time required for the excess nunority carrier concentrations a thr space

charge edge to go from their steady-state values to zero when the diode is switched
forward to reverse bias.

CHECKPOINT

After studying this chapter, the reader should hare the ability to:

Describe the mechanism of charge flow across the space charge region of a pn jusiction
when a forward-bias voltage is applied.

State the boundary conditions for the minority carrier concentrations at the edge of the
space charge region. 1
Derive the cxpressions for the steady-state minority carrier concentrations in the 1
pn junction.

Derive the ideal curreni—voltage relationship for a pn junction diode.

Desceribe the characteristics of a*short™ diode.

Describe what is meant by diffusion resistance and diffusion capacitance.

Describe generation and recombination currents in a pn junction. 3
Describe the avalanche breakdown mechanism in apn junction. ‘
Describe the turn-oil transient responsc in a pn junction.

REVIEW QUESTIONS

1 Why does the potential barrier decrease in a torward-btased pn junction?
2. ‘Write the boundary conditionsfor the excess minority carriers in apn junction (a) under
forward bias and (b) under reverse bias.
3 Sketch the steady-state minority carrier concentrations in a forward-biased pn junction.
4. Explain the procedure that isused in deriving the ideal current—voltage relationship ina
pn junction diode.
5. Sketch the electron and hole currents through a forward-biased pn junction diode.
6. What is mecant by a"short™ diode?
7. (a)Explain the physical mechanism of diffusion capacitance. (b) What is diffusion
resistance?
8. Explain the physical mechanism of the (&) generation current and (b) recombination
current.
9. Why docs the breakdown voltage of a pr junction decrease as the doping concentration
increases'?
10. Explain what is meant by storage time.
PROBLEMS

Section 8.1 pn Junction Current

81

(¢1) Consider an ideal pn junction diode at T = 300 K operating in the forward-bias
region. Calculate the change in diode voliage that will cause a factor of 10 increase
in current. (#) Repeat part {¢) for afactor of 104 increase in current.



Calculate the applied reverse-bias voltage at which theideal reverse current in apn
junction diode & T = 300 K reaches 90 percent of its reverse saturation current value.
An idedl silicon pn junctionat T = 300K is under forward bias. The minority carrier
lifetimesare 7,4 = L0~ sand 1, = 10~7 s. The doping concentration in the n region
isN; = 10" cm~*, Plot theratio of hole current to the total current crossing the
space charge region as the p-region doping concentration varies over the range

101 < N, < 10" cm . (Usealog scale for the doping concentrations.)

A silicon pn junction diode isto be designed to operateat T = 300 K such that the
diode currentis | = 10 mA at adiode voltage of ¥V, = 0.65 V. Theratio of electron
current to total current is to be 0.10 and the maximum current density is to be no more
than 20 A/cm?. Use the semiconductor parameters given in Example 8.2.

For asilicon pn junction at T = 300 K, assume 1,y = 0.1z, and 4, = 2.4 11,. The
ratio of electron current crossing the depletion region to thetotal current is defined as
the electron injection efficiency. Determine the expression for the electron injection
efficiency asa function of (a) ¥,/N, and (b) the ratio of n-type conductivity to p-type
conductivity.

Consider ap™n silicon diode at T = 300 K with doping concentrations of ¥, =

10% ¢cm~* and N, = 10'8 em™?, The minority carrier hole diffusion coefficient is
D, =12 cm®/s and the minority carrier hole lifetime is r,0 = 10-7 s. The cross-
sectional areais A= 10~* cm?®. Calculate the reverse saturation current and the
diode current at a forward-bias voltage of 0.50 V.

95 percent of the current in the depletion region iscarried by electrons?

Asilicon pn junction with a cross-sectional areaof 1G~* cm? has the following prop-
ertiesat T = 300K:

nregion p region

(@) Sketch the thermal equilibrium energy-band diagram of the pn junction, including
the values of the Fermi level with respect to theintrinsic level on each side of the
junction. (b) Calculate the reverse saturation current {, and determine the forward-
biascurrent | a aforward-bias voltage of 0.5 V. (c) Determinethe ratio of hole
current to total current at the space charge edge x,, .

A germanium p*ndiodea T = 300 K hasthefollowing parameters: ¥, = 10 em~3,
Ny =10"%em ™, D, = 49cm?/s, D, = 100 cm?/fs, Tyo = Tup = 5 8, and A =

104 cm?. Determine the diode current for (a} aforward-bias voltage of 0.2 V and

(b) areverse-hias voltage of 0.2 V.

Ann*p silicon diodeat T = 300K has the following parameters: ¥, = 10" em~3,
N, = 10" cm™*, D,, = 25 em*/s, D, = 10cm*/s, Tyo = Tpo = 1 us, and

A = 10~* cm?. Determine the diode current for (a) aforward-bias voltage of 0.5 V
and (b) areverse-bias voltage of 0.5V.

|
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811

8.12

8.13

8.14

8.15

8.16

817

Figure8.33I Figurefor Figure 8.341 Figure for ‘
Problem 8.11. Problem 8.12.

A silicon step junction has uniform impurity doping concentrations of N, = 5 x

10% cm™* and ¥y =1 x 10" ¢m *, and a cross-sectional areaof A = 107+ cm?.
Let 7,9 = 0.4 s and ¢, = 0.1 us. Consider the geometry in Figure 8.33. Calculate
(a) the ideal reverse saturation current due to holes, (b) the ideal reverse saturation
current due to electrons, {c) the hole concentration at x,, if V, = %V;,,-. and (d) the
electron current atx = x,, + 3 L, for ¥, = v,

Consider the ideal long silicon pa junction shown in Figure 8.34. T = 300 K. The

n region is doped with 10" donor atoms per cm' and the p region is doped with

5 x 10' acceptor atoms per cm?, The minority carrier lifetimesare 1,y = 0.05us
7,5 == 0.01 us. The minority carrier diffusion coefficientsare D, = 23 em*/s and

D, =8cm’/s. The forward-bias voltage is V, = 0.610 V. Calculate () the excess
hole concentration as afunction of x for x = 0, (b) the hole diffusion current densi
atx =3 x 107* cm. and (r)the electron current density at x = 3 x 10~ ¢m.

The limit of low injection is normally defined to he when the minority carrier concen-
tration at the edge of the space charge region in the low-doped region becomes equal 1
to one-tenth the majority carrier concentration in this region. Determine the value of
the forward-bias voltage a which the limit of low injection is reached for the diode |
described in (a) Problem 8.4 and (&) Problem 8.10.

The cross-sectional areaof asilicon pn junction is 10~ em”. The temperature of the
diode isT = 300K, and the doping concentrations are ¥; = 10" cm=* and N,, =

8 x 10'3 em~3. Assume minority carrier lifetimes of 7,5 = 10 s and 1,y = 10775,
Calculate the total number of excess electrons in the p region and the total number of
excesshalesin the n region forie) vV, = 0.3V, (h)V, =04V, and (¢} V, = 0.5V.
Consider two ideal pnjunctionsat 7 = 300 K. having exactly the same electrical ad
physical parameters except for the bandgap energy of the semiconductor materials.
The tint pn junction has a bandgap energy of 0.525¢V and aforward-bias current of
10 mA with V¥, = 0.255 V. For thesecond pn junction, *'design” the bandgap energy
so that aforward-bias voltage of ¥, = 0.32 V will produce a current of 10 u A,

The reverse-bias saturation current isa function of temperature. (ery Assuming that |,
varies with temperature only from the intrinsic carrier concentration, show that we
can write |, = CT' exp(—£,/&T) where Cis aconstant and a function only of the
diode parameters. (i} Determine the increase in |, as the temperature increases from
T =300K toT == 400K for a(i) germanium diode and (i} silicon diode.

Assume that the mobilities, diffusion coefficients, and minority carrier lifetime
parameters are independent of temperature (use the 7 = 300 K values). Assume that
T = 107%58, 7,0 = 1077 5, Ny =5 x 1% em™*, and N,, = 5 X 10** cm™*. Plot the
ideal reverse saturation current density from 7 = 20U K to 7 = 500 K for (a} silicon,
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(b) germanium, and (c)gallium arsenide ideal pn junctions. (Use alog scale for the
current density.)

An ideal uniformly doped silicon pn junction diode has a cross-sectional area of

10~* cm?. Thep region isdoped with 5 x 10'* acceptor atoms per cm® and then region
is doped with 10> donor atoms per cm* . Assume that thefollowing parameter values
are independent of temperatare: £, = 1.10eV, 1,y = 7,y = 1077 s D, = 25 cm’/s,
D, = 10em¥s, N, =2.8x 10" em™ . and N, = 1.04 x 10" em™". The ratio of the
forward to reverse current isto be no less than 10* with forward- and reverse-bias
voltagesof 0.50 V. Also, thereverse saturation current isto be no larger than | pA.
What is the maximuim temperature at which the diode will meet these specifications?

Aptnsilicon diode isfabricated with a narrow n region as shown in Figure 8.10,
in which W, < L,,. Assume the boundary condition of p,, = p.0 @t x = x, + W,
(a)Derive the expression for the excess hole concentration Sp,,(x) asgiven by
Equation (8.27). (&) Using the results of pan (a),show that the current density in
the diodeis given by

A silicon diode can be used to measure temperature by operating the diode at a fixed
forward-bias current. The forward-bias voltage isthen afunction of temperature. At

T = 300 K. the diode voltage isfound to be 0.60 V. Determine the diode voltage at
(@) T=310K and (h)T = 320 K.

Aforward-biased silicon diode is to be used as a temperature sensor. The diode is for-
ward biased with aconstant current sourceand I, is measured asafunction of temper-
ature. {«r) Derive an expression for ¥, (T') assuming that D/ L for electrons and holes.
and E, are independent of temperature. (b) If the diode isbiased at f;; = 0.1 mA and if
I, =10"" Aat7 = 300 K, plot V, versus Tfor 20°C < T < 200°C. (¢) Repeat part
(byif I = 1 mA. (d)Determine any changes in the results of parts (&)through (¢} if
the change in bandgap energy with temperature is taken into account.

Section 8.2 Small-Signal Modél of the pn Junction

822

823

8.24

825

8.26

Calculate the small-signal ac admittance of apn junction biased at V, = 0.72 V

and Ipy = 2.0 mA. Assume the minority carrier lifetimeis | s in both the n and
pregions. T = 300 K.

Consider ap™n silicon diodeat T = 300 K. The diode isforward biased at acurrent of
1 mA. The hole lifetimein the nregion is 1077 s. Neglecting the depletion capacitance,
calculate the diode impedance at frequencies of 10kHz, 100 kHz, | MHz, and 10 MHz,

Consider a silicon pn junction with parameters as described in Problem 8.8.

(() Calculate and plot the depletion capacitance and diffusion capacitance over the
voltage range —10 < V, < 0.75V . (b) Determine the voltage a which the two
capacitances are equal.

Consider ap™n silicon diode at T = 300 K. The slope of the diffusion capacitance
versusforward-biascurrent is 2.5 x 107% F/A. Determine the hole lifetime and the
diffusion capacitance at a forward-bias current of 1 mA.

A one-sided n¥ p silicon diode a 7 = 300 K with across-sectional areaof 10~ cm?
isoperated under forward bias. The doping levelsare N, = 10'* em™ and
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8.27

8.28

8.29

8.30

N, = 10'® cm™*, and the minority carrier parameters are t0 = 10" *s. 1, = 10-'S,

» = 10cm?/s. and B, = 25 cm?/s. The maximum diffusion capacitance isto bel :!
Determine (a)the maximum current through the diode, (4} the maximum forward-bi
voltage, and (¢) thediffusion resistance.

A silicon pn junction diode at T = 300 K has a cross-sectional areaof 1077 ¢cm?.
length of the p region is 0.2 ¢m and the length of the nregion is0.1 cm. The dopi
concentrations are ¥, = 10** cm—? and &, = 10" cm*. Determine () approxi
mately the series resistance of the diode and (b) the current through the diode that w/
produce a0.1 V drop across this series resistance.

We want to consider the effect of a series resistance on the forward bias voltage
required to achieve a particular diode current. (a) Assume the reverse saturation
current in adiodeis |, = 10~ A a T = 300 K. The resistivity of the n region is
0.2 ©2-cm and the resistivity of the p region is 0.1 R-cm. Assume the length of each
neutral region is 10~% cm and the cross-sectional areais2 x 10~* cm?. Determine
the required applied voltage to achieve acurrent of (i) 1 mA and (i) 10 mA.
(h)Repeat part (a) neglecting the series resistance.

The minimum mall-signal diffusion resistance of an ideal forward-biased silicon
pnjunctiondiode at T = 300K isto ber; = 48 £2. The reverse saturation curr
I,=2x 107" A. Caculate the maximum applied forward-bias voltage that
applied to meet this specification.

(a} An ideal silicon pn junction diode at " = 300 K isforward biased a V, =
+20 mV. The reverse-saturation current is I, = 10~'* A. Calculate the small-signal
diffusion resistance. {#) Repeat pan (a)for an applied reverse-bias voltage of

Vo = —20mV,

Section 8.3 Generation-Recombination Currents

831

#8.32

8.33

8.34

Consider areverse-biased gallium arsenide pn junction at T = 300 K. Assume that a
reverse-biasvoltage, Vg =5V, is applied. Assume parameter values of: ¥, = N; =
10 cm™*, Dr — 6cm?/fs, D,, = 200 cm®/fs, and 1,0 = T, = 7o == 107% 5. Calculate
the ideal reverse saturation current density and the reverse-biased generation current
density. How does the relative value of these two currents compare to those of the
silicon pn junction?

(a) Consider Example 8.7. Assume that all parameters except »; are independent of
temperature. Determine the temperature a which J, and J,.. will beequal. What are
the values of J, and J,., at this temperature? (b) Using the results of Example 8.7,
calculate theforward-bias voltage at which theideal diffusion current isequal to the
recombination current.

Consider aGaAs pndiodeat T = 300K with ¥, = N, = 10" em~* and with across
sectional areaof 10=* cm?. The minority carrier mobilitiesare g, = 3000 cm?/V-s ad
Hp = 200 ¢’ V-s. Thelifetimesare 1, = T = 0 = 10-% s. Asafirst approxima-
tion, assume the electron-hole generation and recombination rates are constant across
the space charge region. {a) Cal culate the total diode current at a reverse-bias voltage
of 5V and at forward-bias voltages of 0.3 V and 0.5 V. (h)Compare the results of pan
(a) to an ideal diode at the same applied voltages.

Consider the pn junction diode described in Problem &.33. Plot the diode recombina-
tion current and the idea diode current (on alog scale) versus forward bias voltage
over therange0.l <V, = 1.0V,



Problems

Figure835! Figurefor
Problem 8.38 and 8.39.

Assilicon pn junction diodeat T = 300K has the following parameters:N, = N, =
0 em™ 10 =Tuo=1%=5x10""5,D, = 10em’/s, D, = 25cm?/s, and a
cross-sectional area of 10-* em?. Plot the diode recombination current and the ideal
diode current (on alog scale) versus forward bias voltage over the range (.1 <

v, <06 V.

Consider aGaAs pndiodea T = 300K with N, = N, = 107 cm~* and with a
cross-sectional areaof 5 x 107" cm*. The minority carrier mobilities are p,, =
3500 cm?/V-s and p), = 220 ¢m*/V-s. The electron-hole lifetimesare 1,4 = 7, =
t, = 107% s. Plot the diode forward-bias current including recombination current
betwecn diode voltages of 0.1 = V¥, = 1.0 V. Compare this plot to that for an ideal
diode.

Starting with Equation (8.83) and using the suitable approximations, show that the max-
imum recombination rate in aforward-biased pn junction isgiven by Equation (8.91i.

Consider. as shown in Figure8.35, a uniformly doped silicon pn junction a 7 = 300 K
with impurity doping concentrationsof N, = N, =5 X 10" ¢m™* and minority
carrier lifetimes of 7,5 = 7,0 = 7o = 1077 s. A reverse-bias voltageof V, = 10V is
applied. A light source isincident only on the space charge region. producing an excess
carrier generation rate of g’ = 4 X 10" cm™" s~!, Calculate the generation current
density.

Along silicon pn junction diode has the following parameters: #; = 10" em—,

N, =3x 10" em . Ty = T0 = T = 1077 5, D, = 18cm’fs, and D, = 6 cm?/s.
A light source is incident on the space charge region such as shown in Figure §.35,
producing a generation current density of J/; = 25 mAscm-. Thediode is open
circuited. The generation current density forward biases the junction, inducing a
forward-bias current in the opposite direction to the generation current. A steady-state
condition is reached when the generation current density and forward-bias current
density are equal in magnitude. What is the induced forward-bias voltage at this
steady-state condition?

Section 8.4 Junction Breakdown

840 The critical electric field for breakdown in silicon is approximately E.;; = 4 x
10* V/em. Determine the maximum n-type doping concentration in an abrupt p*n
junction such that the breakdown voltage is 30 V.
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842

843

8.44

8.45

8.46

847

Design an abrupt silicon p* n junction diode that has a reverse breakdown voltage
120V and has aforward-bias current of 2mA a V = 0.65V. Assume that 7,y =
10-7 s, and find 42, from Figure 5.3.

Consider an abrupt n+pGaAs junction with a p-type doping concentration of N, =
(' ¢m~*. Determine the breakdown voltage.

A symmetrically doped silicon pn junction has doping concentrations of N, = N, =
5 x 10'* cm—*. If the peakelectric field in the junction at breakdown iSE = 4 x
10° Vlem. determine the breakdown voltage of this junction.

An abrupt silicon p™n junction has an n-region doping concentration of ¥, =

5 x 10Y em™3. What must be the minimum n-region width such that avalanche br
down occurs before the depletion region reaches an ohmic contact (punchthrough)?
A silicon pn junction diode is doped with ¥, = &, = 10" cm™. Zener breakdown
occurs when the peak electric field reaches 10¢ Viem. Determine the reverse-bias
breakdown voltage.

Adiode will very often have the doping profile shown in Figure 7.19. which is knoan
asan n*pp* diode. Under reverse bias, the depletion region must remain within the
p region to avoid premature breakdown. Assume the p region doping is 10" ¢cm3,
Determine the reverse-bias voltage such that the depletion region remains within
the p region and does not reach breakdown if the p region width is (@) 75 pm and
(b) 150 m. For each case, state whether the maximum depletion width or the
breakdown voltage isreached first.

Consider asilicon pn junction at T = 300 K whose doping profile varies linearly
fromN, = 10" cm ? toN; = 10'® cm™? over adistance of 2 sm. Estimate the
breakdown voltage.

Section 8.5 Charge Storageand Diode Transients

8.48

849

850

(&) In switching a pn junction from forward to reverse bias, assume that the ratioof
reverse current, f,. to forward current, 7r, is0.2. Determine theratio of storage time ‘
to minority carrier lifetime, #,/7,0. (&) Repeat part (a)if the ratioof fz to { is1.0.

A pn junction isswitched from forward to reverse bias. We want to specify that

t; = 0.21,4. Determine the required ratio of I, to [ to achieve this requirement. In
this case, determine t2/z,0.

Consider a diode with ajunction capacitance of 18 pF at zero bias and 4.2pF a a
reverse bias voltage of Vz = 10 V. The minority carrier lifetimes are 10~7 s. The
diode is switched from aforward bias with a current of 2 mA to a reverse bias voltage
of 10V applied through a 10 k€2 resistur. Estimate the tum-off time.

Section 8.7 TheTunnd Diode

8.51

8.52

Consider asilicon pn junction a T = 300 K with doping concentration of &, =

N, = 5 x 10" cm™*. Assuming the abrupt junction approximation is valid, determine
the space charge width at aforward-bias voltage of V, =0.40 V.

Sketch the energy-band diagram of an abrupt pn junction under zero bias in which the
p region is degenerately doped and E- = Er in the n region. Sketch the forward- ad

reverse-hias current—voltage characteristics. This diode is sometimes called a back-



Summary and Review

853 (n)Explain physicaly why the diffusion capacitance is not important in areverse-
biased pn junction. (by Consider a silicon. a germanium, and gallium arsenide pn
junction. If the total current density is the same in each diode under forward bids,
discuss the expected relative values of electron and hole current densities.

*8.54 Asiliconpnjunctiondiodea T = 300 K isto bedesigned to have areverse-bias break-
down voltage of at least 50V and to handle a forward-biascurrent of 7, = 100 mA
whilestill operating under low injection. The minority carrier diffusion coefficientsand
lifetimes are D, = 25 cm?/s, D, = 10 em¥/s, and 0 = 1,0 =5 x 1077 5. Thediode
isto bedesigned for minimum cross-sectional area.

*8.55 Thedonor and acceptor concentrations on either side of a silicon step junction are
equal. (a)Derive an expression for the breakdown voltage in terms of thecritical
electric field and doping concentration. (&) If the breakdown voltage isto be Vz =
50 V. specify the range of allowed doping concentrations.
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M etal-Semiconductor and
Semiconductor Heter ojunctions

PREVIEW

the semiconductor material was the same throughout the entire structure. This

type of junction is referred to as a homojunction. We developed the electrostat-
ics of the junction and derived the current-voltage relationship. In this chapter, we
will consider the metal-semiconductor junction and the semiconductor heterojunc-
tion, in which the material on each side of the junction is not the same. These junc-
tions can also produce diodes.

Semiconductor devices, or integrated circuits, must make contact with the out-
side world. This contact is made through nonrectifying metal - semiconductor junc-
tions, or ehmic contacts. An ohmic contact is a low-resistance junction providing
current conduction in beth directions. We will examine the conditions that yield
metal — semiconductor ohmic contacts..

I n the preceding two chapters, we considered the pn junction and assumed that

9.11THESCHOTTKY BARRIER DIODE

One of the first practical semiconductor devices used in the early 1900s was the
metal - semiconductor diode. Thisdiode, also called a point contact diode, was made
by touching a metallic whisker to an exposed setniconductor surface. These metal—
semiconductor diodes were not easily reproduced or mechanically reliable and were
replaced by the pn junction in the 1950s. However, semiconductor and vacuum tech-
nology isnow used tofabricate reproducible and reliable metal —semiconductor con-
tacts. In this section, we will consider the metal — semiconductor rectifying contact, or
Schottky barrier diode. In most cases, the rectifying contacts are made on n-type
semiconductors; for this reason we will concentrate on this type of diode.



9.1 The Schottky Barrier Diode

911 QualitativeCharacteristics

Theideal energy-band diagram for a particular metal and n-type semiconductor be-
fore making contact isshown in Figure 9.1a. The vacuum level is used asareference
level. The parameter ¢,, is the metal work function (measured in volts), ¢; is the
semiconductor work function, and x is known as the electron affinity, The work
functionsof various metals are given in Table 9.1 and the electron affinities of sev-
erd semiconductors are given in Table 9.2. In Figure 9.1a, we have assumed that
¢ > ¢s. Theideal thermal-equilibrium metal —semiconductor energy-band diagram,
for this situation, is shown in Figure 9.1b. Before contact, the Fermi level in the
semiconductor was above that in the metal. In order for the Fermi level to become a
congtant through the system in thermal equilibrium, electronsfrom the semiconduc-
tor flow into the lower energy statesin the metal. Positively charged donor atoms re-
main in the semiconductor, creating a space charge region.

The parameter ¢y is theideal barrier height of the semiconductor contact, the
potential barrier seen by electrons in the metal trying to move into the semiconductor.

Figure 9.1 (a) Energy-band diagram of a metd and
semiconductor beforecontact; (b ided energy-handdiagram
of ametal-n-semiconductor junction for ¢, > ¢,.
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Table 9.11 Work functions of some elements

Element Wnrk function, ¢
Ag. Slver 4.26
Al duminum 4.28
Au, gold 51 Table 92 | Electron affinity of some
Cr, chromium 45 semiconductors
'\N/Iic,)’n?delely bdenum 3(155 Element Electron affinity, x
Pd, paladium 5.12 Ge, germanium 4.13
Pt, platinum 5.65 Si, silicon 401
Ti, titanium 4.33 GaAs, gdlium arsenide 407
W. tungsten 4.55 AlAs, aluminum arsenide 35

Thisbarrier isknown as the Schorrky burrier and is given. idedly, by

o = (D — X) J

Onthesemiconductor side, Vj,; is thebuilt-in potential barrier. Thisbarrier, similarto
the case of the pn junction, isthe barrier seen by electrons in the conduction band try-
ing to move into the metal. The built-in potential barrier is given by

which makes V},, aslight function of the semiconductor doping, as was the caseina
pn junction.

If we apply a positive voltage to the semiconductor with respect to the metd. the
semiconductor-to-metal barrier height increases. while ¢y remains constant in this
idealized case. This bias condition is the reverse bias. If a positive voltage is gpplied
to the metal with respect to the semiconductor, the semiconductor-to-metal barrier
Vii 18 reduced while ¢ again remains essentially constant. In this situation. eec-
trons can more easily flow from the semiconductor into the metal since the barrier
has been reduced. This bias condition is the forward bias. The energy-band diagrams
for the reverse and forward bias are shown in Figures 9.2a and 9.2b, where V; is the
magnitude of the reverse-bias voltage and V, is the magnitude of the forward-bias
voltage.

The energy-band diagrams versus voltage for the metal-semiconductor junction
shown in Figure 9.2 are very similar to those of the pn junction given in the last chap-
ter. Because of the similarity, we expect the current—voltage characteristics o the
Schottky barrier junction to be similar to the exponential behavior of the pn junction
diode. The current mechanism here, however, is due to the flow of majority carrier
electrons. In forward bias, the barrier seen by the electrons in the semiconductor is
reduced, so majority carrier electrons How more easily from the semiconductor into
the metal. The forward-bias current isin the direction from metal to semiconductor;
it isan exponential function of the forward-bins voltage V,.



9.1 TheSchottky Barier Diode

Figure 9.2 | Ideal energy-band diagram of ametal-semiconductor junction (a) under reverse bias and (b) under
. forward bias.

912 Ideal Junction Properties

We can determine the electrostatic properties of the junction in the same way as we
did for the pn junction. The electric field in the space charge region is determined
m Poisson’s equation. We have that
dE _ plx)
dx &

(9.3)

where p{x) isthe space charge volume density and ¢ is the permittivity of the semi-
conductor. If we assume that the semiconductor doping is uniform, then by integrat-
g Equation (9.3), we obtain

+ C, (9.9

where (y is a constant of integration. The electric field is zero a the space charge
edge in the semiconductor, so the constant of integration can he found as

DThe electric field can then be written as

which is a linear function of distance, for the uniformly doped semiconductor, and
reaches a peak value a the metal-semiconductor interface. Since the E-held is zero
inside the metal. a negative surface charge must exist in the metal a the metal-
semiconductor junction.
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The space charge region width, W, may be calculated as we did for the pn jun-
tion. The result is identical to that of a one-sided p*n junction. For the uniformiy
doped semiconductor, we have

where V§ is the magnitude of the applied reverse-bias voltage. We are again assum-
ing an abrupt junction approximation.

EXAMPLE 9.1

Objective

To calculate the theoretical harrier height, built-in potential barrier, and maximum electric
field in a meVa-semiconductor diode for zero applied bias.

Consider a contact between tungsten and n-type silicon doped to N, = [0’ cm™
T =300K.

B Solution
The metal work function for tungsten (W) from Table 9.1 is ¢,, = 4.55 V and the elec
affinity for silicon from Table 9.2 is x = 4.01 V. The barrier height is then

where ¢4 istheideal Schottky barrier height. We can calculate @,as

2.8 x 10"y = 0.206 V
107

Then

Ve = o — by =0.54 — 0.206 =0.33V

The space charge width a zero biasis

[25..v,,i-]'f2 [2([1.7)(8.85 x 10°
Xp = | ——— =
eNy (1.6x 10-193(10'6) ]

x,, =0.207 x 10~* cm
Then the maximum electric field is

eNax, (L6 1071°)(10'0)(0.207 x 107
& (11.7)(8.85 x

|EIHRX| -

or finaly

|Emad = 3.2 x 107 Vicm
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-
1 Comment
The values of space charge width and electric field are very similar to those ohtained for a

M junction.

A junction capacitance can al so be determined in the same way as wedid for the
m junction. We have that

where C' is the capacitance per unit area. If we square the reciprocal of Equa-
tion (9.8). we obtain

We can use Equation (9.9) to obtain, to a first approximation, the built-in potential
barrier V,;, and the slope of the curve from Equation (9.9) to yield the seniiconductor
doping ;. Wecan cal culate the potential ¢,, and then determine the Schottky barrier
¢ao from Equation (9.2).

TEST YOUR UNDERSTANDING

B 1 Consider an idea chromium-to-n-type silicon Schottky diode at T = 300 K. Assume
the semiconductor is doped at a cuncentration of ¥; = 3 x 10" ¢m™?. Determine the
(a)ideal Schottky barrier height, (2} buili-in potential harrier, (e} peak electric ficid
with an applied reverse-hias voltage of Vx =5 V, and {«) junction capacitance per
unit areafor Vg = 5 V. [ 5 01 X 889 = 0 () "wdy/A ,0f * L = [l (2)
'AESTO=""A(@)'A 6v'0 = "¢ () suy]

E92 Repeat E9.1 for an ideal palladium-to-n-type GaAs Schottky diode with the same
impurity concentration. [;19/4 4—01 X 98'9 = , 3 (P) ‘WA (01 x | = [*F] (9)

] 'AGLE0 = "A (@) 'A Cot = g (p) suy]

Objective EXAMPLE 9.2

To calculate the semiconductor doping and Schottky barrier height from the silicon diode
- experimental data shown in Figure 9.3. T = 300 K.

1 Solution
The intercept of the tungsten—silicon curve is approximately at v, = 0.40 V From Equa-
tion (9.9), we can write
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]4|

Figure9.311/C? versus Vg for W-Si and W-GaAs
Schottky barrier diodes. —
(From Sze [14].)

Then, from thefigure, we have

so that

We can calculate

so that
dgy =V T ¢, =040 012=052V
where ¢g,, isthe actual Schottky barrier height,

B Comment

The experimental value of 0.52 V can be compared with the ideal barrier height of ¢z =
0.54V foundin Example 9.1. These resultsagree [airly well. For other metals, the discrepancy
between experiment and theory is larger.
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! We can see that the built-in potential barrier of the gallium arsenide Schottky
- diode islarger than that of the silicon diode. Thisexperimental result is normally ob-
é served for al types of metal contacts.
P.m Nonideal Effects on the Barrier Height

S

everal effects will alter the actual Schottky barrier height from the theoretical value
given hy Equation (9.1). The first effect we will consider is the Schottky effect, or
image-force-induced lowering of the potential barrier.

I An electron in adielectric at a distance x from the metal will create an electric
field. The field lines must be perpendicular to the metal surface and will be the same
asif an image charge, +e. islocated at the same distancefrom the metal surface, but
insidethe metal. Thisimage effect is shown in Figure 9.4a. Theforce on the electron,
due to the coulomb attraction with the image charge, is

k Meta Dielectric

Figure94 | (a) Image charge and electric fieldlinesa a metal—dielectric interface. (b) Digtortion of
the potential barrier due to image forceswith zero electric field and (¢) with a congtant electric field.



CHAPTER 9 Med-Samiconductor and Semiconductor Hetergjunctions

The potential can then be found as

where x’ is the integration variable and where we have assumed that the potential is
zeroat X = o0.

The potential energy of the clectron is —e@(x); Figure 9.4b is a plot of the
potential energy assuming that no other electric fields exist. With an electric fidd
present in the dielectric, the potential is modified and can be written as  §

*

The potential energy of the electron, including the effect of a constant electric field,
is plotted in Figure 9.4¢. The peak potential barrier is now lowered. This lowerinpof
the potential barrier is the Schottky effect, or image-force-induced lowering.

We can find the Schottky barrier lowering, A @, and the position of the maxi-
mum barrier, X,,,, from the condition that

We find that

and

EXAMPLE 9.3

Objective |

To calculate the Schottky barrier lowering and the position of the maximum barrier height.
Consider agallium arsenide metal-semiconductor contact in which the eectricfidd inte
semiconductoris assumed to be E = 6.8 x 10* V/iem.

Solution
The Schottky barrier lowering is given by Equation (9.15). which in this case yields

(1.6 x 10-19)(6.8 x 10")

The position of the maximum barrier height is
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i

® Comment

Although the Schottky bamer lowering may seem like a small value, the barrier height and the
barier lowering will appear in exponentia terms in the current-voltage relationship. A small
change in the barrier height can thus have a significant effect on the current in a Schouky har-
rier diode.

TEST YOUR UNDERSTANDING

E9.3 Determine the Schottky barrier lowering and the position of the maximum barrier
height for the junction described in E9.I. Use the vaue of the electric ficld found in
thisexercise. (¥ 17 = "¥ A2 £620'0 = ¢V suy)

B9.4 Repeat E9.3for the junction described in E9.2. (¥ 861 = “Y'A 870'0 = #V suy)

Figure 9.5 shows the measured barrier heightsin galliumn arsenide and silicon
Schottky diodes as a function of metal work functions. There isa monotonic relation
between the measured hanier height and the metal work function, but the curves
do not fit the simple relation given in Equation (9.1). The barrier height of the

Au
Mg Al AgW Pd R

3.0 4.0 50 6.0
Metal work function, e¢,, (eV)

m

Figure 95 | Experimental banier heights as afunction of
metal work functionsfor GaAs and Si.
(From Crowley and Sze [2].)
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Figure9.6 | Energy-band diagram of a metal —semiconductor
junction with an interfacial layer and interface ates.

metal-semiconductor junction isdetermined by both the metal work function and ¢
semiconductor surfaceor interfacestates.

A moredetailed cnergy-band diagram of ametal to n-type semiconductor conta
in thermal equilibrium isshown in Figure 9.6. We will assume that a narrow interfaci
layer of insulator exists between the metal and semiconductor. The interfacial layerci
support a potential difference, hut will be transparent to the flow of electrons betwet
the metal and semiconductor. The semiconductor also shows a distribution of surfa
states at the metal —semiconductor interface. We will assume that all states below il
surface potential ¢, are donor states, which will be neutral if the state containsan de
tron and positively charged if the slate does not comiain an electron. We will alsoa
sumethat all states above ¢y areacceptor states, which will be neutral if the statedo
not contain an electron and negatively charged if the state contains an electron.

Thediagram in Figure 9.6 shows some acceptor statcs above ¢ and below E
These states will tend to contain electrons and will be negatively charged. We m
assume that the surface state density isconstant and equal to D;, states/cm?-eV . T!
relation between the surface potential, surface state density, and other semiconduct
parameters is found to be

We will consider two limiting cases

Casel Let D; — oc. Inthiscase, the right side of Equation (9.16) goes to ze
We then have

The barrier height is now fixed by the bandgap energy and the potential ¢g. Theb:
rier height is totally independent of the metal work function and the semicondug
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electron affinity. The Fermi level becomes™ pinned” at the surface, at the surface po-
tentid .

Case2 Let D;,8 — 0. Equation (9.16) reduces to

which isthe original ideal expression.

The Schottky barrier height isafunction of the electric field in the semiconduc-
tor through the barrier lowering effect. The barrier height isalso afunction of the sur-
face states in the semiconductor. The barrier height, then, is modified from the ideal
theoretica value. Since the surface state density is not predictable with any degree of
certainty. the barrier height must be an experimentally determined parameter.

914 Current-Voltage Relationship

The current transport in a metal —semiconductor junction is due mainly to majority
carriers as opposed to minority carriers in a pn junction. The basic process in the
rectifying contact with an n-type semiconductor is by transport of electrons over the
potential barrier. which can be described by the thermionic emission theory.

The thermionic emission characteristics arc derived by using the assumptions
that the barrier height is much larger than kT, so that the Maxwell-Boltzmann
approximation applies and that thermal equilibrium is not affected by this process.
Figure 9.7 shows the one-dimensional barrier with an applied forward-bias voltage
V, and shows two el ectron current density components. Thecurrent J;_.,; isthe elec-
tron current density due to the flow of electrons from the semiconductor into the
metal, and the current J,_.; is the electron current density due to the flow of elec-
tronsfrom the metal into the semiconductor. The subscripts of the currents indicate

- the direction of electron How. The conventional current direction is opposite to elec-
tron flow.

The current density J,_.,, isafunction of the concentration of electrons which

E have x-directed velocities sufficient to overcome the barrier. We may write

where E * isthe minimum energy required for thertnionic emission into the metal, v,
isthecarrier velocity in the direction of transport, and e is the magnitude of the elec-
' tronic charge. The incremental electron concentration is given by

Elwhere g (£) is the density of states in the c\onduction band and fr(E) is the
Fermi-Dirac probability function. Assuming that the Maxwell-Boltrmann approxi-
meation applies, we may write
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Figure 9.7 | Energy-band diagram of a forward-biased
metal -semiconductor junction including the image
lowering effect.

If al of the electron energy above E. isassumed tobekinetic energy, then
1

—nt, v =E - E,

2

The net current density in the metal-to-semiconductor junction can be written as

J = J.s'ﬂm - Jm%s (921

which is defined to be positive in the direction from the metal to the semiconductor.
Wefind that

where
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The parameter A* is called the effective Richardson constant for therrnionic
emission.
Equation (9.23) can be written in the usual diode form as

where J,+ isthe reverse-saturation current density and is given by

We may recall that the Schottky barrier height ¢, changes because of the image-
forcelowering. We have that ¢ g,, = g — A¢. Then wecan write Equation (9.26) as

Thechange in barrier height, A@.will increase with an increase in the electric field,
o with an increase in the applied reverse-bias voltage. Figure 9.8 shows a typical
reverse-biascurrent-voltage characteristic of a Schottky barrier diode. The reverse-
bias current increases with reverse-bias voltage because of the barrier |owering effect.
Thisfigure also shows the Schottky barrier diode going into breakdown.

Figure9.8! Experimenta and theoretical
reverse-biascurrentsin aPtSi-Si diode.
(FromS\p f14].)
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EXAMPLE 9.4

Objective

To calculate the effective Richardson constant from the /-V characteristics.
Consider the tungsten—silicon diode curve in Figure 9.9 and assume a harrier height of
$pg, = 0.67 V. From the figure, Jir =~ 6 x 1077 A/cm’.

N Solution
We have that

so that

Then

B Comment

The experimentally determined valueof A' isavery strong function Of ¢y, since ¢y, isin
exponential term. A small change in s, will change the vaue of the Richardson cons
substantially,

(A

Figure 9.9i Forward-bias current
density f; versus V, for Wi-S and
W-(GaAs diodes.

(From Sze [ 14].)



| 8.1 TheSchottky Barier Dicce

i TEST YOUR UNDERSTANDING

B.5 TheSchottky barrier height of asilicon Schottky junctionisegs, = 0.59V, theetfective
Richardson congtant is A' = 114 A/K*-cm*, and the cross-sectional area is A ==
10~* em?, For T = 300 K, calculate(a) the ided reverse-saturation current and (b) the
diode corrent for ¥, = 030 V. [VW Iy = 7 (@) 'V ,_0] % 1g'1 = [ (D) 'suy)

We may note that the reverse-saturation current densities of the tungsten—silicon
and tungsten—gallium arsenide diodesin Figure 9.9 differ by approximately 2 orders
o magnitude. This 2 order of magnitude difference will be reflected in the effective
Richardson constant, assuming the harrier heights in the two diodes are essentially
the same. The definition of the effective Richardson constant, given by Equa-
tion (9.24), contains the electron effective mass, which differs substantially between
slicon and gallium arsenide. Thefact that the effective massisin the expression for
the Richardson constant isadirect result of using the effective density of states func-
tion in the thermionic emission theory. The net result is that A* and Jsr will vary
widdy between silicon and gallium arsenide.

9.15 Comparisonof the Schottky Barrier Diode
and the pn Junction Diode

Although the ideal current-voltage relationship of the Schottky barrer diode given
by Equation (9.25) isaf the sameform as that of the pn junction diode, there are two
important differences between a Schottky diode and a pn junction diode: Thefirstis
in the magnitudes of the reverse-saturation current densities, and the second isin the
switching characteristics.

The reverse-saturation current density of the Schottky barrier diode was given
by Equation (9.26)and is

’ Iy = A*T? exp (_Z?B” )

Theideal reverse-saturation current density of the pn junction diode can be written as

Theform of the two equationsis vastly different, and the current mechanism in the
two devices is different. The current in a pn junction is determined by the diffusion
o minority carriers while the current in a Schottky barrier diode is determined by
thermionic emission of majority carriers over a potential barrier.

Objective

To cdculatethe reverse-saturationcurrent densitiesof a Schottky barrier diode and a pn junc-
tion diode.

Consider atunggten barrier on slicon with a measured barrier height of e¢g,, = 0.67eV.
The effective Richardson constant is A' = 114 A/K*-cm?. Let T = 300K.

EXAMPLE 9.5
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Solution
If we neglect the barrier lowering effect, we have for the Schottky barrier diode

—€® g
kT

, = A*T exp ( ) = (114}(300)” exp =5.98 X 1077 Alem?

Consider asilicon pn junction with the following parameters at T = 300K.

N, = 10" em? N; = 10" e~
D, = 10cm¥s D,, = 25cm's
The = lOHT Tho = 1077

We can then calculate the following parameters:
L,=10x10"cm L, = 1.58 X 10~%cm
Puo = 225 X 10% em™ n, =2.25X 10% ¢m™3

The ideal reverse-sawration current density of the pn junction diode can be determined fr
Equation (9.28) as

8 Comment
The ideal reverse-saturation current density of the Schottky barrier junction is orders of
magnitude larger than that of the ideal pn junction diode.

Figure 9.10 | Comparison of forward.
bias I~V characteristics between a
Schottky diode and a pn junction
dicde.



8.1 The Schottky Barrier Diods

Recall that the reverse-bias current in asilicon pn junction diode is dominated
by the generation current. A typical generation current density is approximately
107 Alar®  which is still 2 to 3 orders of magnitude less than the reverse-
saturation current density of the Schottky bamer diode. A generation current also ex-
igs in the reverse-biased Schottky bamer diode; however, the generation current is
negligiblecompared with the J,; value.

Since J,7 2 J,, theforward-bias characteristics of the two types of diodes will
aso be different. Figure 9.10 shows typical |-V characteristics of a Schottky barrier

idiode and a pn junction diode. The effective turn-on voltage of the Schottky diodeis
lessthan that of the pn junction diode.

Objective

1 To cdculate the forward-bias voltage required to generate a forward-bias current density of
10 Afem? in aSchottky barrier diode and a pn junction diode.
Considerdiedes with the paramctrrsgivenin Exampl €9.5.We can assumethéat thepn junc-
{ tion diode will be sufficiently forward biased so that the ided diffusion current will dominate.
Le T = 300K.

1 Solution
Far the Schottky barrier diode, we have

For the pn junction diode, we have

# Comment

A comparison of the two forward-bias voltages shows that the Schottky barrier diode has a
' turn-on voltage thet i thiscase, is approximately 0.37 v smaller then the tom-on voltage of

thepn junction diode:

EXAMPLE 9.6

The actual difference between the turn-on voltageswill be a function of the bar-

| rier height of the metal —semiconductor contact and the doping concentrationsin the

m junction, but the relatively large difference will always be realized. We will con-

sider one application that utilizes the difference in turn-on voltage in the next chap-
ter, in what is referred to as a Schottky clamped transistor.
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TEST YOUR UNDERSTANDING

E9.6 () The reverse Suraion currents of apn junction and a Schottky diode arc 107"
and 10 * A, respectively. Determinethe required forward-biasvoltagesin the
pn junction diode and Schottky diode to produceacurrent of 100 g A in each diode
{h) Repeut pan (a) for forward biascurrentsdf { mA.

[A 85E°0 A 969°0 (9) A 8620 A 9650 (7) 'suy]

E9.7 A pn junction diodeand aSchouky diode haveequal cross-sectiond areas and have
forward-biased currentsof 0.5 mA. The reverse-saturationcurrent of the Schottky
diodeiss x 1077 A. The difference in forward-bias voltage between the two diodes
is0.30 V Determine the reverse-saturationcurrent of the m junction diode.

(V¥ 71-01 X 99°p suy)

The second major difference between a Schottky barrier diode and a pn juncti
diodeisin thefrequency response, or switching characteristics. In our discussion,
have considered the current in a Schottky diode as being due to the injection of m
ity carriers over apotential barrier. Theenergy-band diagram of Figure9.1. fore
ple., showed that there can he electrons in the metal directly adjacent to empty sta
the semiconductor. H an electron from the valence hand of the semiconductor were
flow into the metal, this effect would bc equivalent 1o holes being injected into
semiconductor. This injection of holes would create excess minority carrier hole
then region. However, cal culationsas well as measurements have shown that the ra
of the minority carrier hole current to thetotal current isextremely low in most case™

The Schottky harrier diode, then, is a majority carrier device. Thisfact me
that there is no diffusion capacitance associated with a forward-hiased Schot
diode. The elimination of the diffusion capacitance makes the Schottky diod
higher-frequency device than the pnjunction diode. Also, when switching a Schot
diode from forward to reverse bias, there is no minority carrier stored charge
remove, as was the case in the pn junction diode. Since thereis no minority cam
storage time, the Schottky diodes can be used in fast-switching applications. A typ'
cal switching time for a Schottky diode is in the picosecond range, while for
pn junction it isnormally in the nanosecond range.

9.2 METAL-SEMICONDUCTOR OHMIC CONTACTS;

Contacts must be made between any semiconductor device, or integrated circuit, and
the outside world. These contacts are made via ohmic contacts. Ohmic contacts are
metal-to-semiconductor contacts, but in thiscase they are not rectifying contacts. An
ohmic contact is a low-resistance junction providing conduction in both directions
between the metal and the semiconductor. Ideally, the current through the ohmic con-
tact is a linear function of applied voltage, and the applied voltage should be very
small. Two genera types of ohmic contacts are possible: The first type is the
nonrectifying barrier, and the second is the tunneling barrier. We will define a
cific contact resistance that is used to characterize ohmic contacts.
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921 Ideal NonrectifyingBarriers

We considered an ideal metal-to-n-type semiconductor contact in Figure 9.1 for the
case when ¢, > ¢,. Figure 9.11 shows the same ideal contact for the opposite case
o ¢, < ¢s. In Figure 9.11a we see the energy levels before contact and, in Fig-
ure9.!1b. the barrier after contact for thermal equilibrium. To achieve thermal equi-
librium in this junction. electrons will Row from the metal into the lower energy
states in the semiconductor, which makes the surface of the semiconductor more
n type. The excess electron charge in the n-type semiconductor existsessentially asa
surface charge density. If a positive voltage is applied to the metal, there isno harrier
to electrons flowing from the semiconductor into the metal. If a positive voltage is
applied to the semiconductor, the effective barrier height for electrons flowingfrom
the metal into the semiconductor will be approximately ¢r, = ¢,, which is fairly
smal for amoderately to heavily doped semiconductor. For this bias condition, elec-
tronscan easily flow from the metal into the semiconductor.

Figure 9.12a shows the energy-hand diagram when a positive voltage is applied
to the metal with respect to the semiconductor. Electrons can easily flow " downhill”
from the semiconductor into the metal. Figure 9.12b shows the case when a positive
voltage is applied to the semiconductor with respect to the metal. Electrons can eas-
ily Row over the barrier from the metal into the semiconductor. This junction, then,

isan ohmic contact.
| Figure 913 shows an ideal nonrectifying contact between a metal and a p-type
semiconductor. Figure 9.13a shows the energy levels before contact for the case
when ¢,; > ¢,. When contact is made, electrons from the semiconductor will flow
into the metal to achieve thermal equilibrium, leaving behind more empty states, or
holes. The excess concentration of holes at the surface makes the surface of the semi-
conductor more p type. Electrons from the metal can readily move into the empty
states in the semiconductor. This charge movement corresponds to holes flowing

Figure 9.11] ]deal energy-band diagram (a) before contact and (h) after contact for a metal -n-semiconductor junction
forgm < o,
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Figure 9.12 | Ideal energy-band diagram of a metal-n-semiconductor chmic contact (8)wi
apositivevoltage gpplied to the metal and (b} with a positiveveltage applied to the
serniconductur.

Figure9.131 Ided energy-band diagram (@) before contact and (b) after contact for a
metal-p-semiconductor junction fOr ¢, = @,

from the semiconductor into the metal. We can also visualize holes in the metal flow-
ing into the semiconductor. This junction is also an ohmic contact.

The ideal energy hands shown in Figures 9.11 and 9.13 do not take into account
the effect of surface states. If we assume that acceptor surface states exist in the
upper half of the semiconductor bandgap, then, sinceall the acceptor statesare beow
E, for the case shown in Figure 9.11h, these surface states will he negeatively
charged, and will alter the energy-band diagram. Similarly, if we assume that donor
surface statesexist in the lower half of the bandgap, then all of the donor states will
be positively charged for the case shown in Figure 9.13b; the positively charged sur-
face states will also alter this energy-band diagram. Therefore, if ¢, < ¢, for the
metal-n-type semiconductor contact, and if ¢, > ¢, for the metal-p-type semicon-
ductor contact. we may not necessarily form agood ohmic contact.

9.22 TunneliingBarrier

The space charge width in a rectifying metal — semiconductor contact isinversely pro-
portional to the square root of the semiconductor doping. The width of the depletion
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Figure9.14 | Energy-band diagram of
aheavily doped n-semiconductor-to-
metal Junction.

gion decreases as the doping concentration in the semiconductor increases; thus, as

thedoping concentration increases, the probability of tunnelingthrough the barrier in-

,creases. Figure 9.14 shows ajunction in which the metal isin contact with a heavily
!doped n-type epitaxial layer.

. Objective EXAMPLE 9.7

Oocalculate  the space charge width for a Schottky barrier on a heavily doped semiconductor.
Consider silicon a T = 300K doped at ¥, = 7 x 10" cm . Assume a Shottky barrier
with ¢z, = 0.67 V. For this case. we can assume that V,; = ¢5,. Neglect the barrier lowering
effect.
1

1 Solution
From Equation (9.7). we havelor zero applied bias

(1.6 x 10-19)(7 x 10%) |

x, =11x10%cm=110A

Comment
In a heavily doped semiconductor. the depletion width is on the order of angstroms, so that
tunnelingis now adistinct possibility. For these typesof barrier widths, tunneling may become
the dominant current mechanism.

The tunneling current hastheform

where

3

The tunneling current increases exponentially with doping concentration
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9.2.3 Specific Contact Resistance II

A figure of merit of ohmic contactsis the specific contact resistance. R. Thispar
eter is defined as the reciprocal of the derivative of current density with
voltage evaluated at zero hias. We may write

We want R, to be as small as possible for an ohmic contact.
For a rectifying contact with alow to moderate semiconductor doping conc
tratiou, the current—voltage relation was given by Equation (9.23) as

The thermionic emission current is dominant in this junction. The specific contaa
resistance for this caseis then

The specific contact resistance decreases rapidly as the barrier height decreases.

For a metal — semiconductor junction with a high impurity doping concentration
the tunneling process will dominate. From Equations (9.29) and (9.30}, the specifi
contact resistanceisfound to be

[+2/emy  dan

R, o exp

which shows that the specific contact resistance is a very strong function of semi-
conductor doping.

Figure 9.15 shows a plot of the theoretical values of R, as afunction of semi-
conductor doping. For doping concentrationsgreater than approximately 10" cm™3,
the tunneling process dominates and R. shows the exponential dependence on ¥,.
For lower doping concentrations, the R, values are dependent on the barrier heights
and become almost independent of the doping. Also shown in thefigure are experi-
mental datafor platinum silicide—silicon and auminum-silicon junctions.

Equation (9.33) is the specific contact resistance of the tunneling junction,
which corresponds to the metal-to-n* contact shown in Figure 9.14. However, the
n*n junction also has a specific contact resistance, since there is a barrier associated
with this junction. For afairly low doped n region, thiscontact resistance may actu-
aly dominate the total resistance of the junction.

Thetheory of forming chmic contactsisstraightforward. To form a good ohmic
contact, we need to create alow barrier and use a highly doped semiconductor & the
surface. However, the actual technology of fabricating good, reliable ohmic contacts
is not aseasy in practice asin theory. Itisalso moredifficult to fabricate good ohmic




Figure9.15 | Theoretical and experimentd
specific contact resistance as a function

of doping.

(From Sze [14].)

contacts on wide-bandgap materials. In general, low barriers are not possible on
these materials, so a heavily doped semiconductor at the surface must be used to
form a tunneling contact. The formation of a tunneling junction requires diffusion,
ion implantation, or perhaps epitaxial growth. The surface doping concentration in
the semiconductor may be limited to the impurity solubility, which is approxi-
- mady 5 x 10" em™? for n-type GaAs. Nonuniformitiesin the surface doping con-
centration may also prevent the theoretical limit of the specific contact resistance
from being reached. In practice, a good deal of empirical processing is usualy re-
quired before a good ohmic contact is obtained.

9.3 HETEROJUNCTIONS

In thediscussion of pn junctions in the previous chapters, we assumed that the semi-
conductor material was homogeneous throughout the entire structure. This type of
junction is called a homojunction. When two different semiconductor materials are
used to forma junction, the junction is called a semicorductor heterojunction.

As with many topics in this text, our goal is to provide the basic concepts con-
cerning the heterojunction. The complete analysis of heterojunction structures
involves quantum mechanics and detailed calculations that are beyond the scope of
this text. The discussion of heterojunctions will, then, be limited to the introduction
of some basic concepts.
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9.3.1 Heterojunction Materials

Since the two materials used to form a heterojunction will have different en
bandgaps. the energy band will have adiscontinuity at the junction interface. We
have an abrupt junction in which the semiconductor changes abruptly from anarto
bandgap materia to a wide-bandgap material. On the other hand, if we have
GaAs—Al, Ga;_As system, for example, the value of x may continuously vary ov.
distance of several nanometers to form a graded heterojunction. Changing the viuu.
of x in the Al,Ga,_, As system allows us to engineer, or design, the bandgap eneryy.

In order to have a useful heterojunction, the lattice constants of the two materuls
must be well matched. The lattice match is important because any lattice mismatch
can introduce dislocations resulting in interface states. For example, germanium umd
gallium arsenide have lattice constants matched to within approximately .13 per-
cent. Germanium-gallium arsenide heterojunctions have been studied quite exien-
sively. Morerecently, gallium arsenide—aluminum gallium arsenide (GaAs—AlGaAs)
junctions have been investigated quite thoroughly. since the lattice constants of Gihs
and the AlGaAs system vary by no more than 0.14 percent.

9.3.2 Energy-Band Diagrams

In the formation of a heterojunction with a narrow-bandgap material and a wide-
bandgap material. the alignment of the bandgap energies isimportant in determining
the characteristicsof the junction. Figure 9.16 showsthree possible situations. In Fix-
ure 9.16a we see the case when the forbidden bandgap of the wide-gap materil
completely overlapsthe bandgap of the narrow-gap material. This case, called strud-
dling, appliesto most heterojunctions. We will consider only this case here. Theother
possibilities are called staggered and broken gap and are shown in Figures 9.16b
and 9.16c¢.

There are four basic types of heterojunction. Those in which the dopant type
changesat the junction are called anisotype. We can torm aP? or Np junctions, where
the capital letter indicates the larger-bandgap material. Heterojuncrions with thesurm
dopant type on either side of the junction are called isotvpe. We can form aN and
isotype heterojunctions.

Figure 9.17 shows the energy-band diagrams of isolated n-type and P-tvpe
materials, with the vacuum level used as a reference. The electron affinity o the

Figure9.16 | Relation between narrow-bandgapand wide-bandgap energies: (a) straddling, (b) staggered, and 1

(c) broken gap.
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Figure 9.17 | Energy-band diagrams of a narrow-bandgep
and a wide-bandgap materia before contact.

wide-bandgap material is less than that of the narrow-bandgap material. The differ-
ence between the two conduction band energies is denoted by AE,, and the differ-
ence between the two valence band energies isdenoted by AE,. From Figure 9.17.
we can see that

In the ideal abrupt heterojunction using nondegenerately doped semiconductors, the
vacuum level is parallel to both conduction bands and valence bands. If the vacuum
leve is continuous, then the same AE, and AE, discontinuities will exist at the het-
erojunctioninterface. Thisideal situation is known as the electron affinity rule. There
isgtill some uncertainty about the applicability of this rule, but it provides a good
starting point for the discussion of heterojunctions.

Figure 9.18 shows a general ideal nP heterojunction in thermal equilibrium. In
order for the Fermi levels in the two materials to become aligned, electrons from the
narrow-gap nn region and holesfrom the wide-gap P region must flow acrossthejunc-
tion. As in the case of a homojunction. this flow of charge creates a space charge

' region in the vicinity of the metallurgical junction. The space charge width into the

' nrtype region is denoted by x,, and the space charge width into the P-type region is
denoted by xp. The discontinuities in the conduction and valence bands and the
changein the vacuum level are shown in the figure.

9.3.3 Two-Dimensional Electron Gas

Before we consider the electrostatics of the heterojunction, we will discussa unique
characteristic of an isotype junction. Figure 9.19 shows the energy-band diagram of
. an nN GaAs—AlGaAs heterojunction in therma equilibrium. The AlGaAs can he
l moderetely to heavily doped n type, while the GaAs can be more lightly doped or
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Figure 9.18| 1deai energy-band diagram o an npP
heterojunction in thermd equilibrium.

Figure9.19! Ideal energy-hand diagram of an nN
hetereinnction in therma eauilibrivm.

even intrinsic. As mentioned previously. to achieve thermal equilibrium, electror
from the wide-bandgap AlGaAs Row into the GaAs. forming an accumulation lay
of electrons in the potential well adjacent to the interface. One basic quantur
mechanical result that we havefound previously isthat the energy of an electron con.
tained in a potential well is quantized. The phrase rwo-dimensional electron gar
refers to the condition in which the electrons have quantized energy levels in one
spatial direction (perpendicular totheinterface), but arefreetomovein the other two
spatial directions.

The potentia function near the interface can be approximated by amriangular po-
tential well. Figure $.20a shows the conduction band edges near the abrupt junction
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Figure9.20 | (a) Conduction-band edge & N-AlGaAs, n-GaAs heterojunction; (b) triangular well
approximetion with discreteelecizon energies.

Figure $.21 | Electron dendty in
triangular potentia well.

interface and Figure 9.20b shows the approximation of the triangular potential well.
Wecan write

V(x) = eEz z>0 (9.35a)
Viz) =00 2<0 {9.35b)

Schrodinger's wave equation can be solved using this potential function. The quan-
tized energy levels are shown in Figure 9.20b. Higher energy levels are usualy not
considered.

The qualitative distribution of electrons in the potential well is shown in Fig-
ure9.21. A current parallel to the interface will be afunction of thiselectron concen-
tration and of the electron mobility. Since the GaAs can be lightly doped or intrinsic,
the two-dimensional electron gasisin aregion of low impurity doping so that impu-
rity scattering effects are minimized. The electron mobility will be much larger than
if the electrons were in the same region as the ionized donors.
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<— Doped —*}*—— Undoped —

Figure 9.22 | Conduction-hand edge &
agraded heterojunction.

The movement of the electrons parallel to the interface will still beinfluenced kyl
the coulomb attraction of the ionized impurities in the AlGaAs. The effect of the
forces can be further reduced by using a graded AlGaAs—GaAs heterojunction. The
graded layer isAl, Ga,. . As in which the mole fraction x varies with distance. In this
case, an intrinsic layer of graded AlGaAs can be sandwiched between the N-type
AlGaAs and theintrinsic GaAs. Figure 9.22 shows the conduction-band edges across
agraded AlGaAs-GaAs heterojunction in thermal equilibrium. The electronsin the
potential well are further separated from the ionized impurities so that the electron
mobility isincreased above that in an abrupt heterojunction.

*9 3.4 Equilibrium Electrostatics

We will now consider the electrostatics of the nP heterojunction that was shown in Fig-
ure 9.18. As in the case of the homojunction, potential differences exist across the
space charge regionsin both then region and the Pregion. These potential differences
correspond to the built-in potential barriers on either side of the junction. The built-in
potential barrier for thisideal caseis detined as shown in Figure 9.18 to be the poten-
tial difference across the vacuum level. The built-in potential barrier is the sum of the
potential differencesacross each of the space charge regions. The heterojunction built-
in potential barrier, however, is not equal to the difference between the conduction
bands across the junction or the difference between the valence bands across the junc-
tion, as we defined for the homojunction.

Idedlly, the total built-in potential barrier V,; can be found as the difference be
tween the work functions, or

1

Vb.' = ¢.\-F - ¢sn

Equation (9.36). from Figure 9.17, can be wntten as



which can be expressed as

d NE'H Nl‘
¥ eV, = —AE, T AE, +4Thn (—) —len( P) (9.38)
Pro ppo

Finally, we can write Equation (9.38) as

eV = AE, Y kT In (f—'”: . &)
Puo Nz'P
where p,,, and p,,, are the hole concentrationsin the Pand n materials, respectively,
and N,,,and N, are the effective density of states functionsin then and P materials,
respectively. We could also obtain an expresston for the built-in potential barrier in
terms of the conduction band shift as

Objective

To determine AE,. At,.and V,; for an n-Ge to P-GaAs heterojunction using the electron
afinity rule.

Consider n-type Ge doped with N; = 10" em~* and P-type GaAs doped with N, =
10® em~*, Let T = 300K sothat ; = 2.4 x 10" cm > for Ce.

N Solution
From Equation (9.34a), we have
AE, = e(x, — xp) = e(4.13 —4.07) = 0.06 eV
and from Equation {9.34b), we have
AE,=AE, — AE,= (143 - 0.67) —0.06 =0.70 eV

' Todetermine V3, using Equation (9.39), wc need to determine p.. in Ge. or

2.4 x 10™)'
Puo = N_ = ¢ X ) =576 % 10“) C]’H_3

d 10

(106 x 10'%) |

Vy, = 0.70 + (0.0259 [
eVh =0.70+1 N E 576 x 100)7 x 10%)]

or, findly.

B Comment
Thereisanonsymmetry inthe AE, and AE, valucs that will tend to make the potentia harriers
seen by electrons and holes different. This nonsymmetry does not occur in homaojunctions.

EXAMPLE 9.8
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We can determine the electric field and potential in the junction from Poisson’«ll
equation in exactly the same way as we did for the homojunction. For homogen
doping on each side of the junction, we have in then region

E, = eNan (et 1) (=xp<x <0
and in the Pregion
el
Ep=-—(rp-x)  (O<x<xp)
P

where ¢, and ¢p are the permittivities of the n and Pmaterials, respectively. We
note that B, =0 at x = —x, and Ep = 0 a x = xp. The electric flux density D i
continuous across the junction, so I

enEn(x = 0) = ¢pEp(x =0)
which gives
Nynxy = Napxp
Equation (9.42b) simply statesthat the net negative chargein the Pregion is equal to
the net positive charge in the n region—the same condition we had in a pn homo-
junction. We are neglecting any interface states that may exist at the heterojunction.
The electric potential can be found by integrating the electric fieid through them

space chargeregion so that the potential difference acrosseach region canthe
termined. We find that

eNypx?
Vbin = ZC:; £
and
Viep = i
2€P
Equation {9.42b) can be rewritten as
fn_ _ Nep
xp N
Theratio of the built-in potential baniers can then be determined as l

Assuming that €, and cp are of the sameorder of magnitude, the larger potential dif-‘|
ferenceis acrossthe lower-doped region.
Thetota built-in potential barrier is
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If we solve for xp, for example, from Equation (2.42b) and substitute into Equa-
tion {9.46), we can solvefor x,, as

Wecan also find

The total depletion width isfound to be

If areverse-bias voltage is applied across the heterojunction, the same equations
aoply if Vi isreplaced by Vi + V. Similarly, if aforward bias is applied, the same
equations also apply if Vi; isreplaced by Vi, — V,. As before, Vi is the magnitude
d thereverse-bias voltage and V, is the magnitude of the forward-bias voltage.

As in the case of a homojunction, a change in depletion width with a change in
junction voltage yields a junction capacitance. We can find for the nP junction

Aplot of (I/Cj’.)2 versus Vy again yieldsastraight line. Theextrapolation of this plot
of (I/CJ’.)2 = () is used tofind the built-in potential harrier, V.

Figure 9.18 showed the ideal energy-band diagram for the nP abrupt heterojunc-
tion. The experimentally determined values of AE. and AE, may differ from the
idedl values determined using the electron affinity rule. One possible explanation for
thisdifference is that most heterojunctions have interface states. If we assume that
the electrostatic potential is continuous through the junction, then the electric flux
density will he discontinuous at the heterojunction due to the surface charge trapped
inthe interface states. The interface states will then change the energy-band diagram
of the semiconductor heterojunction just asthey changed the energy-band diagram of
the metal-semiconductor junction. Another possible explanation for the deviation
from the ideal is that as the two materials are brought together to form the hetero-
junction, the electron orbitals of each material begin to interact with each other, re-
¢ sultingin atransition region of afew angstromsat theinterface. Theenergy bandgap
is then continuous through thistransition region and not acharacteristicof either ma-

. terid. However. we still have the relation that

AE,+ AF, = AE, (9.50)

for thestraddling type of heterojunction, althoughthe A E, and AE , values may dif-
ferfrom those determined from the electron affinity rule.

We may consider the general characteristics of the energy-hand diagrams of the
other types of heterojunction. Figure 9.23 shows the energy-band diagram of an Np
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Figure 9.231 Ideal energy-band diagram of an
Np heterojunction in thermal equilibrium.

Figure 9.2111ded energy-bend diagram of a
pP heterojunctionin therma cquilihrium.

heterojunction. The same AE, and A E, discontinuities exist, although the generd
shape of the conduction band, for example, is different in the nP and the Np junc-
tions. Thisdifference in energy bands will influence the {-V characteristics of thetwo
junctions.

The other two types of heterojunctions are the nN and the pP isotype junctions.
The energy-hand diagram of the nN junction was shown in Figure 9.19. To achieve
thermal equilihrium. electrons from the wide-bandgap material will How into the
narrow-bandgap material. A positive space charge region existsin the widc-gap mate
rial and an accumulation layer of electrons now exists at the interface in the narrow-
gap material. Since there are alarge number of allowed energy states in the conduction
band, we expect the space charge width x,, and the built-in potential barrier V;,, toke
small in the narrow-gap material. The energy-band diagram of the pP heterojunction
inthermal equilibrium isshown in Figure 9.24. To achieve thermal equilibrium, holes
from the wide-bandgap material will Row inta the narrow-bandgap material, creating
an accumulation layer of holesin the narrow-handgap material at the interface. These
types of isotype heterojunctions are obviously not possiblein ahomojunction.



*9.3.5 Current-Voltage Characteristics

The ideal current-voltage characteristics of a pn homojunction were developed in
Chapter 8. Since the energy-band diagram of a heterojunction is more complicated
then that of a homojunction, we would expect the /-V characteristics of the two junc-
tions to differ.

Oneimmediate difference between a homojunction and a heterojunction isin the
barier heights seen by the electrons and holes. Since the built-in potential harrier
forelectrons and holes in a homojunction is the same, the relative magnitude of the
electron and hole currents is determined by the relative doping levels. In a hetero-
junction. the harrier heights seen by electrons and holes are not the same. The
energy-band diagrams in Figures 9.18 and 9.23 demonstrated that the barrier heights
forelectronsand holes in a heterojunction can be significantly different. The barrier
height for electrons in Figure 9.18 is larger than for holes, so we would expect the
current due to electrons to be insignificant compared to the hole current. If the barrier
height for electrons is 0.2 eV larger than for holes, the electron current will he
approximately a factor of 10° smaller than the hole current, assuming all other
parameters are equal. The opposite situation exists for the band diagram shown in
Figure 9.23.

The conduction-band edge in Figure 9.23 and the valence-band edge in Fig-
ure 9.18 are somewhat similar to that of a rectifying metal—semiconductor contact.
We derive the current—voltage characteristics of a heterojunction, in general. on the
basis of thermionic emission of carriers over the barrier, as we did in the metal—
semiconductor junction. We can then write

where E,. is an effective barrier height. The barrier height can be increased or re-
duced by an applied potential across thejunction as in the case of a pn homojunction
or a Schottky barrierjunction. The heterojunction 1-V characteristics, however, may
need to he modified to include diffusion effects and tunneling effects. Another com-
plicating factor is that the effective mass of a carrier changes from one side of the
junction to the other. Although the actual derivation of the /-V relationship of thehet-
erojunctionis complex, the general form of the -V equation is still similar to that of
a Schottky barrier diode and is generally dominated by one type of carrier.

9.41 SUMMARY

m A med on alightly doped semiconductor can producea rectifying contact thet is
known as a Schottky barrier diode. Theideal banier height between the metd and
semiconductor iSthe difference between the metal work function and the semiconductor
electron affinity.

m  When apostive voltageis gpplied to an n-type semiconductor with respect to the metd
{reverse bias), the barrier between the semiconductorand metd increases so that thereis
essentidly no How of charged carriers. When a positive voliage is applied to the metd



CHAPTER 9 Metal-Semiconductor and Semconductor Heterojunctions l

with respect to an n-type semiconductor (forward bias), the barrier between the
semiconductor and metal islowered so that electrons can easily flow from the
semiconductor into the metal by a process called thennionic emission.

Theideal current—voltage relationship of the Schottky barrier diode is the same as thet
of the pn junction diode. However, since the current mechanism is different from that
the pn junction diode, the switching speed of the Schottky diode is faster. In addition,
the reverse saturation current of the Schottky diode is larger than that of the m junction
diode, so a Schottky diode requiresless forward bias voltage to achieve agiven current
compared to a pn junction diode.

Metal-semiconductor junctions can also form ohmic contacts, which are low-resistance
junctions providing conduction in both dircctions with very little voltage drop across
the junction.

Semiconductor heterojunctions are formed between two semiconductor materialswith
different bandgap encrgies One useful property of a heterojunction is the creation of
apotential well at the interface. Electrons are confined to the potential well in the
direction perpendicular to the interface, but are free to move in the other two directions.

GLOSSARY OF IMPORTANT TERMS

anisotypejunction A heterojunction in which the type of dopant changes at the metallurgi-
ca junction.

electron affinity rule The rule stating that, in an ideal heterojunctian, the discontinui
the conduction band is the difference between the electron affinitiesin the two semi
ductors.

heterojunction The junction formed by the contact between two different semiconduct(l
materials.

image-force-induced lowering The lowering of the peak potential barrier a the metal
semiconductor junction due to an electric field. -

isotype junction A heterojunction in which the type of dopant is the same on both sides
the junction.

ohmic contact A low-resistance metal —semiconductor contact providing conduction in Lnll
directions between the metal and semiconductor.

Richardson constant The parameter A* in the current-voltagerelation of a Schottky di

Schottky harrier height The potential barrier ¢, from the metal to semiconductor i A
metal —semiconductor junction.

Schottky effect Another term for image-force-induced lowering.

specific contact resistance The inverse of the slope of the J versus V curve of a metd
semiconductor contact evaluated at V = 0.

thermionic emission The process by which charge flows over a potential barrier asaresult
of carriers with sufficient thermal energy.

tunneling harrier A thin potential barrier in which the current isdominated by the tunneling
of carriers through the barrier.

two-dimensional electron gas (2-DEG) The accumulation layer of electrons contained ina
potential well at a heterojunction interfacethat arefree to move in the ' other” two spatial
directions. 4




Problems

After studying this chapter, the reader should have the ability to:

Sketch the energy band diagram of zero-biased. reverse-biased, and forward-biased
Schottky barrier diodes.

Describe the charge How in aforward-biased Schottky barrier diede.

Explain the Schottky barrier lowering and its effect on the reverse saturation current in
aSchottky barrier diode.

Explain the effect interface states on the characteristics of a Schottky harrier diode.
Describe one effect of alarger reverse saturation current in a Schottky banier diode
compared to that of apn junction diode.

Describe what is meant by an ohmic contact.

Draw the energy band diagram of an nN heterojunction.

Explain what is icant by a two-dimensional electron gas.

REVIEW QUESTIONS

What is the ideal Schottky barrier height? Indicate the Schottky harrier height on an
energy band diagram.

Using an energy band diagram, indicate the effect of the Schottky barrier lowering.
What is the mechanism of charge flow in a forward-biased Schottky barrier diode?

Compare the forward-biased current—voltage characteristic of a Schottky barrier diode to
that of pn junction diode.

Sketch the ideal energy band diagram of a metal —semiconductorjunction in which
$n < .. Explain why thisisan ohmic contact.

Sketch the energy band diagram of a tunneling junction. Why is this an ohmic contact?
What is a hetcrojunction'?

8. What isa2-D eleciron gas?

PROBLEMS

(Inthe following problems, assume A* = 120 A/K*-cm? for silicon and A = 1.12 A/K*-cm®
furgallium arsenide Schottky diodes unless otherwise stated.)

Section 9.1 The Schottky Barrier Diode

91

92

93

Consider acontact berween Al and n Si doped at ¥, = 10" cm™*. T = 300 K.

{ay Draw the energy-band diagrams of the two materials before the junction isformed.
{b} Draw theideal energy band at zero bias after the junction isformed. (¢} Calculate
a0, Xq. and Epy for pan {(#). {d} Repeat parts (k) and (¢} using the datain Figure 9.5.
Anidea rectifying contact is formed by depositing gold on n-type silicon doped at
10% em™3 At 7 = 300 K, determine( a) ¢zo. (B) Vi, {c) W, and (d) Epux, al under
equilibrium conditions.

Consider agold Schottky diode a T = 300 K formed on n-type GaAs doped at Ny =
5 x 10" em™>. Determine (a) the theoretical barrier height. @zq. (&) ¢, (€) Vi,
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9.4

9.5

9.6

97

9.8
9.9

9.10

*9.11

Figure9.25 | Ftgurefor
Problem 96

() the space charge width, x,,, for Vz == 5 V. and (e) the electric field at the metal
junctionfor Ve =5 V.

Repeat problem 9.3, parts (b) through (e}, if the experimentally determined harrier
height is found to be ¢4, = 0.86 V.

An Au-n-Si junction with N, =5 x 10'" cm~* has a crocs-sectional areaof A =

5x 10 'cem’. 7 = 300K. Usethe datain Figure 9.5. (a) Determine the junction
capacitance when Vi = 4 V. (b) Repeat part (@) if the doping isincreased to ¥y = l
5x 10 cm™3.

A Schottky diode with n-type GaAs at 7 = 300K yieldsthe 1/C™ versus ¥y plot
shown in Figure9.25. where C' isthe capacitance per cm'. Determine (a) Vs:,(b) N
((.‘) ¢ns and (d) ¢'B(l

Consider an Al-u-Si Schottky barrier at 7 = 300 K with &; = 10" cm~*. Usethe
data in Figure 9.5 to determine the barrier height. (o) Determine V., x,;. and Ep,, &
zero bias. (#) Using the value of E,, from pan («). determine A¢ and x,, for the
Schottky barrier lowering. (¢} Repeat part () for the case when a reverse biasof

Ve =4 Vis npplicd. ;
Starting with Equation (9.12), derive Equations (9.14) and (9.15).

An Au-n-GaAs Schottky diode isat T = 300K with ¥y = 5 x 10 em™*. Usethe
datain Figure 9.5 to determine the harrier height. {a) Determine V,;. x,;, and E,, &
zero bias. (b) Determinethe reverse-bias voltage a which the Schottky barrier lowering,
Ad, will he 7 percent of ¢5,,. (Use the valueof E,., in the space charge region.)
Consider n-type silicon doped at ~; = 10'® cm * with agold contact to form a
Schottky diode. Investigate the effect of Schottky barrier lowering. (a)Plot the
Schottky barrier lowering A¢ versusreverse-bias voltage over therange 0 < Vi <

50 V. (b) Plot the ratio J,y (Vr)/J.7 (Vi = 0) over the same range of reverse-bias
voltage.

The energy-band diagram of a Schottky diode is shown in Figure 9.6. Assume the fol-
lowing parameters: !

y

¢ =52V ¢, =010V ¢y = 0.60V

E, = 143¢V §=25A € = & |

¢ = (13.1)eg X =407V Ny =10 em * |
D, =10%ev'em ?



mine the barrier height with interface states. (<) Repeat pans (a)and (h)if @ is
changed to ¢, = 45 V.

9.12 A Schottky barrier diode contains interface states and an interfacial layer Assume the
following parameters:

b () Determine the theoretical barrier height ¢zq. without interface states. (£) Deter-

P =475V th, = 0.164 V @0 =0.230V

E, = L.12eV §=20A € =€

, = (11.7e x =401V Ny =5x 10" ¢m™?
$ro = 0.60 V

—

Determine the interface state density, 1;;, in units of eV~ em2,

913 APiSi Schottky diode at T = 300 K isfabricated on n-type silicon with a doping of
N; = 10" cm~3. From Figure 9.5, the barrier height is (.89 V. Determine (&) ¢,
(b) Vii, (¢) Jor, when the harrier lowering is neglected, and (&) V,, so that
J, =2 Adem”.

914 (a) Consider a Schottky diode at T = 300K formed with tungsten on n-type silicon.
Let N¥; =5 x 10" cm~* and assume across-sectional areaof A =5 x 107 cm?.
Determine the forward-bias voltage required to obtain acurrent of | mA, 10 mA, and
100 mA. (k) Repeat pan (n)if the temperature is increased to T = 400 K. (Neglect
Schottky barrier lowering.)

915 A Schottky diode is formed by depositing Au on n-type GaAs doped a Ny =5 x
10'% em~3. T = 300 K. («) Determine the forward-bias voltage required to obtain
J, =5 A/cm?. (b) What is the change in forward-hias voltage necessary to double the
current? (Neglect Schottky barrier lowering.)

916 (a)Consider an Au n-type GaAs Schottky diode with across-sectional area of
10 * em?. Plot the forward-bias curreni—voliage characteristics over a voltage range
of 0 < ¥V, < 0.5 V. Plot the current an a log scale. (b) Repeat part («r) for an Au
n-type silicon Schottky diode. (¢} What conclusions can he drawn from ihese results?

917 A Schottky diode at T = 300 K is formed between tungsten and n-type silicon doped
a N, = 10" cm'. The cross-sectional areais A = 10~ cm?®. Determine the
reverse-bias saturation current at {a) Ve =2 V and (b) Vr = 4 V. (Take into account
the Schottky barrier lowering.)

#9 18 Starting with the basic current equation given by Equation (9.18), derive the relation
given by Equation (9.23).

919 A Schottky diode and a pn junction diode have cross-sectional arrasof A =
5 x 10~* e¢m?. The reverse saturation current density of the Schottky diode is
3% 107 Ascm® and the reverse saturation current density of the pn junction diode is
3 x 107" Afem?. The temperature is 300 K. Determine the forward-bias voltage in
each diode required to yield diode currents of 1 mA.

" 9.20 The reverse saturation current densities in a pn junction diode and a Schotiky diode
ae’5 x 107" Ajem? and 7 x 107 Ajem?, respectively, at 7 = 300 K. The cross-
sectional areaof the pn junction diode is A = 8 x 10~ cm”. Determine the cross-
sectional area of the Schottky diode so that the differencein forward-bias voltages to
achieve 1.2 mA is0.265 V.

9.21 (a)The reverse-saturation currents of a Schotlky diode and a pn junction diode at
T =300Kare5 x 10°® Aand 10~ A, respectively. The diodes are connected in
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9.23

parallel and arc driven by a constant current of 0.5 mA. (i) Determine the currentin
each diode. (ii) Determine the voltage across cach diode. (») Repeat part (a) if the
diodes are connected in series.

and pn junction are 4 x 10" * Afem® and 3 x 107" A/em?, respectively. A forward-
bias current of 0.8 mA isrequired in each diode. (a) Determine the forward-bias
voltage required across each diode. (b)If the voltage from part (&) is maintained
across each diode, determine the current in each diode if the temperatureisincreased
to 406 K. (Take into account the temperature dependence of the reverse-saturntion
currents. Assume E, = 1.12 eV for the pn junction diode and ¢5 = 0.82 V. for the
Schottky diode.)

Compare the current-voltage characteristics of a Schottky barrier diode and a m junc-
tion diode. Use the results of Example 9.3, and assumediode areasof 5 x 1074 cm?,
Plot the current—voltage characteristics on alinear scale over a current range of 0 <

Section 9.2 Metal-Semiconductor Ohmic Contacts

9.24

9.25

9.26

Iuis possible, theoretically, to form an ohmic contact between a metal and silicon that
hasavery low harrier height. Considering the specific contact resistance, determine
the value of ¢, that will giveavalueof k. = 10~ Q-cm” a T = 300K. 2
Ametal, with awork functiong,, = 4.2V, isdeposited on an n-type silicon semicon-
ductor with x; = 4.0V and £; = 1.12 ¢V. Assume nointerface statesexist at the
junction. Let T = 300 K. {a) Sketch the energy-hand diagram for zero bias fur the case
when no space charge region exists a the junction. (») Determine &, so that the condi-
tion in pan (a) issatisfied. (C)What is the potential barrier height seen by electronsin
the metal moving into the semiconductor?

Consider the energy-hand diagram of asilicon Schottky junction under zero biasshowg,
in Figure9.26. Let ¢xp = 0.7V and T = 300 K. Determine the doping required so

xg = 50 A at the point where the potential is¢zq/2 below the peak value. (Neglect the™
barrier lowering effect.)

Figure 9.261 Figure for
Problem 9.26.



9.27

9.28

A metal —semiconductor junction isformed between a metal with a work function of
4.3 eV and p-type silicon with an electron affinity of 4.0 eV. The acceptor doping
concentration in the siliconis ¥, =5 x 10" em™*. Assume T = 300 K. (&) Sketch
the thermal equilibrium energy band diagram. (h)Determine the height of the
Schottky barrier. {¢) Sketch the energy band diagram with an applied reverse-bias
voltage of Vg = 3V. (d) Sketch the energy band diagram with an applied forward-
bias voltage of V, = 0.25V.

() Consider a metal —semicanductor junction formed between a metal with a work
function of 4.65 eV and Ge with an electron affinity of 4.13 eV. The dopingconcen-
tration in the Ge material isN; =6 x 10" em~? and N, = 3 x 10" cm~?, Assume
T = 300 K. Sketch the zero bias energy-band diagram and determine the Schottky
barrier height. (b) Repeat pan (a) if the metal work functionis4.35 eV,

Section 9.3 Heterojunctions

9.29

9.30

¥9.31

Sketch the energy-band diagrams of an abrupt Al, ;Gag 7 As—-GaAs heterojunction for:
(a) N*-AlGaAs, intrinsic GaAs, (b) NT-AlGaAs, p-GaAs, and (c) PT-AlGaAs,
n*—GaAs. Assume £, = 1.85 eV for Aly 3Gag 7As and assume AE, = 2AE,.
Repeat Problem 9.29 assuming the ideal electron affinity rule. Determine AE, and
AE,

Starting with Poisson's equation, derive Equation (9.48)for an abrupt heterojunction.

Summary and Review

.32

9.33

*9.34

9.30

(a) Derive an expression for dV, /dT asafunction of current density in a Schottky
diode. Assume the minority carrier current is negligible. (5} ComparedV, /dT for a
GaAs Schottky diode to that for a Si Schottky diode. (¢) Compare dV,, /dT for aSi
Schottky diode to that for aSi pn junction diode.

The (1/C;)? versus Vy data are measured for two Schottky diodes with equal areas.
One diode is fabricated with 1 €2-cm silicon and the other diode with 5 £2-cm silicon.
The plotsintersect the voltage axisas Vy = —0.5 V fordiodeAandat V, = —1.0V
for diode B. The slope of the plot for diode Ais 1.5 x 10'* (F*-¥)~! and that for
diode B is1.5 x 10'7 (F2-V)~!. Determine which diode has the higher metal work
function and which diode has the lower resistivity silicon.

Both Schottky barrier diodes and ohmic contacts are to be fabricated by depositing a
particular metal on asilicon integrated circuit. The work function of the metal is4.5 V.
Considering the ideal metal —semiconductor contact, determinethe allowable range of
doping concentrations for each type of contact. Consider both p- and n-type silicon
regions.

Consider an n-GaAs—p-AlGaAs heterojunction in which the bandgap offsetsare

AE, =0.3evand AE, = 0.15eV. Discuss the difference in the expected electron
and hole currents when the junction is forward biased.
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CHAPTER

The Bipolar Transstor

PREVIEW

tion diode, can be used to obtain rectifying current—voltage characteristics, and

to form electronic switching circuits. The transistor is a multifunction semi-
conductor device that, in conjunction with other circuit elements, iscapable of current
gain, voltage gain, and signal-power gain. The transistor istherefore referred to as an
active device whereas the diode is passive. The basic transistor action is the control of
current at oneterminal by voltage applied across two other terminals of the device.

The three basic transistor types are the bipolar transistor, the metal-oxide-
semiconductor field-effect transistor (MOSFET), and the junction field-effect tran-
sistor (JFET). The bipolar transistor is covered in this chapter, the MOSFET is
treated in Chapters || and 12, and the JFET is discussed in Chapter 13. The chap-
ters dealing with each of the transistor types are written to stand alone, so that each
type of transistor may be covered in any order desired.

The bipolar transistor has three separately doped regions and two pn junctions,
sufficiently close together so that interactions occur between the two junctions. We
will use much of the theory developed for the pn junction in the analysis of the bipolar
transistor. Sincethe flows of both electrons and holesare involved in thisdevice, it is
called a bipolar transistor.

We will first discuss the basic geometry and operation of the transistor. Since
there is more than one pn junction in the bipolar transistor, several combinations of
reverse- and forward-bias junction voltages are possible, leading to different operat-
ing modes in the device. As with the pn junction diode, minority carrier distributions
in the bipolar transistor are an important part of the physics of the device— minority
carrier gradients produce diffusion currents. We will determine the minority carrier
distribution in each region of the transistor, and the corresponding currents.

The bipolar transistor isa voltage-controlled current source. We will consider the
variousfactors that determine the current gain and derive its mathematical expression.

T he single-junction devices we have considered, including the pn homojunc-
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As with anv semiconductor device. nonideal effects influence device characteristics:
afew of these effects, such as breakdown voltage, will be described.

In order to analyze or design a transistor circuit. especially using computer Sm
ulations, one needs a mathematical model or equivalent circuit of the transistor. We
will develop two equivalent circuits. The first equivalent circuit, the Ebers-Mall
model, can be used for a transistor biased in any of its operating modes and is espe
cially used for transistors in switching circuits. The second equivalent circuit, the
hybrid-pi model, is applied when transistors are operated in asmall signal linearan
plifier and takes into account frequency effectswithin the transistor.

Various physical factors affect the frequency response of the bipolar transstor.
There are severa time-delay factors within the device that determine the limiting
frequency response. We will define these time delays and develop expressions for
each factor. The limiting frequency is given in terms of a cutoff frequency, afiguri
of merit for the transistor. The frequency response generally applies to the
signal, steady-state characteristics of the device. The switching characteristics, il
contrast, determine the transient behavior of the transistor to large changes
input signal..

10.1 ITHE BIPOLAR TRANSISTOR ACTION

The bipolar transistor has three separately doped regions and two pn junctions. Hg-
ure 10.1 shows the basic structure of an npn bipolar transistor and a pnp bipolar tran-
sistor, along with the circuit symbols. The three terminal connections are called the
emitter, base, and collector. The width of the base region issmall compared to the mi-
nority carrier diffusion length. The (++)and (+) notation indicates the relative magy
nitudes of the impurity doping concentrations normally used in the bipolar transistor,
with (++) meaning very heavily doped and (+) meaning moderately doped. The
emitter region hasthelargest doping concentration: thecollector region hasthesmdl-
est. The reasons for using these relative impurity concentrations, and for the narrow
base width. will become clear as we develop the theory of the bipolar transistor. The
concepts developed for the pn junction apply directly to the bipolar transistor.

Figure 10.1 | Simplified block diagramsand circuit symbolsof (&) npn and (b) pnp
bipolar transistors.
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Buried Base Silicon
i layer substrate

Conventional npa transistor

(a)

E Figure10.2 i Cross section of (a)aconventional integrated-circuit npn bipolar transistor and ¢b) an oxide-isolated npn
bipdar transistor
(Front Muller anef Kamins {3].)

The block diagrams of Figure 10.1 show the basic structure of the transistor.
but in very simplified sketches. Figure 1{).2a shows a cross section of a classic npn
' bipolar transistor fabricated in an integrated circuit configuration, and Figure 10.2b
- shows the cross section of an npn bipolar transistor fabricated by a more modem
technology. One can immediately observe that the actual structure of the bipolar
transistor is not nearly as simple as the block diagrams of Figure 10.1 might sug-
" gest. A reason for the complexity is that terminal connections are made at the sur-
 face: in order to minimize semiconductor resistances, heavily doped n* buried lay-
ers must be included. Another reason for complexity arises out of the desire to
fabricate more than one bipolar transistor on a single piece of semiconductor mate-
rid. Individual transistors must be isolated from each other since all collectors, for
example, will not be at the same potential. Thisisolation is accomplished by adding
p* regions so that devices are separated by reverse-biased pn junctions as shown in
Figure 10.2a. or they areisolated by large oxide regions as shown in Figure 10.2h.

An important point to note from the devices shown in Figure 10.2 is that the
bipolar transistor is not a symmetrical device. Although the transistor may contain
two n regions or two p regions, the impurity doping concentrationsin the emiiter and
collector are different and the geometry of these regions can be vastly different. The
block diagrams of Figure 10.1 are highly simplified, but useful, concepts in the de-
velopment of the basic transistor theory.

10.1.1 TheBasicPrincipleof Operation

The npn and pnp transistors are complementary devices. We will devel op the bipolar
transistor theory using the npn transistor, but the same basic principles and equations
aso apply to the pnp device. Figure 10.3 shows an idealized impurity doping profile
in an npn bipolar transistor for the case when each region is uniformly doped. Typi-
cd impurity doping concentrationsin the emitter, base, and collector may be on the
order of 10", 10'7, and 10" em™, respectively.
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{(a) (b
Figure 10.31 Idedlized doping prdfile of a uniformly doped ntpn bipolar trangdtor. &

B

The base-emitter (B-E) pn junction is forward-biased, and the base—collectog
(B-C) pn junction is reverse-biased in the normal bias configuration as shown in
Figure 10.4a. This configuration is called the forward-active operating mode: The
B-E junction isforward-biased so electrons from the emitter are injected acrossthe
B-E junction into the base. These injected electrons create an excess concentration
of minority carriersin the base. The B-C junction is reverse biased, so the minority
carrier electron concentration at theedgeof the B-Cjunction isideally zero. Weex-
pect the electron concentration in the base to be like that shown in Figure 10.4b.
Thelarge gradient in the electron concentration means that electrons injected from
the emitter will diffuse across the base region into the B-C space charge region.
where the electric field will sweep the electrons into the collector. We want as many
electrons as possible to reach the collector without recombining with any mgority
carrier holes in the base. For this reason, the width of the base needs to be srdl
compared with the minority carrier diffusion length. If the base width is small, hen
the minority carrier electron concentration is a function of both the B-E ad
B-C junction voltages. The two junctions are close enough to be called inzeracting
pn junctions.

Figure 10.5 shows a cross section of an npn transistor with the injection of dec-
trons from the n-type emitter (hence the name emitter) and the collection of thedec-
tronsin the collector (hence the name collector).

10.1.2 Simplified Transistor Current Relations

We can gain abasic understanding of the operation of the transistor and the relation
between the various currents and voltages by considering asimplified anaiysis. After
thisdiscussion, we will then delveinto a more detailed analysis of the physics o the
bipolar transistor. !

The minority carrier concentrations are again shown in Figure 10.6 for an npn
bipolar transistor biased in the forward active mode. Idedlly. the minority carrier
electron concentration in the base isalinear function of distance, which impliesno
recombination. Theelectrons diffuse across the base and are swept into the collector
by the electric field in the B-C space charge region.
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{a)

E-B space B-C space
charge region chargeregion

Figure 10.4 | (a) Biasing of an npn bipolar transistor in the forwad-active mode,

(b) minority carrier distribution in an npn bipolar transistor operating in the forward-active
mode. and (¢) energy band diagram of the npn bipolar transistor under zero bias and under a
forward-active mode bias.

Collector Current  Assuming the ideal linear electron distribution in the base, the
collector current can be written asa diffusion current given by
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Figure105 | Crosssection of an npn
bipolar transistor showing the injection
and collection of electronsin the
forward-activemode.

Figure10.6 | Minority carrier distributionsand basic currents in a
forward-biasednpn bipolar transistor.

where Ay is the cross-sectional area of the B-E junction, n gy is the thermal equi-
librium electron concentration in the base, and V, is the thermal voltage. The diffu-
sion of electrons isin the +x direction so that the conventional current isin the —x
direction. Considering magnitudes only, Equation (10.1) can be written as

. Vag
i == [SeXp(v‘)

The collector current iscontrolled by the base—emitter voltage; that is, the current at
one terminal of the device iscontrolled by the voltage applied to the other two ter-
minals of the device. As we have mentioned, thisis the basic transistor action.
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itter Current One component of emitter current, i ;, shown in Figure 10.6 is
to the flow of elections injected from the emitter into the hase. Thiscurrent, then,
equal to the collector current given by Equation (10.1).

Since the base—emitter junction is forward biased, majority canier holesin the
are injected across the B-E junction into the emitter. These injected holes pro-
cea pn junction current g5 asindicated in Figure 10.6. This current isonly a B-E
nction current so thiscomponent of emitter current i s not part of the collector cur-
nt. Since ig; is aforward-biased pn junction current, we can write (considering
agnitude only)

F where I's; involves theminority carrier hole parametersin the emitter. Thetota emit-
ter current is the sum of the two components, or

Since al current components in Equation (10.4) are functions of exp (vgg/V,), the
f. ratio of collector current to emitter current is a constant. We can write

| € _y (105)
lE
wherea is called the common-base current gain. By considering Equation (10.4), we
sethat ic <igora < 1. Since ig» is hot part of the basic transistor action, we
would like this component of current to be as small as possible. We would then like
the common base current gain to be as close to unity as possible.

Referring to Figure 10.4a and Equation {10.4), note that the emitter current is an
exponential function of the base—emitter voltage and the collector current is /- =
wig. To a first approximation, the collector current is independent of the hase-
collector voltage as long as the B-C junction is reverse biased. We can sketch the
common-base transistor characteristicsas shown in Figure 10.7. The bipolar transis-
tor actslike a constant current source.

(TR T P

Figure 10.7 1 Ided bipolar transistor common-base
current-voltage characterigtics.
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Base Current As shown in Figure 10.6, the component of emitter current i, is s
B-E junction current so that this current is also a component of base current %
asip.. Thiscomponent of base current is proportional to exp (vgg/ V;). =
There is also a second component of base current. We have considered the ided
case in which there is no recombination of minority carrier electrons with ma
carrier holes in the base. However, in redlity, there will be some recombin:
Since majority carrier holesin the base are disappearing, they must he resuppli.
aflow of positive chargeinto the base terminal. This flow of charge is indicated asa
current ¢ g, in Figure 10.6. The number of holes per unit time recombining in the hase
isdirectly related to the number of minority carrier electronsin the base (see Equa:
tion (6.13)). Therefore, the current i g, is also proportional toexp {vgz/V,). Thetatal
base current is the sum of iy, and i z,, and is proportional to exp (vge/ V:).
Theratio of collector current to hase current isaconstant since both current, are
directly proportional toexp (vgg/ V:}. We can then write -

where g is called the common-emitter current gai n. Normally. the hase current will
berelatively small sothat,in general, thecommon-emitter current gain ismuch {arger
than unity (on the order of 100 or larger).

1013 TheModesof Operation

Figure 10.8 shows the npn transistor in a simple circuit. In this configuration, the
transistor may be biased in one of three modes of operation. If the B-E voltageis
zero or reverse biased (Vg < 03, then magjority carrier electrons from the emitter
will not be injected into the hase. The B-C junction is also reverse biased; thus. the
emitter and collector currents will be zero for this case. This condition is referrcd
as cutoff—all currentsin the transistor are zero.

Figure 10.81 An npn bipolar transissor in
acommon-emittercircuit configuration.
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When the B-Ejunction becomesforward biased, an emitter current will be gener-
ated as we have discussed, and the injection of electrons into the base resultsin a col-
lector current. We may write the KV L equations around the collector-emitter 1oop as

Vee = IcRe + Veg + Ve = Ve + Vg (10.7)

If V¢ islarge enough and if Vg is small enough, then Vg > 0, which means that
the B-C junction is reverse biased for this npn transistor. Again, this condition is the
forward-active region of operation.

Asthe forward-biased B-E voltage increases, the collector current and hence Vg
will aso increase. The increase in Vi means that the reverse-biased C-B voltage
decreases, or | V¢ g | decreases. At some point, the collector current may become large
enough that the combination of ¥z and V-~ produces zero voltage across the B-C
junction. A slight increase in - beyond this point will cause a slight increasein V¢
and the B-C junction will become forward biased (Vg < 0). Thiscondition iscalled
saturation. In the saturation mode of operation, both B-E and B-C junctions are
forward biased and the collector current is no longer controlled by the B-E voltage.

Figure 10.9 shows the transistor current characteristics, 7 versus Vg, for con-
stant base currents when the transistor is connected in the common-emitter configu-
ration (Figure 10.8). When the collector—emitter voltage i s large enough so that the
base-collector junction is reverse biased, the collector current is a constant in this
first-order theory. For small values of C-E voltage, the base-collector junction be-
comes forward biased and the collector current decreases to zero for a constant base
current.

Writing a Kirchhoff’s voltage equation around the C-E loop, we find

Equation (10.8) shows a linear relation between collector current and collector—
emitter voltage. Thislinear relation iscalled aload lineand i splotted in Figure 10.9.
Theload line. superimposed on the transistor characteristics, can be used to visualize
the bias condition and operating mode of thetransistor. The cutoff mode occurs when

. creasin,
-y Forward active };z g
i b

~
~
~
~

>

-

'\-=/—‘—_ @Hﬁ?ﬁ

Figure10.91 Bipolar transistor common-emittercurrent—voltage
characteriticswith load line superimposed.
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I = 0, saturation occurs when there is no longer a change in collector current for
change in base current, and the forward-active mode occurs when the relad
Ir = Bl is valid. These three operating modes are indicated on the figure.

A fourth mode of operation for the bipoiar transistor is possible, although
with the circuit configuration shown in Figure 10.8. This fourth mode, known asif-
verse active, occurs when the B-Ejuncfon is reverse biased and the B-C junctionis
forward biased. In this case the transistor is operating " upside down," and the roles
of the emitier and collector are reversed. We have argued that the transistor isnota
symmetrical device; therefore, theinverse-active characteristics will not be the same
asthe forward-active characteristics.

The junction voltage conditions for the four operating modes are shown in Fig-
ure 10.10.

10.1.4 Amplificationwith Bipolar Transstors

Voltages and currents can he amplified by bipolar transistors in conjunction witj
other elements. We will demonstrate this amplification qualitatively in the followin
discussion. Figure 1{).11 shows an npn bipolar transistor in a common-emitter
figuration. The dc voltage sources, Vg and V¢, are used to bias the transistor in the
forward-active mode. The voltage source v, represents a time-varying input voltage
(such as asignal from a satellite) that needs to be amplified.

Figure 10.12 shows the various voltages and currents that are generated in the
circuit assuming that v; isasinusoidal voltage. The sinusoidal voltage v, inducesa
sinusoidal component of base current superimposed on a dc quiescent value. Snce
ic = Big. then arelatively large sinusoidal collector current is superimposed an a
dc value of collector current. The tirne-varying collector current induces a time-
varying voltage across the R resistor which, by Kirchhoff's voltage law, meanstha
a sinusoidal vollage, superimposed on a dc value, exists between the collector ad
emitter of the bipolar transistor The sinusoidal voltages in the collector-emitter

3

Ver
Cutoff Forward
active
VBE

Inverse +

active Saturation VH_B
Figure 10.10 i Junction voltage -
conditionsfor the four Figure10.11 | Common-emitter npn bipolar
operating modes of a bipolar circuit configuration with atime-varying Sgnd

transstor. voltage v; included in the basc-emitter loop.



Figure 10.12 | Currentsand voltages exigting in the
circuit shown in Figure 10.11. (a} Input sinusoidal
sgna voltage. (b) Sinusoidal base and collector
currents superimposed on the quiescent dc values.
(c) Sinusoidal voltageacrossthe R resistor
superimposed an the quiescent dc value.

portion of the circuit are larger than the signal input voltage v;. so that the circuit has
produced a voltage gain in the time-varyingsignals. Hence, the circuit is known as a

voltage amplifier.
In the remainder of the chapter, we will consider the operation and characteris-

ticsof the bipolar transistor in more detail.

10.2I MINORITY CARRIER DISTRIBUTION

Weareinterested in calculating currents in the bipolar transistor which, asin thesim-
ple pnjunction, are determined by minority carrier diffusion. Sincediffusion currents
are produced by minority carrier gradients, we must determine the steady-state
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Table10.1 | Notation used in the analysis of the bipolar transistor

Notation

Definition

For both the npn and pnp transistors

Ne, Ng, Ne
XE>Xp,X¢C

Dy, Dy, De
Lp. Lg. Le

Teo. Tro» Tco

For the npn
PE0-Npgo. Pco

pe(x’), ng(x), poix™)
Spedx’y, Snp(x). 8pc(x™)

For the pnp
REns Peosica

ng(x’), px), ne{x")

Snp(x’), 8py(x), dne(x")

Doping concentrations in the emitter, base, and collector
Widths of neutral emitter, base. and collector regions
Minority carrier diffusion coefficientsin emitter, base. ad
collector regions

Minority carrier diffusion lengths in emitter, base, and
collector regions

Minority carrier lifetimes in emitter, base, and collector
regions

Thermal equilibrium minority carrier hole, €ectron, and hoe
concentrations in the emitter, base, and collector

Tota minority carrier hole, electron. and hole concentrations
in the emitter base, and collector

Excess minority carrier hole, electron. and hole
concentrations in the cmitter, base, and collector

Thermal equilibrium minority carrier electron, hole, and
electron concentrations in the emitter, base. and collector
Total minority carrier electron. hole, and electron
concentrations in the emitter, base, and collector

Excess minority carrier electron, hole, and electron
concentrations in the emitter, base, and collector

Emitter

-n-

Base

Collector
I -p- L T

Figure 10.13 | Geometry of the npn bipolar transistor used
to calculate the minority carrier distribution.

minority carrier distribution in each of the three transistor regions. Let us first con-
sider the forward-active mode. and then the other modes of operation. Table 10.1
summarizes the notation used in the following analysis.

10.2.1 Forward-Active Mode

Consider a uniformly doped npn bipolar transistor with the geometry shown in Fig-
ure 10.13. When we consider the individual emitter, base, and collector regions, we
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|  Emiter | | Base | | Collector

Figure10.14 | Minority carrier distributionin an npn
bipolar transstor operating in the forward-activemode.

will shift the origin to the edge of the space charge region and consider a positive X,
x', or X" coordinate as shown in the figure.

. In the forward-active mode, the B-E junction isforward biased and the B-Cisre-
verse biased. We expect the minority carrier distributions to look like those shown in
Figure 10.14. As there are two n regions, we will have minority carrier holesin both
emitter and collector. To distinguish between these two minority carrier hole distrib-
utions, we will use the notation shown in the figure. Keep in mind that we will be
dealing only with minority carriers. The parameters pgq, #g0, and pco denote the
thermal-eguilibrium minority carrier concentrationsin the emitter, base, and collec-
tor, respectively. The functions pg(x’), ng{x), and pc{x") denote the steady-state
minority carrier concentrations in the emitter, base, and collector, respectively. We
will assume that the neutral collector length x¢ islong compared to the minority car-
rier diffusion length L. in the collector, but we will take into account a finite emitter
length x£. If weassuine that the surface recombination velocity at x' = xg isinfinite,
then the excess minority carrier concentration at X' = xg is zero, or pe(x’ = xg) =
peo- An infinite surface recombination velocity is a good approximation when an
ohmic contact isfabricated at X' = x.

Base Region The steady-state excess minority carrier electron concentration is
found from the ambipolar transport equation, which we discussed in detail in Chap-
- ter 6. For azeroelectricfield in the neutral base region, the ambipolar transport equa-
% tion in steady state reduces to

where d# 5 is the excess minority carrier electron concentration, and Dy and Tz are
the minority carrier diffusion coefficient and lifetimein the base region, respectively.
f The excess electron concentration is defined as
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The general solution to Equation (10.9) can be written as

where Ly is the minority carrier diffusion length in the base, given by Lg=

+/ Datpys. The baseisof finite width so both exponential terms in Equation (10.11)
must beretained.

Theexcessminority carrier electron concentrations at thetwo boundariesbecome

Snp(x =0) = dng(0) = AT B (10.122)
and

dnglx = xg) = dnplyxp) = Aexp( )+BCXP( XB) (10.12b)
B B

The B-E junction is forward biased, so the boundary condition at x = ¢ is

v
Sng() = npg{x = 0) — ngy = npqg [exp (ek;E) - I:I (10.13a)

The B-C junction is reverse biased, so the second boundary condition at x = xz is

From the boundary conditions given by Equations (10.13a} and (10.13b), the

coefficients A and B from Equations (10.12a) and (10.12b) can be determined. The
results are

2gnh(§%)

and

2gnh(f£)
Lg

Then, substituting Equations (10.14a) and (10.14b) into Equation (10.9), we can
write the excess minority carrier electron concentration in the base region as

EVBE . Xp — X
nsol[exp( )—l]smh( )_ ) X
dngix) = kT Lo Smh( )} .
sinh (fﬁ) I
Lg
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Figure10.15 | Hyperbolic sine function
and its linear approximation.

Equation (10.15a) may look formidable with the sinh functions. We have
stressed that we want the base width x g to be small compared to the minority carrier
diffusion length L 5. This condition may seem somewhat arbitrary at this point, but
the reason will become clear as we proceed through all of the calculations. Since we
want xg < Lp, the argument in the sinh functions is always less than unity and in
most cases will he much less than unity. Figure 10.15 shows a plot of sinh (¥) for
0 < y < | and also shows the linear approximation for small valuesof y.If y < 0.4,
thesinh (¥) function differs from itslinear approximation by less than 3 percent. All
o thisleads to the conclusion that the excess electron concentration éng in Equa-
tion {/0.15a) isapproximately a lineur function of x through rhe neutral base region.
Using the approximation that sinh (x) = x for x < |, the excess electron concentra-
tion in the baseisgiven by

We will use this linear approximation later in some of the example calculations.
Thedifference intheexcesscanier concentrationsdetermined from Equations(10.15a)
and (10.15b) isdemonstrated in thefollowing exercise.

TEST YOUR UNDERSTANDING

ElOI  Theemitter and base of asilicon npn hipolar transistor are uniformly doped &
impurity concentrationsof 10'¥ em™ and 10'¢ cm™*, respectively. A forward-bias
B-E voltage of V3 = 0.610V is gpplied. The neutrd basewidthisxg = 2 xm and
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the minority carrier diffusionlength in the base is Ly = 10 um. Cdculaethe
excess minority carricr concentration in the base & () x = 0and (hy x = x; /2.
{c) Determinethe ratio of the actud minority carrier concentrationa x = xp/2
(Equation{10.15a)) to thet in the ided case of alinear minority carrier digtribution
(Equation(10.156). [0$66'0 = (1,01 X THOE T/ 01 X (b68'1) = oney ()
WD 0T X (AR = (Z/Tx) T me (T/4X)Tug ()

YU D] X 187 = () Tu (p) suy

Tahle 10.2 showsthe Taylor expansions of some of the hyperbolic functionst
will he encountered in this section of the chapter. In most cases. we will cons
only the linear terms when expanding these functions.

Emitter Region Consider, now, the minority carrier hole concentration in the emi
ter. The steady-state excess hole concentration is determined from the equation

where D, and tzq are the minority carrier diffusion coefficient and minority cam
lifetime, respectively. in the emitter. The excess hole concentration is given by

The general solution to Equation (10.16) can he written as

where L g = /Dgtey. If we assume the neutral emitter length x£ is not necessarily
long compared to L. then both exponential terms in Equation (10.18) must be
retained.

The excess minority carrier hole concentrations at the two boundaries are

Spe(x" =0) =dpp(0) =C+ D (10.19a)
and

Table10.2 | Taylor expansionsei hyperhalic functions

Function Taylor expansion
3 3
. X AT
snhix) x+§+§+---
XZ )(4
cosh (x) |+_2l +4t_ st
x4

tanh (x) = A e
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gain, the B-E junction isforward biased so

kT
An infinite surface recombination velocity at x* = xz impliesthat
dpelxe) =0 {10.20b)

Solving for C and D using Equations (10.19) and (10.20) yields the excess mi-
rity carrier hole concentration in Equation (10.18):

eVge . xg—x'
: ~1
poo o (57¢) - s ()

Spelx’y =
gnh(fi)
Ly

Spe(0) = pr(x’ =0) - pro = pEu[exp ("V”) —1]  (10.20a)

(10.21a)

Thisexressconcentration Will al so vary approximately linearly with distance if xg is
small. Wefind

If xg iscomparableto L g, then §pg(x"} shows an exponential dependence on xg

TEST YOUR UNDERSTANDING

E102 Condder asilicon npn bipolar transistor with emitter and base regions uniformly
doped & concentrationsof 10#¥ em=* and £0'% em~*. respectively.A forward bias
B-E voltaged Vi = 0.610V isapplied. The neutrd emitter width isxg = 4um
and the minority carrier diffusionlength in theemitteris Lz = 4 um. Cdculate the
excess minority carrier concentrationin the emitter & (a)x' = 0and (b)x' = xg/2
[-Wo 01 x 689'1 (9) ";_WI 7,01 X BOF'E () 'suVy]

Collector Region The excess minority carrier hole concentration in the collector
can he determined from the equation

where D¢ and 7 are the minority carrier diffusion coefficientand minority carrier
lifetime, respectively, in the collector. We can express the excess minority carrier
hole concentration in the collector as
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Thegeneral solution to Equation (10.22) can he written as

Spcix”) = G exp (—) + H exp (:L-r—)

X
L¢ C
where Lo = /Deteo. If we assume that the collector is long. then the coefficient

must be zero since the excess concentration must remain finite. The second bound.
condition gives

Spc(x" =) =dp-(0) = p(-(x” =0} - Doy = 0 - PCo = —pcao (10

The excess minority carrier hole concentration in the collector is then given as

Thisresult isexactly what we expect from the results of areverse-biased pn junctim!

TEST YOUR UNDERSTANDING

E10.3 Condder thecollector region of an npn bipolar transistor biased in the forward ac-
tive region. At whet value of x”. compared to L, does the magnitudedf the minor-
ity carrier concentration reach 95 percent of the therma equilibrium vaue.

(€ m 277/ ,X suv)

10.2.2 Other Modes of Operation

The bipolar transistor can also operate inthe cutoff, saturation, or inverse-active mode
We will qualitatively discuss the minority carrier distrihutions for these operatin
conditions and treat the actual calculations as problems at theend of the chapter.
Figure 10.16a shows the minority carrier distribution in an npn bipolar transis-
tor in cutoff. In cutoff, both the B-E and B-C junctions are reverse biased: thus, the

Figure10.16 Minority carrier distributionin an npn bipolar transistor operating in (a) cutoff and (b) saturation
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C B E

Emitter Collector

Py ——_—— Pco

pelx’)

Figure10.17 | (a) Minorily carrier distributionin an npn bipolar transistor operatingin the inverse-activemede.
{b) Cross section of @ npn bipolar trangstor showing the injection and collectionof clectrons in the inverse-active
mode.

minority carrier concentrations are zero at each space charge edge. The emitter and

collector regions are assumed to be "long" in this figure, while the base is narrow
compared with the minority carrier diffusion length. Since x; < L, essentialy all
minority carriers are swept out of the base region.

Figure 10.16b shows the minority carrier distribution in the npn bipolar transis-
tor operating in saturation. Both the B-E and B-C junctions are forward biased; thus,
excess minority carriers exist at the edge of each space charge region. However,
sinceacollector current still exists when the transistor i sin saturation, a gradient will
gtill exist in the minority carrier €l ectron concentration in the base.

Finally, Figure 10.17a shows the minority carrier distribution in the npn transis-
tor for the inverse-active mode. In this case, the B-E is reverse biased and the B-C is
forward biased. Electrons from the collector are now injected into the base. The
gradient in the minority carrier electron concentration in the base isin the opposite
direction compared with the forward-active mode, so the emitter and collector cur-
rents will change direction. Figure 10.17b shows the injection of electrons from the
collector into the base. Since the B-C areais normally much larger than the B-E area.
nat al of the injected electrons will be collected by the emitter. The relative doping
concentrations in the baseand collector are also different compared with thosein the
base and emitter; thus, we see that the transistor is not symmetrical. We then expect
the characteristics to be significantly different between the forward-active and
inverse-active modes of operation.

10.31 LOW-FREQUENCY COMMON-BASE
CURRENT GAIN

The basic principle of operation of the bipolar transistor is the control of the collec-
tor current by the B-E voltage. The collector current is a function of the number of
majority carriers reaching the collector after being injected from the emitter across
the B-E junction. The common-base current gain is defined as the ratio of collector
current to emitter current. The flow of various charged carriers leads to definitions of
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particular currents in the device. We can use these definitionsto define the current
gain of the transistor in terms of several factors.

10.3.1 ContributingFactors

Figure 10.18 shows the various particle flux components in the npn bipolar transs
tor. We will define the various flux components and then consider the resulting cur-
rents. Although there seemsto be alarge number of flux components, we may
clarify the situation by correlating each factor with the minority carrier distributi
shown in Figure 10.14.

Thefactor J_- istheelectron flux injected from the emitter into the base. As
electrons diffuse across the base, a few will recombine with majority carrier ho
The mgjority carrier holes that are lost by recomhination must be replenished f
the base terminal. This replacement hole flux is denoted by J,. The electron flux
that reaches the collector is /, ... The majority camer holes from the base that arc in-
Jjected back into the emitter result in a hole flux denoted by J :E. Some electrons ad
holes that are injected into the forward-biased B-E space charge region will recom-
bine in this region. This recombination |eads to the electron flux J; . Generation of
electrons and holes occursin the reverse-biased B-C junction. Thisgeneration yidds
ahole flux /. Finally, the ideal reverse-saturation current in the B-C junction is
denoted by the hole flux J.5,.

The corresponding electric current density components in the npn transistor are
shown in Figure 10.19 along with the minority carrier distributions for the forward
active mode. The curves are the same as in Figure 10.14. As in the pn junction,
currents in the bipolar transistor are defined in terms of minority carrier diffus
currents. The current densities are defined as follows:

Jor: Dueto the diffusion of minority carrier electronsin the base at x = 0. '

J.c. Duetothediffusionof minority carrier electronsin the baseai X = 3.

Jra: Thedifference between J, ¢ and J,¢, which is due to the recomhination
of excess minority carrier electrons with majority carrier holesin the base. The
Jre currentistheflow of holesinto the baseto replace the holeslost by
recombination.

Jpe: Due tothediffusion of minority carrier holesin the emitter at x' == O.

Figure10.18! Particlecurrent density or fl ux componentsin
an npn bipolar transistoroperatingin thefanvard-activemode
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Emitter \ \ Base | l Collector
-n- —

k3 , =0 x:0+ + +T Y-’f:-\'ﬂ AT=0 Y
B | X

Figure 10.19 | Current density componentsin an npn bipolar transistor operating in the
forward-activemode.

Jr: Duetothe recombination of carriers in the forward-biased B-E junction.

Joe: Dueto thediffusion of minority carrier holesin the collector at X* = O.

J¢: Due to the generation of carriers in the reverse-biased B- Cjunction.

The currents Jzg. J,g, and Jg are B-E junction currents only and do not con-
tribute to thecollector current. Thecurrents J,,. and J are B- Cjunction currentsonly.

These current componentsdo not contribute to the transistor action or the current gain.
The dc common-base current gain is defined as

If we assume that the active cross-sectional area is the same for the collector and
emitter, then we can write the current gain in terms of the current densities, or

We are primarily interested in determining how the collector current will change
with a change in emitter current. The small-signal, or sinusoidal, common-base cur-
rent gain isdefined as

Thereverse-bias B- C currents, J; and J,,.o, are not functionsof the emitter current.
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Wecan rewrite Equation (10.29) in theform

a= }/(}!Tts
Thefactorsin Equation (10.30b) are defined as:

= emitter injection efficiency factor

base transport factor

il

o =(3)
T =
-]n
i + Joe _—
= ——F————— = recombination factor
Jopt Jg + Sk

We would like to have the change in collector current be exactly the same as
change in emitter current or. idedly, to have a = i. However, a consideration
Equation (10.29) showsthat & will always be lessthan unity. The goal isto make
as close to one as possible. To achieve this goal, we must make each term in Equ
tion (10.30b) asclose to one as possible, since each factor isless than unity.

The emitter injection efficiencyfactor i takesinto account the minority cam
hole diffusion current in the emitter. This current is part of the emitter current,
does not contribute to the transistor action in that J,,¢ is not part of the collector cu
rent. The base transport fuctor ar takes into account any recombination of exce
minority carrier electrons in the base. Ideally, we want no recombination in the
The recombinutionfactor § takes into account the recombination in the forwar
biased B-E junction. The current Jx contributes to the emitter current, but does
contribute to collector current.

10.3.2 Mathematical Derivation of Current Gain Factors

We now wish to determine each of the gain factorsin terms of the electrical
geometrical parametersof the transistor. The results of these derivationswill show
how the various parameters in the transistor influence the electrical properties of
the device and will point the way to the design of a* good bipolar transistor.

Emitter Injection Efficiency Factor Consider, initially, the emitter injection
ciency factor. We have from Equation (10.31a)

We derived the minority carrier distribution functions for the forward-active mode
in Section 10.2.1. Noting that J,z, as defined in Figure 10.19, is in the negative



10.3 Low-Frequency Cornrnon-Base Current Gain

x direction, we can write the current densities as

JpE = —eDp——m—- (10333)

Jar = (FeDpd(dng(x))
dx ol
where dpg(x") and dng(x) are given by Equations (10.21) and {10.15), respectively.
’ Taking the appropriate derivatives of dpg(x’) and ng{x), we obtain

{10.33h)

eDepro eVar 1
Ty = ) S S
PE= "y [e"p( KT ) ]'tanh(xE/LE) (10.342)
o 1 [exp(eVa/kT) - 1]}
"= " tanh (xs/Lp)

" Positive o and J,p values imply that the currents are in the directions shown in

- Figure 10.19. If we assume that the B-E junction is biased sufficiently far in the for-
| ward biassothat Vg = kT /e, then

V,
exp (ek;'g) > |

exp(eVpe/kT) . 1
tanh(.Xg/va) Sil‘lh(xB/LB)

| and also

Theemitter injection efficiency, from Equation (1().32), then becomes

1. ‘B tanh (xg/Lg)
£ tanhixg/Lg)

If we assume that all the parameters in Equation (10.35a) except pro and ngg are
fixed, then in order for y == 1, we must have pgg <K ngs. We can write

2 .Vt;?'

PE0 = — and g = N,
where Ng and Ny arethe impurity doping concentrations in the emitter and base, re-
spectively. Then the condition that prg <K nge impliesthat ¥ > N, For the emit-
ter injection efficiency to be close to unity, the emitter doping must be large com-
pared to the base doping. This condition means that many more electrons from the
n-type emitter than holesfrom the p-type base will be injected across the B-E space
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charge region. If both xg K Lz and x; K L, then the emitter injection efficiency
can bewritten as

Base Transport Factor The next term to consider is the base transport factar.
given by Equation (10.31b) as ar = J,/J,. From the definitions of the current
directions shown in Figure 10.19, we can write

and

Using the expression for 8x g(x) given in Equation (10.13), we find that

. eDgnpy {[exp(evg,g/kT) - 11+
Lg sinh(xp/Lp)

ac {10.37)
Theexpressionfor J,, wasgiven in Equation {10.34a).

If we again assume that the B-E junction is biased sufficiently far in the forward
bias so that Vg > £T /e, then exp (e Vg /kT) 2> 1. Substituting Equations (10.37)
and {10.34b) into Equation {10.31b), we have

Juo _ exp(eVge/kT) + cosh (xg/Lg)
g LTexp(eVye/kT)cosh (xz/Lg)

oy = (10.39)
In order for ey to be close to unity, the neutral base width xz must be much smal-
ler than the minority carrier diffusion length in the base L. If x5 K £, then
cosh{xg/Lg) will be just slightly greater than unity. In addition, if exp (eVzg/
kT) > 1, then the base transport factor is approximately

|~ cosh{xp/Lp) |
For xg < Lz, we may expand the cosh function in aTaylor series, so that

1 | 1 |
cosh (xu/Lp)  1F L(up/Ly)?

The base transport factor e+ will be close to one if xz <K I 5. We can now see why
we indicated earlier that the neutral base width xz would be lessthan L 4.
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Recombination Factor Therecombination factor wasgiven by Equation (10.31¢).
Wecan write

We have assumed in Equation (10.40) that /,z < J,£. The recombination current
density, due to the recombination in aforward-biased pn junction, was discussed in
Chapter 8 and can be written as

where x g is the B-E space charge width.
The current J, £ from Equation (10 34b) can be approximated as

eV,
B = T4 exP( k;f) (10.42)
where
eDgnpo
o = L+ tiletea (10.41)
The recombination factor, from Equation (10.40}, can then be written as
(10.44)

i The recombination factor is a function of the B-E voltage. As ¥z increases, the
recombination current becomes less dominant and the recombination factor
i approaches unity.

The recombination factor must also include surface effects. The surface effects
can be described by the surfacerecombination velocity as we discussed in Chapter 6.
Figure 10.20a shows the B-E junction of an npn transistor near the semiconductor
surface. We will assume that the B-E junction is forward biased. Figure 10.20b
shows the excess minority carrier electron concentration in the base along the cross
section A-A'. This curve is the usua forward-biased junction minority carrier con-
centration. Figure 10.20c¢ shows the excess minority carrier electron concentration
aong thecross section C-C' from the surface. We showed earlier that the excess con-
centration at a surface is smaller than the excess concentration in the bulk material.
With this electron distribution, there is a diffusion of electrons from the bulk toward
the surface where the electrons recombine with the mgjority carrier holes. Fig-
ure 10.20d shows the injection of electronsfrom the emitter into the baseand the dif-
fusion of electrons toward the surface. This diffusion generates another component
of recombination current and this component of recombination current must be
included in the recombination factor 4. Although the actual calculation is difficult
because of the two-dimensional analysis required, the form of the recombination

current is the same as that of Equation (10.41).
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Diffusion of clectrons

)

Figure10.20 | The surfacea the E-B junction showing the diffusion of carrierstoward th
surface.

10.3.3 Summary

Although we have considered an npn transistor in al of the derivations, exactly
same analysis applies to a pnp transistor; the same minority carrier distributions will
be obtained except that the electron concentrations will become hole concentrations
and vice versa. The current directions and voltage polarities will also change.

We have been considering the common-base current gain, defined in Equa-
tion (10.27) as wy = | ,-//Fhe common-emitter current gain is defined as f; =
Ic/Ty. From Figure 10.8 we see that 1z = I3 + I-. We can determine the rlaion
between common-emitter and common-base current gains from the KCL equation.l
We can write

e _1Isy
I fe
Substituting the definitions of current gains, we have
1 |

— = —+|
oy fo

Since this relation actually holds for hoth dc and small-signal conditions, we can
drop the subscript. The common-emitter current gain can now be written in terms of
the common-base current gain as

o

f=

l—«

The common-base current gain, in terms of the common-emitter current gain, is
found to be
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Table 10.31 Summary of limiting factors
Emitter injection efficiency

1

Basetransport factor

Recombination factor

8=

Common-basecurrent gain

Common-emitter current gain

Table 10.3 summarizes the expressions for the limiting factors in the common
basecurrent gain assuming that xp K Ly and xg K Lg. Also given are the approx-
imateexpressions for the common-base current gain and the common-emitter current
gain.

10.3.4 Example Calculationsof the Gain Factors

If we assume a typical value of g to be 100, then « = 0.99. If we also assume that
¥y =ar = 4. then each factor would have to be equal to 0.9967 in order that
B = 100. Thiscalculation gives an indication of how close to unity each factor must
be in order to achieve a reasonable current gain.

O]

To design the ratio of emitter doping to base doping in order to achieve an emitter injection
efficiency factor equd toy = 0.9967.

Consider an npn bipolar transistor. Assume, for smplicity, that Iy = D, Lg = Ly.and

b.ective |

DESIGN
EXAMPLE 10.1



CHAPTER 10 The Bipolar Transistor

Solution
Equation {10.35a) reduces to

L 7 n Ny
Hio P’LZ/NH
SO
|
y = ——— = 09967
i+
Ng
Then
N N
22 000331 or —= —302
NE N

® Comment
The emitter doping concentration must be much larger than the base doping concentration‘
achieve a high emitter injection efficiency.

DESIGN | Objective
EXAMPLE 10.2

To design the base width required to achieve a basetransport factor equal 1o oy = 3,9
Consider a pnp bipolar transistor. Assume that Dz = 10 cm?/s and 1y = 1077 .

Solution
The base transport factor applies to both pnp and npn transistors and is given by

Then
.YB/LB =0.0814
We have
Ly= o v = JO0(10-"y = 1077 cm
so that the base width must then be

xz =0.814 x 107" cm = 0.813 um

® Comment

If the base width is less than approximately 0.8 im, then the required base transport
will be achieved. In most cases, the base transport factor will not be the limiting factor
bipolar transistor current gain.
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Objective EXAMPLE 10.3

To calculate the forward-biased B-E voltage required to achieve a recombination factor equal
to6 = 0.9967.

Consider an npn bipolar transistor at 7" = 300 K. Assume that J,4 = 10 # A/cm? and
that Lo = 107" Afem?,

1 Solution
The recombination factor, from Equation (10.44), is

: We then have

We can rearrange this equation and write

1 Comment

Thisexample demonstrates that the recombination factor may be an important limiting factor
in the bipolar current gain. In this example, if V< is smaller than 0.654 V, then the recombi-
nation factor S will fall below the desired 0.9967 value.

Objectivel EXAMPLE 10.4

To calculate the common-emitter current gain of asilicon npn bipolar transistor at 7 = 300K
given aset of parameters.
Assume the following parameters:
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Thefollowing parameters are cal cul ated:

N Solution
The emitter injection efficiency factor, from Equation {(10.35a), is

The base transport factor, from Equation (10.39a) is

The recombination factor, from Equation (10.44), is

where
S eDsng _ (16x 107929225 x 10 _ —
=0 xp 3.54 x 103 tanh (1.977 x ' Alent?
Ly tanh L—-

;)

We can now calculate § = 0.99986. The common-base current gain is then
a = yars = (0.9944)(0.9998)(0.99986) = 0.99406

which gives acommon-emitter current gain of

m Comment
In this example, the emitter injection efficiency isthe limiting factor in the current gain.

TEST YOUR UNDERSTANDING

NOTE: In Exercises E10.4 through E10.9, assume asilicon npn bipolar transistor at T = 300K
hasthefollowing minority carrier parameters. [3, = 8cm?/s, Dy = 20cm?/s, Dp = 12 cmf,
Tz = 1078 8, 150 = 1077 5, 109 = 1075 5.
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El0.4 If the emitter doping concentration is ¥z =5 x 10" cm™2, find the base doping
concentration such that the emitter injection efficiency isy = ©.9950. Assume
xp =2xp = 2 pm. {Wd 507 X €0'[ = TN suy)

E10.5 Assumethat wr = 8 = 0.9967, x5 = x; = | um, Ny =5 x 10 em™*, and Np =
5 x 10" em~*, Determine the common emitter current gain 8. (26 = d suv)

EN6 Determinethe minimum base width x such thet the base transport factoris
ar = 0.9980. (w7 ¢g8°0 = Tx "suy)

El0.7 Assumethaty = & = 0.9967 and x; = 0.80 pem. Determine the common-emitter
current gain 4. (171 = d 'suy)

E10.8 If Jo = 10-% Alem? and Jo = 10~ A./CIT[Z, find the vadlue of Vg such that
8 =10.9960. (A 9£¥9'0 = 774 suy)

FI09 Asumetha y = ey = 0.9967. J,p = 5 x 107° Alem?, J,o = 107" Afem?, and
Vgr = 0.585 V. Determine the common-emittercurrent gain 8. (¥'LL = & "SUVY)

10.4 | NONIDEAL EFFECTS

Inal previous discussions, we have considered atransistor with uniformly doped re-
gions, low injection, constant emitter and base widths, an ideal constant energy
bandgap, uniform current densities, and junctions which are notin breakdown. If any
of these ideal conditions are not present, then the transistor properties will deviate
from the ideal characteristics we have derived.

104.1 BaseWidth Modulation

We have implicitly assumed that the neutral base width xg was constant. This base
width, however, is a function of the B-C voltage, since the width of the space
charge region extending into the base region varies with B-C voltage. As the B-C
reverse-bias voltage increases, the B-C space charge region width increases, which
reduces xz. A change in the neutral base width will change the collector current as
can be observed in Figure 10.21. A reduction in base width will cause the gradient
in the minority carrier concentration to increase, which in turn causes an increase in
the diffusion current. This effect is known as base width modulation; it is also
caled the Early effect.

The Early effect can be seen in the current-voltage characteristics shown in Fig-
ure 10.22. In most cases, a constant base current is equivalent to a constant B-E volt-
age. |deally the collector current is independent of the B- C voltage so that the slope
of the curves would be zero; thus the output conductance of the transistor would be
zero. However, the base width modulation, or Early effect, produces a nonzero slope
and gives rise to a finite output conductance. If the collector current characteristics
are extrapolated to zero collector current, the curves intersect the voltage axis at a
point that is defined asthe Early voltage. The Early voltage isconsidered to be apos-
itive value. It is a common parameter given in transistor specifications; typical val-
ues of Early voltage are in the 100- to 300-volt range.
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Base i Moving space
| charge edge

I with increasing
C-B voltage

Increasing
minority
carrier
eradient

Figure 10.21 | The change in the base width and the change
in the minority carrier gradient as the B-C space charge
width changes.

Figure 10.221 The collector current ver sus collector—
emitter voltage showing the Early effect and Early voltage.

From Figure 10.22, we can write that

where V4 and V¢ are defined as positive quantities and g is defined asthe out
conductance. Equation (10.45a) can be rewrittenin theform

Ie = go(Vep + Vi) (10.45b

showing explicitly that the collector current is now a function of the C-E voltage or;
the C-B voltage.

EXAMPLE 10.5 | Objective

To calculate the change in the neutra base width with achange in C-B voltage.
Consider a uniformly doped silicon bipolar transistor at T = 300 K with a base doping of
Njp =5 x 10" em™* and acollector doping of No = 2 x 10" em~3. Assume the metallurgical
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bese width is 0.70 pm. Calculate the change in the neutral base width as the C-B voltage
changesfrom 2to 10 V.

1 Solution
The space charge width extending into the base region can be written as

which becomes
xip = ((9.96x 107%) (v, F vep))'?
Thebuilt-in potential 15

For Vg = 2V, wefind x;5 = 0.052 jem, and for V5 = 10 V, wefind x,5 = 0.103 pm, If
we neglect the B-E space charge region, which will be small because of the forward-biased
junction, then we can calculate the neutral base width. For V-3 =2 V.

xg =0.70 —0.052 = 0.648 um
adfor Veg = 10V,

xg = 0.70 — 0.103 = 0.597 pm
1 Comment

Thisexample shows that the neutral base width can easily change by approximately 8 percent
asthe C-B voltage changes from 2 to 10 V.

Objective

To calculate the change in collector current with a change in neutral base width, and to esti-
mate the Early voltage.

Consider a uniformly doped silicon npn bipolar transistor with parametersdescribed in Ex-
ample 10.5. Assume D = 25 cm?#s, and Vgg = 0.60 V, and also assume that x5 <K L.

1 Solution
The excess minority carrier electron concentration in the baseis given by Equation {10.15) as

eVge _ : (x‘”ix
| m;o”exp( kT) ‘-Is‘”h Ls )—sinh(x)}

dnglx) = " 3
sinh (i)
La

EXAMPLE 10.6
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If xp < Lg. then (xz — x) K L, sowe can write the approximations

. . Xg — . Xp — X
i) () = (). (25)

Theexpression for dr g(x)} can then he gpproximated as

Thecollector current is now

d(Bng{x)) eDgnyy eVar
e e

Jel=eD
el =e¢ dx "

The vadue of ngq iscaculated as

n? (1.5x 10:°)?

=L = =45x10°cm?
"N, T T 5 106 )

If welet xz = 0.648 um when Vep =2V (Ve =2.6V), then

el =

(1.6 x 10-19)(25)(4.5 X 10%) 0.60 ,
— } = 3.20 A -
0.648 X 10— XP{ Goasy | = 320 Akm

Now let xg = 0.597 um when V-x =10 V (Vg = 10.6V). In this case we have | /¢ |
3.47 A/em’ . From Equation (10.452), we can write

Using the calculated valuesdof current and voltage, we have

The Early voltage is then determined to be

m Comment

This example indicates how much the collector current can change as the neutral base width
changes with a change in the B-C space charge width. and it also indicates the magnitude of
the Early voltage.

The example demonstrates, too, that we can expect variations in transistor prop-
erties due to tolerances in transistor-fabrication processes. There will be variations,
in particular, in the base width of narrow-base transistors that will cause variationsin
the collector current characteristics simply due to the tolerancesin processing.
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e TEST YOUR UNDERSTANDING

010 A particular transistor hasan output resistanceof 200k£2 and an Early voltage of
v, = 125 V. Determine the change in collector current when V-« increasesfrom
2V to8V. (¥ 0t = 21y suy)

{a) If. because o fabricationtolerances, the neutrd hase width for aset of transis
tors varies over the range of 0.800 < xp < 1.00 4m. determine the variationin the
base transport factor «er. ASSUme L = 1.414 x 1073 ¢m. (&) Using the results of
part {z) and assuming y = & = 0.9967, what is the variation in common emitter
current gain. [121 = d > 601 (&) ‘¥868°0 > <0 > §L66°0 (7} suy]

104.2 High Injection

il'he ambipolar transport equation that we have used to determine the minority carrier
distributtons assumed low injection. As V¢ increases, the injected minority carrier
concentration may approach, or even becomel arger than, the mgjority carrier concen-
tration. If we assume quasi -charge neutrality, then the majority carrier hole concen-
tration in the p-type base at x = 0 will increase as shown in Figure 10.23 because
of the excess holes.

Two effects occur in the transistor at high injection. Thefirst effect isa reduction
inemitter injection efficiency. Since the majority carrier hole concentration at .x = 0
increases with high injection, more holes are injected back into the emitter because
of the forward-biased B-E voltage. An increase in the hole injection causes an in-
creaein the J,g current, and an increase in J,e reduces the emitter injection effi-
ciency. The common, emitter current gain decreases, then, with high injection. Fig-
ure 10.24 shows a typical common-emitter current gain versus collector current

¢

injection
effects

effects

L L. Collector current (A)
Figure 10.23| Minority and majority

carrier concentrationsin the base under Figure 10.24 i Common-emitter current
low and high injection (solid line: low gain versus collector current.
injection: dashed line: high injection). {From Shur [13})
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curve. Thelow gain at low currents isdueto the small recombination factor and the
drop-off at the high current is dueto the high-injection effect.

We will now consider the second high-injection effect. At low injection,them
jority carrier hole concentration at x = ( for the npn transistor is

and the minority carrier electron concentration is '
eVer
0) =
70 (0) = 1y eXp( T ) (10.
The pn product is
eV
PO, (0) = paonpoexp ( kif) (10.

At high injection, Equation (10.46c) still applies. However, p,(0) will also increase,
and for very high injection it will increase at nearly the same rate as n,(0). Thein-
creasein s, (0) will asymptotically approach the function

eVie
np(0) ~ n,,oexp( T )

The excess minority carrier concentration in the base, and hence the collector cur-
rent, will increase at a slower rate with B-E voltage in high injection than low injec-
tion. Thiseffect is shown in Figure 10.25. The high-injection effect is very similar o
the effect of a seriesresistance in a pn junction diode.

log scdle( ——p

Figure 10.251 Collector current versus
base—emitter voltage showing high-
injectioneffects.
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104.3 Emitter Bandgap Narrowing

Another phenomenon affecting the emitter injection efficiency is bandgap narrow-
ing. We implied from our previous discussion that the emitter injection efficiency
(actor would continue to increase and approach unity astheratio of emitter doping to
hase doping continued to increase. As silicon becomes heavily doped, the discrete
donor energy level in an n-type emitter splits into a band of energies. The distance
between donor atoms decreases as the concentration of impurity donor atoms in-
creasesand the splitting of the donor level iscaused by the interaction of donor atoms
with each other. As the doping continues to increase, the donor hand widens, be-
comes skewed, and moves up toward the conduction hand, eventually merging with
it. At this point, the effective bandgap energy has decreased. Figure 10.26 shows a
plat of the change in the bandgap energy with impurity doping concentration.

A reduction in the bandgap energy increases the intrinsic carrier concentration.
Theintrinsic carrier concentration is given by

n? = N, N, exp &y
i ’ v kT

In aheavily doped emitter, theintrinsic carrier concentration can he written as

I nly = NN, exp

where Eg is the bandgap encrgy at a low doping cencentration and AE, is the
bandgap narrowing factor.
The emitter injection efficiency factor was given by Equation (10.35) as

Np (em ™)

Figure 10.261 Bandgap-narrowing factor ver sus donor
impurity concentration in silicon.
(From Sze [I8].)
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and must be written as

As the emitter doping increases, A E, increases; thus, pgg does not continue to
crease with increased emitter doping. If pgq Starts to increase because of the bandg

narrowing, the emitter injection efficiency begins tofall off instead of continuing y

increase with increased emitter doping.

Consder a slicon emitter & T = 300 K. Assume the emitter doping increases
10** em~3 to 10" em~?. Cdculate the change in the pe vaue.

Solution
For emitter dopings of Ng = 10"% cn™® and 10" em—3, we have, neglecting bandgep

narrowing, -

n _ (1.5x 101

=5 = Tois =2.25X 10° em?
£

1.5x 10'9)?
pro = E2I0D o L 22510 em
Taking into account the bandgap narrowing, we obtain, respectively,for ¥z = 10" cm™? and
Ng =10 em™?

m Comment

If the emitter doping increasesfrom 107% to 10" em~3, the thermal-equilibriumminority car-
rier concentration actualy increases by afactorof 1.5 instead of decreasing by the expected
factor o 10. This effect isdue to bandgap narrowing.

As the emitter doping increases, the bandgap narrowing factor, AE,, will in-
crease; this can actually cause pgp toincrease. As pgy increases, the emitter injection
efficiency decreases; thisthen causesthe transistor gain todecrease, asin Figure 10.24.

1
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A very high emitter doping may result in asmaller current gain than we anticipate be-
causeof the handgap-narrowing effect.

1044 Current Crowding

It istempting to minimize the effects of base current in atransistor since the basecur-
rent is usually much smaller than either the collector or the emitter current. Fig-
ure 10.27 is a cross section of an npn transistor showing the lateral distribution of
base current. The base region is typically less than a micrometer thick, so there can
be asizable base resistance. The nonzero base resistance resultsin alateral potential
difference under the emitter region. For the npn transistor, the potential decreases
from the edge of the emitter toward the center. The emitter is highly doped, so as a
first approximation the emitter can be considered an equipotential region.

The number of electrons from the emitter injected into the base is exponentially
dependent on the B-E voltage. With thelatera voltage drop in the base between the
~edgeand center of the emitter, more electrons will beinjected near the emitter edges
I than in the center, causing the emitter current to be crowded toward the edges. This

current-crowding effect is schematically shown in Figure 10.28. The larger current

density near the emitter edge may cause localized heatingeffectsas well aslocalized
E high-injection effects. The nonuniform emitter current also results in a nonuniform
lateral base current under the emitter. A two-dimensional analysiswould he required
to calculate the actual potential drop versus distance because of the nonuniform base
current. Another approach is to slice the transistor into a number of smaller paralel
transistorsand to lump the resistance of each base section into an equivalent external
resistance.

Power transistors, designed to handle large currents, require large emitter areas
to maintain reasonable current densities. To avoid the current-crowding effect, these
transistorsare usually designed with narrow emitter widths and fabricated with an in-
terdigitated design. Figure 10.29 shows the basic geometry. In effect, many narrow
emittersare connected in parallel to achieve the required emitter area.

Base Emitter
i L '
pbase ! ¥ emitter Mpbase | Y
& Collector k \ Collectorcurrent k
Figure 10.27 | Cross section of an npn bipolar transistor Figure 10.28 | Cross section of an npn
showing the base current distributionand the latera bipolar transistor showing the emitter

potertid drop in the base region. current-crowding effect.
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[ Base B

, Base Emitter

terminal

Figure10.291 (a) Top view and (b} cross section of an
interdigitated npn bipolar ransistor structure.

B

TEST YOUR UNDERSTANDING

E10.12 Consder the geometry shown in Figure 10.30. The base doping concentrationis
Ny = 10" em~3, theneutral base width fs vz = 0.80 .om, theemitterwidth is
S = 10 um, and theemitter lengthisL = 10 wm. (&) Determinethe resistanceof
the base between x = 0 and x = §/2. Assume ahole mobility of 2, = 400 cm?/V-s,
(b) If the basecurrentin thisregion is uniformand given by I /2 = 5 A, ddamine
the potential differencebetween x = 0 and x = §/2. (¢} Udng the resultsof part (b),
what is the retio of emitter current density atx = 0 totharatx = §/27
[65°9 (2) "AW 6881 (9) "N LL 76 () suy]

*10.4.5 Nonuniform Base Doping

In the analysis of the bipolar transistor, we assumed uniformly doped regions. Ho
ever, uniform doping rarely occurs. Figure 10.31 shows a doping profile in adou
diffused npn transistor. Wecan start with a uniformly doped n-type substrate, di
acceptor atoms from the surface to form a compensated p-type base, and then di
donor atoms from the surface to form a doubly compensated n-type emitter.
diffusion processresults in a nonuniform doping profile.



10.4 Nonided Effects

n* emitter
p base

r=U x=5/2
it collector

Figure 10.30 | Figure for E10.12.

Figure 10.31 | Impurity concentration
profilesof a double-diffusednpn bipolar
transigtor.

We determined in Chapter 5 that agraded impurity concentration leads to an in-
duced el ectric field. For the p-typebase region in thermal equilibrium, we can write

dN, _

Jy =eu,NqE—eD), T =0

Then

According to the example of Figure 10.31, d NV, /dx is negative; hence, the induced
electricfield is in the negative x direction.

Electrons areinjected from the n-type emitter into the baseand the minority car-
rier base electrons begin diffusing toward the collector region. The induced electric
fieddin the base, because of the nonuniform doping, produces aforce on the electrons
in the direction toward the collector. The induced electric field, then, aids the flow of
minority carriers across the base region. Thiselectric field is called an accelerating
field.
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The accelerating field will produce a drift component of current that isin
tion to the existing diffusion current. Since the minority carrier electron con
tion varies across the base, the drift current density will not he constant. The t
current across the base, however, is nearly constant. The induced electric field ia
base due to nonuniform base doping will alter the minority carrier distributi
through the base so that the sum of drifi current and diffusioncurrent will bea
stant. Calculations have shown that the uniformly doped base theory is very usfu
for estimating the base characteristics.

1046 Breakdown Voltage

There are two breakdown mechanisms to consider in a bipolar transistor. Thefirg
called punch-through. As the reverse-bias B-C voltage increases, the B-C space
charge region widens and extends farther into the neutral base. It is possible for the
B-C depletion region to penetrate completely through the base and reach the B-E
spacechargeregion, theeffect called punch-through. Figure 10.32a showstheenergy-
band diagram of an npn bipolar transistor in thermal equilibrium and Figure 10.324
shows the energy-band diagram for two values of reverse-bias B-C junction volta
When asmall C-B voltage, Vri, is applied, the B-E potential barrier is not affe
thus, the transistor current isstill essentially zero. When alarge reverse-bias vol
Vg2, is applied, the depletion region extends through the base region and the
potential barrier islowered because of the C-B voltage. Thelowering of the potenti
banier at the B-E junction produces a large increase in current with a very sm
increase in C-B voltage. Thiseffect is the punch-through breakdown phenomenon.
Figure 10.33showsthe geometry for calculating the punch-through voltage. As
sumethat ¥ and N¢ are the uniform impurity doping concentrations in the base
collector, respectively. Let Wg bethe metallurgical width of thebase and let x5 be
space charge width extending into the base from the B-C junction. If we neglect

Figure 10.32] Energy-band diagram of an npn bipolar transistor (a) in thermal
equilibrium. and (b) with a reverse-bias B-C voltage before punch-through, Vi,
and after punch-through, Vi,.
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Figure10.331 Geometry of a bipolar
transistor to calculate the punch-through
voltage.

narrow space charge width of a zero-biased or forward-biased B-E junction. then
punch-through. assuming the abrupt junction approximation, occurswhenx;z = wg.
We can writethat

where V, isthe reverse-biased B-C voltage at punch-through. Neglecting Vi, com-
pared to V,,;, we can solvefor V,, as

Objective

Todesign thecollector doping and collector width to meet a punch-through voltage specification.

Consider a uniformly doped silicon bipolar transistor with a metallurgical base width
of 0.5um and a base doping of Agz = 10'® cm *. The punch-through voltage is to be
V., =25V.

m Solution
The maximum coltector doping concentration can bedetermined from Equation (10.54) as

which yields
N, =838x 10" em™

This n-type doping concentration in the collector must extend at least as far as the depletion
width extends into the collector to avoid breakdown in the collector region. We have, using

DESIGN
EXAMPLE 10.8
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resultsfrom Chapter 7,

Neglecting v; compared to V; = V,,,. We obtain

or I

X, = 5.97 pm

B Comment

case. For alarger punch-through voltage, a larger metalurgical hase width will be requi

TEST YOUR UNDERSTANDING

E10.13 Themetalurgical hase width of asilicon npn bipolar transistor is W, = 0.80 ym.
The base and collector doping concentrationsare ¥ = 2 x 10" em~* and
Ne = 10" cm~?. Find the punch-through breakdown valtage. (A 80t suv}
E10.14 The baseimpurity doping concentrationis &z == 3 x 10'® ecm~?* and the metdlur-
gica base width is Wz = 0.70 tem. The minimum required punch-through
breakdown voltageis specified to be ¥, = 70 V. Wht is the maximunt dlowed
collectordoping concentration? (- W2 ¢ 0T X [R'S = 2N SUV}

The second breakdown mechanism 1o consider is avalanche breakdown, but tak-
ing into account the gain of the transistor." Figure 10.34a is an npn transistor with a
reverse-bias voltage applied to the B-C junction and with the emitter left open. The
current Icpe isthe reverse-biased junction current. Figure 10.34b shows thetransis
tor with an applied C-E voltage and with the base terminal |eft open. This bias con-
dition also makes the B-C junction reverse biased. The current in the transistor for
this bias configuration isdenoted as Iz .

The current /g shown in Figure 10.34b is the normal reverse-hiased B-Cjunc-
tion current. Pan of this current isdue to the flow of minority carrier holes from the
collector across the B-C space charge region into the base. The Row of holesinto the

‘The doping concentrations in the base and collector of the transistor we assume to be small €00UZN that
Zener breakdown isnot a factor to be conddered.



10.4 Nonided Effects

Figure 10.34 | (a) Open emitter configuration with saturation current czq . (b) Open base
configuration with saturation current Iceo.

base makes the base positive with respect to the emitter, and the B-E junction be-
comes forward biased. The forward-biased B-E junction producesthe current fczo.
dueprimarily to the injection of electrons from the emitter into the base. The injected
electronsdiffuse acrossthe basetoward the B-C junction. These electrons are subject
to dl of the recombination processes in the bipolar transistor. When the electrons
reach the B-C junction, thiscurrent component isa {czo Wherea isthe common base
current gain. We therefore have

where § is the common-emitter current pain. The reverse-biased junction current
Iese ismultiplied by the current gain 8 when the transistor is biased i n the open-base
configuration.

When thetransistor isbiased in the open-emitter configurationasin Figure 10.34a,
thecurrent {5 at breakdown becomes{cae — M Icpo. whereM isthemultiplication
factor. An empirical approximation for the multiplication factor is usualy written as

where n is an empirical constant, usually between 3 and 6, and B Vcgo is the B-C
breakdown voltage with the emitter left open.

When the transistor is biased with the base open circuited as shown in Fig-
ure 10.34b, the currents in the B-C junction at breakdown are multiplied, so that

Solving for /g, we obtain

The condition for breakdown correspondsto
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Figure10.35 | Relativebreakdown
voltagesand saturation currentsof the
open baseand open emitter configurations

Using Equation (10.56) and assuming that Vi = Vg, Equation (10.59) becomes

where B Vo is the C-E voltage at breakdown in the open base configuration. Solv-
ing for BVcgs, wefind

BVern = BVegov/'T — a (10.6'

where, again, « is the common-base current gain. The common-emitter and
common-base current gains are related by

Normally « = 1, so that

Then Equation (10.61) can be written as

The breakdown voltage in the open-base configurationis smaller, by thefactor /g,
than the actual avalanche junction breakdown voltage. Thischaracteristic isshownid
Figure 10.35.

DESIGN
EXAMPLE 10.9

Objective

To design abipolar transistor to meet a breskdown voltage specification.

Consider asilicon bipolar transistor with acommon-emitter current gain of 8 = 100
a basedoping concentrationdf N5 = 10! cm~*. The minimum open-base breakdown voitage
istobe 15 valts.
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1 Solution
Fam Equation (10.63).the minimum open-emitter junction breakdown voltage must be

Assuming the empirical congtant »# is 3, we find
BVego = V100(15) = 69.6 V

Fam Fgure 8.25, the maximum collector doping concentration should be approximately
7 x 10" cm™? to achieve this breskdown voltage.

1 Comment

In a trangistor circuit, the transistor must be designed to operate under a worst-case situation.
In this example, the transistor must be able to operate in an open-base configuration without
going into breskdown. As we determined previoudy, an increasein breakdown voltage can be
achieved by decreasing the collector doping concentration.

TEST YOUR UNDERSTANDING

E10.15 A uniformly doped silicon transistor has base and collector doping concentrations
o 5x 10% em™ and 5 x 10'* em~?, respectively. The common emitter current
ganis 8 = 85. Assumingan empirical constant valueof n = 3, determine B Vg
(A 91T suy)

E10.16 The minimum required breakdown voltage of a uniformly doped silicon npn
bipolar transistoris to be BV-zo = 70V. The base impurity doping concentration
isNg = 3 x 10" em™*, the common-emitter current gain is 8 = 85, and the
empirica congtant vaueis# = 3. Determine the maximum collector impurity
doping concentration. ¢ W ¢ 0I X | = 2 "SUY)

10.51 EQUIVALENT CIRCUIT MODELS

In order to analyze a transistor circuit either by hand calculations or using computer
codes, one needs a mathematical model, or equivalent circuit, of thetransistor. There
are several possible models, each one having certain advantages and disadvantages.
Adetailed study of all possible modelsis beyond the scope of thistext. However, we
will consider three equivalent circuit models. Each of these followsdirectly from the
work we have done on the pn junction diode and on the bipolar transistor. Computer
analysis of electronic circuitsis more commonly used than hand calculations, but it
isinstructive to consider the types of transistor model used in computer codes.

It is useful to divide bipolar transistors into two categories— switching and
amplification — definedby their usein electronic circuits. Switching usually involves
turning a transistor from its "' off" state, or cutoff, to its "on" state, either forward-
active or saturation, and then back to its “off”” state. Amplification usually involves
superimposing sinusoidal signals on dc values so that bias voltages and currents are
only perturbed. The Ebers—Mall model is used in switching applications; the hybrid-
pi model is used in amplification applications.
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*10.5.1 Ebers-Mall Model

The Ebers—Moll model, or equivalent circuit, is one of the classic modelsof the bi

lar transistor. This particular model is based on the interacting diode junctions an
applicable in any of the transistor operating modes. Figure 10.36 shows the currem
directions and voltage polarities used in the Ebers—Moll model. The currentsare
fined as all entering the terminals so that .

tn+i=0

Thedirection of the emitter current is opposite to what we have considered upto
point, but aslong as we are consistent in the analysis, the defined direction does
matter.

The collector current can be written in general as

e =orly —Ip

wherewr is thecommon hasecurrent rain in the forward-active mode. In thismode,
Equation {10.65a) becomes

Ic =oaply + Ics

where the current Irs is the reverse-bias B-C junction current. The current /¢ is

given by
FVB.E I
Iy =iy [exp(—!\—T—

If the B-C junction becomesforward biased, such as in saturation, then we can write
the current {5 as

Using Equations (10.66} and (10.67), the collector current from Equation {10.65a)

can be written as 1

Figure10.36 ! Current direction and
voltage polarity definitionslor the
Ebers-Moll modd.
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B

Figure 10.371 Basic Ebers-Moll equivaent circuit.

We can al'so write the emitter current as

Thecurrent /g is the reverse-bias B-E junction current and ag isthe common base
current gain for the inverse-active mode. Equations (10.68) and (10.70) are the clas-
sc Ebers—Moll equations.

Figure 10.37 shows the equivalent circuit corresponding to Equations (10.68}
and (10.70). The current sources in the equivalent circuit represent current compo-
nents that depend on voltages across otherjunctions. The Ebers—Moll model hasfour
parameters. o, g, fgs, and Ics. However, only three parameters are independent.

- Thereciprocity relationship states that

Since the Ebers-Moll model is valid in each of the four operating modes, we
can, for example, use the model for the transistor in saturation. In the saturation
mode, both B-E and B-C junctions are forward biased, so that Vgg > 0 and

i Vee > 0. The B-E voltage will be a known parameter since we will apply a voltage
across this junction. The forward-biased B-C voltage is a result of driving the tran-
gstor into saturation and is the unknown to be determined from the Ebers—Moall
equations. Normally in electronic circuit applications, the collector-emitter voltage
a saturation is of interest. We can define the C-E saturation voltage as

We will find an expression for ¥¢g(satj by combining the Ebers—Moll equations. In
the following example we see how the Ebers—Moll equations can be used in a hand
calculation, and we may also see how a computer analysis would make the calcula-
tionseasier.
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Combining Equations (10.64) and {10.70), we have

—Ug+ Ic) = aglcs [exp (f) - 1} ~ Tes ["”‘p (EZBT‘L) - ('O'é

If wesolvefor [exp(eVy/kT) — 1] from Equation (10.73). and substitute therc
ing expression into Equation (10.68), we can then find Vz¢ as

where ¥, isthe thermal voltage. Similarly, if we solvefor [exp{eVgy/kT} — 1] from
Equation (10.68), and substitute this expression into Equation (10.73), we can

We may neglect the /5 and f5 terms in the numerators of Equations (10.74) and
(10.75). Solving for Vg (sat), we have

Theratio of /¢5 to /gs can be written in terms of ¢ and «z from Equation (10.71).
We can finally write

Vee(sat) = V, In (10.77)

Laels — (| —ap)le axl

EXAMPLE 10.10

Obijective
To calculatethe coltecior—emitter Saturation voltage of a bipolar transistor a T = 300 K
Assumetha a,. =0.99.a =0.20./c = | mA, ad 7z = 50 ;A.

M Solution
Substituting the parameters into Equation (10.77). we have

B Comment
This Vg (sat) vaue is typica of collector-zmitter saturation voltages. Because o the log
function, V¢ (sat) is not astrong function of - or 7.

10.5.2 Gumme -Poon M ode€l

The Gummel -Poon model of the BIT considers more physics of the transistor ther
the Ehers—Moll model. Thismodel can he used if, for example, there isa nonunifom
doping concentration in the base.
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Theelectron current density in the base of an npn transistor can be written as

dr{x)
Tdx
nelectric field will occur in the base if nonuniform doping exists in the base. This

as discussed in Section 10.4.5. The electric field, from Equation (10.52), can be
written in the form

Jo =ep,n(x)E+eD, —— (10.78)

where pix) isthe majority carrier hole concentration in the base. Under low injection,
the hole concentration is just the acceptor impurity concentration. With the doping
profile shown in Figure 10.31, the electric field is negative (from the collector to the
emitter). The direction of thiselectric field aids the flow of electrons across the base.
Substituting Equation (10.79) into Equation (10.78), we obtain
kT 1 dpx) . dn(x)
plx) dx " dx

Einstein's relation, we can write Equation (10.80) in the form

BD,, dp( )
- dptn) 4
o) ( (x) pix) q

- Equation (10.81) can be written in the form

Ju = eppnix) - (10.80)

Tarrx

X /': p(x)  dx

Integrating Equation (10.82) through the base region while assuming that the elec-
tron current density is essentially a constant and the diffusion coefficient is a con-
stant, we find

Assuming the B-E junction is forward biased and the B-C junction is reverse biased,
we have n(()) = npoexp (Vge/V,) and n(xp) = 0. We may note that ngop = n? S0
that Equation (10.83) can be written as

Theintegral in the denominator is the total majority carrier charge in the base and is
known as the base Gummel number; defined as Q.

If we perform the same analysis in the emitter, we find that the hole current den-
gty in the emitter of an npn transistor can be expressed as

_EDpnjz exp(VBE/ VI)
Jot nx") dx'

Jp, =
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Theintegral in the denominator is the total majority carrier chargein the emitter and
isknown as the emitter Gummel number, defined as Q¢

Since the currents in the Gummel-Poon model are functions of the total inte-
grated charges in the base and emitter. these currents can easily be determined fa
nonuniformly doped transistors.

The Gummel—Poon model can also take into account nonideal effects, suc
the Early effect and high-level injection. 4 s the B-C voltage changes, the neu
base width changes so that the base Gummel number {0, changes. Thechangein Q
with B-C voltage then makes the electron current density given by Equation ( 10.841
afunctionof the B-C voltage. Thisisthe base width modulation effect or Early effect
as discussed previously in Section 10.4.1.

If the B-E voltage becomes too large. low injection no longer applies, which
leads to high-level injection. In this case, the total hole concentration in the basein-
creases because of the increased excess hole concentration. This means that the bese
Gummel number will increase. The change in base Gummel number implies, from
Equation (10.84). that the electron current density will also change. High-level in-
jection was also previously discussed in Section 10.4.2.

The Gummel-Poon model can then he used to describe the basic operation of
the transistor as well as to describe nonideal effects.

1053 Hybrid-Pi Modéd

Bipolar transistors are commonly used in circuitsthat amplify time-varying or sinu-
soidal signals. In these linear amplifier circuits, the transistor is biased in the
forward-active region and small sinusoidal voltages and currents are superimposed
on dc voltagesand currents. In these applications, the sinusoidal parameters areof in-
terest, SO it isconvenient to develop a small-signal equivalent circuit of the bipolar
transistor using the small-signal admittance parameters of the pn junction developed
in Chapter 8.

Figure 10.38a shows an npn bipolar transistor in a common emitter configura-
tion with the small-signal terminal voltages and currents. Figure 10.38b shows the
cross section of the npn transistor. The C, B, and E terminals are the external con
nectionsto the transistor, whilethe C', B', and E pointsaretheidealized internal c«l-
lector, hase, and emitter regions.

We can begin constructing the equivalent circuit of the transistor by considering
the various terminals individually. Figure 10.39a shows the equivalent circuit
between theexternal input base terminal and the external emitter terminal. Theresis-
tance r, is the series resistance in the base between the external base termina B axd
the internal base region B'. The B'-E’ junction isforward biased, so C,, isthejunc-
tion diffusion capacitance and r, is the junction diffusion resistance. The diffusion
capacitance C,, isthe same asthe diffusion capacitance ¢, given by Equation {8.72),
and the diffusion resistance r;, is the same as the diffusion resistance r; given by
Equation (8.35).The values of both parameters are functionsof the junction current.
These two elements are in parallel with the junction capacitance, which is Cj,.
Finally, r., is the series resistance between the external emitter terminal and the
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Figure 10.38 1 (a) Common emitter npn bipolar transistor with small-signal current and
voltages. (b) Cross section of an npn bipolar transistor for the hybrid-pi model.

Figure10.39 | Components of the hybrid-pi equivalent circuit hetween (a) the base and
emitter, (h) the cotlector and emitter. and (c) the base and collector.
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Figure10.401 Hybrid-pi equivalent circuit.

internal emitter region. Thisresistance isusually very small and may he on theo
of 1to2 .

Figure 10.39b shows the equivalent circuit looking into the collector termin
Ther, resistance is the series resistance between the external and internal collect
connections and the capacitance C, is the junction capacitance of the reverse-bi
collector-substrate junction. The dependent current source. g Vi, is the collect
current in the transistor, which is controlled by the internal base-emitter voltage.
resistance r, is the inverse of the output conductance gy and is primarily due to
Early effect.

Finally, Figure 10.39¢ shows the equivalent circuit of the reverse-biased B'-*
junction. The C, parameter is the reverse-biased junction capacitance and r,, is
reverse-biased diffusion resistance. Normally, r,, ison the order of megohmsand can
be neglected. The value of C, is usually much smaller than > but, because of the
feedback effect which leadsto the Miller effect and Miller capacitance, C, cannot be
ignored in most cases. The Miller capacitance is the equival ent capacitance between
B' and E’ due to C,, and the feedback effect, which includes the gain of the transistor.
TheMiller effect also reflectsC, between theC' and E terminalsat the output. How-
ever, the effect on the output characteristics can usually he ignored.

Figure 10.40 shows the complete hybrid-pi equivalent circuit. A computer sim-
ulation is usually required for this complete model because of the large number of
elements. However, some simplifications can be madein order to gain an apprecia
tion for the frequency effects of the bipolar transistor. The capacitances lead to fre-
quency effectsin the transistor, which meansthat the gain, for example, isafunction
of the input signa frequency.

EXAMPLE 10.11

I

Objective

To determine, to a firgt approximation, the frequency a which the small-signa current gain
decreasesto 1 /+/2 of itslow frequency value.
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Figure1041 i Simplified hybrid-pi
equivalent circuit.

Consider the simplified hybrid-pi circuit shown in Figure 10.41. We areignoring C,,, Cs.
ru. C.y 7o, and the series resistances. We must emphasize that thisis a first order calculation
and that C,, normally cannot be neglected.

1 Solution
At very low frequency, we may neglect C» so that

We can then write

whereh;,q is the low-frequency, small-signal common emitter current gain
Taking into account C,;, we have

Then

or the small-signal current gain can be written as

The magnitude o the current gain drops to 1/ V2 of its low-frequency value at f =
1278, Cy.

If, for example, r, = 2.6 k&2 and Cr = 4 pF, then
f = 15.3 MHz

1 Comment

High-frequency transistors must have small diffusion capacitances, implying the use of small
devices.
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10.6 | FREQUENCY LIMITATIONS

The hybrid-pi equivalent circuit, developed in the last section, introduces frequency
fects through the capacitor-resistor circuits. We will now discuss the various physic
factors in the bipolar transistor affecting the frequency limitations of the device, an
then define the transi stor cutoff frequency, which isafigure of merit for atransistor.

10.6.1 TimeDelay Factors

Thebipolar transistor isa transit-time device. When the voltage across the B-Ejume
tion increases, for example, additional carriers from the emitter are injected into th
base, diffuse across the base, and are collected in the collector region. As the fre-
guency increases, this transit time can become comparable to the period of the
signal. At this point, the output response will no longer bein phase with the input an
the magnitude of the current gain will decrease.

The total emitter-to-collector time constant or delay time is composed of fo
separate time constants. We can write

where

7. = emitter-to-collector time delay

7, = emitter—base junction capacitance charging time
T, = base transit time

7, = collector depletion region transit time

. = collector capacitance charging time

The equivalent circuit of the forward-biased B-E junction was given in
ure 190.3%a. The capacitance G, isthe junction capacitance. If we ignore the
resistance, then the emitter—base junction capacitance charging time is a

where r, isthe emitter junction or diffusion resistance. The capacitance C,, includes
any parasitic capacitance between the base and emitter. The resistance r, is found as
the inverse of the slope of the I versus Vg curve. We obtain
g kT (1088)
e ]E
where /¢ is thedc emitter current.

The second term, ;. iSthe base transit time, the time required for the minority
carriers to diffuseacrossthe neutral baseregion. The base transit time is related to the
diffusion capacitance C of the B-E junction. For the npn transistor, the electron cur-
rent density in the base can he written as
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_where v(x) isan average velocity. We can write
1 vy =dx/dt or  dr=dxjvix) (10.90)

The transit time can then be found by integrating, or

The electron concentration in the base is approximately linear (see Example 10.6) so
we can write

and the electron current density is given by

The base transit time is then found by combining Equations (10.92) and (10.93) with
Equation (10.91). We find that

The third time-delay factor is z,;, the collector depletion region transit time. As-
suming that the electrons in the npn device travel acrossthe B-C space chargeregion
a their saturation velocity, we have

where x4, isthe B-C space charge width and u, isthe electron saturation velocity.

The fourth time-delay factor, t.., isthe collector capacitance charging time. The
B-C is reverse biased so that the diffusion resistance in parallel with the junction
capacitanceis very large. The charging time constant is then afunction of the collec-
tor series resistance .. We can write

where C, isthe B-C junction capacitance and €, isthe collector-to-substrate capaci-
tance. The series resistance in small epitaxial transistors is usualy small; thus the
timedelay . may be neglected in some cases.

Example calculations of the various time-delay factors will he given in the next
section as part of the cutoff frequency discussion.
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10.6.2 Transistor Cutoff Frequency

The current gain as a function of frequency was developed in Example 10.11 so tha:
we can also write the common base current gain as

where g IS the low-frequency common base current gain and £, is defined asthe
alpha cutoff frequency. The frequency £, is related to the emitter-to-collector time
delay 7.. as

When the frequency is equal to the apha cutoff frequency, the magnitude o the
common base current gain is 1/+/2 of itslow-frequency value.

We can relate the alpha cutoff frequency to the common emitter current gain b
considering

o

ﬁ:

| — &

We may replace u in Equation (10.99) with the expression given by Equation (10974
When thefrequency f isof the same order of magnitude as f, then

where we have assumed that ¢y == 1. When the signal frequency is equal to thedpha
cutoff frequency. the magnitude of the common emitter current gain isequal to unity.
The usual notation isto definethis cutoff frequency as fr, so we have

From the analysis in Example 10.11, we may aso write the common-emittel
current gain as

where fg iscalled the beta cutoff frequency and is the frequency at which the magni-
tude of the common-emitter current gain A dropsto 1/+/2 of itslow-frequency vaue
Combining Equations (10.99) and (10.97). we can write

1
&n !
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Figure 10.421 Bode plot of common
emitter current gain versus frequency.

where

Comparing Equations (10.104) and (10.102), the beta cutoff frequency is related to
the cutoff frequency by

Figure 10.42 shows a Bode plot of the common emitter current gain as a func-
tion of frequency and shows the relative values of the beta and cutoff frequencies.
Keep in mind that the frequency is plotted on a log scale, so fz and fr usualy have
significantly different values.

Objective

To calculate the emitter-to-collector trangt time and the cutoff frequency of abipolar transis
tor, given the transistor parameters.
Consider aslicon npn transistora T = 300 K. Assumethe following parameters:

fr =l mA Ci. = | pF
xp=05um D, = 25em’fs
Xgo =24 um ¥yo=208
C, =0.1pF C, =0.1 pF

EXAMPLE 10.12
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W Solution
We will initialy calculate the various time-delay factors. If we neglect the parasitic
tance, the emitter-base junction charging time is

where

Then
T, = (23901077 =259 ps

The base transit time is

The collector depletion regiontransit time is

The collector capacitance charging time is
T, =r (C, T €)= (20002 x 107'%) = 4ps
The total emitter-to-collector time delay is then
Tpe = 239+ 504 24 +4 = 103.9ps
so that the cutoff frequency is calculated as

\ 1

= - = 153 GHz
2rr.  27(1039 x 10-12)

fr

If we assume a low-frequency common-emitter current gain of g = 100, then the beta cutoff
frequency is

B Comment
The design of high-frequency transistors requires small device geometries in order to reduce
capacitances, and narrow base widths in order to reduce the base transit time.

TEST YOUR UNDERSTANDING

ElO. 17 A silicon npn bipolar transistor isbiased at 7z = 0.5 mA and has a junction capaci-
tance of C;, = 2 pE. All other parameters are the same as listed in Example 10.12.
Find the emitter-to-collector transit time, the cutoff frequency, and the beta cutoff
frequency. (ZHW ¥ 11 = ¥f “ZHD +1°1 = £/ *sd 9181 = 2 'suy)
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10.7 LARGE-SIGNAL SWITCHING

Switching a transistor from one state to another is strongly related to the frequency
characteristics just discussed. However, switching is considered to be a large-signal
change whereas the frequency effects assumed only small changes in the magnitude
of thesignal.

10.7.1 Switching Characteristics

Consider an npn transistor in the circuit shown in Figure 10.43a switching from cut-
off to saturation, and then switching back from saturation to cutoff. We will describe
the physical processes taking place in the transistor during the switching cycle.

Consider, initialy, the case of switching from cutoff to saturation. Assume that
in cutoff Vge &= Vgp < 0, thus the B-E junction is reverse biased. At + = 0, assume
that Vg z switchesto avalue of Vggg as shown in Figure 10.43b. We will assume that
Vego is sufficiently positive to eventually drive the transistor into saturation. For
(t <t < t;. the base current supplies charge to bring the B-E junction from reverse
bias to a slight forward bias. The space charge width of the B-E junction is narrow-
ing, and ionized donors and acceptors are being neutralized. A small amount of
charge is also injected into the base during this time. The collector current increases
from zero to 10 percent of its final value during this time period, referred to as the
delay time.

Figure 10.431 (a) Circuit used for trangistor switching. (b) Input hasc drive for transistor
switching. (c)Collector current versustime during transistor switching.
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During the next time period, t; <t < 1, the base current is supplying ch
which increases the B-E junction voltage from near cutoff to near saturation
thistime, additional carriers arebeing injected into the basesothat the gradie
minority carrier electron concentration in the base increases, causing the coilec
current toincrease. Werefer tothistime period astherisetime, during which the ¢
lector current increases from 10 percent to 90 percent of the final value. For t >
the base drive continues to supply base current, driving the transistor into saturati
and establishing the final minority carrier distribution in the device.

Theswitchingof the transistor from saturation to cutoff involves removing al (‘
the excess minority carriers stored in the emitter, base, and collector regions. H
ure 10.44 shows the charge storagein the base and collector when the transistor is
saturation. The charge Q5 is the excess charge stored in aforward-active transi
and Qzx and Q. are the extracharges stored when the transistor is biased in sa
tion. Att = #3, the basevoltage Vs switchesto anegative value of (—Vg). The
current in the transistor reversesdirection as was the case in switching a pn jun  1m;
diode from forward to reverse bias. The reverse base current pulls the excess storj
carriers from the emitter and base regions. Initialy, the collector current does
change significantly, since the gradient of the minority carrier concentration in the
base does not change instantaneously. Recall that when the transistor is biased in sat
uration, both the B-E and B-C junctions are forward biased. The charge @y in ﬂ\g
hase must be removed to reduce the forward-biased B- C voltage to zero volts beforef
the collector current can change. Thistime delay iscalled the storage rime and isde<
noted by r,. The storage time is the time between the point at which Vzz switcheste:
the time when the collector current is reduced
tion value. The storage timeis usually the most
speed of the bipolar transistor.

Thefinal switching delay time is the fall time ¢, during which the
rent decreases from the 90 percent to the 10 percent value. During this time, the B-C§

Emitter Collector =

Minority
carrier
concentration

Figure 10.44 | Charge toragein the base and collector a
saturation and in the active mode.
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junctionis reverse biased but excess carriers in the base are still being removed, and
the B Ejunction voltage is decreasing.

The switching-time response of the transistor can be determined by using the
Ebers—-Moll model. The frequency-dependent gain parameters must be used, and
normally the Laplace transform technique is used to obtain the time response. The
detailsof thisanalysis are quite tedious and will not be presented here.

1072 The Schottky-Clamped Transistor

Ore method frequently employed to reduce the storage time and increase the switch-
ing speed is the use of a Schottky-clamped transistor. Thisis a norma npn bipolar
devicewith a Schottky diode connected between base and collector, as shown in Fig-
ure 10.45a. The circuit symbol for the Schottky-clamped transistor is shown in Fig-
ure 10.45b. When the transistor is biased in the forward-active mode, the B- Cjunc-
tion isreverse biased; hence, the Schottky diode is reverse biased and effectively out
d thecircuit. The characteristics of the Schottky-clamped transistor—or simply the
Schottky transistor — arethose of the normal npn bipolar device.

When the transistor isdriven into saturation, the B- Cjunction becomes forward
biased; hence the Schottky diodeal so becomesforward biased. Wemay recall from our
discussion in the previous chapter that the effective turn-on voltage of the Schottky
diode is approximately half that of the pn junction. The difterence in turn-on voltage
meansthat most of theexcessbase current will be shunted through the Schottky diode
and away from the base so that the amount of excess stored charge in the base and
collector isdrastically reduced. The excess minority carrier concentration in the base
ad collector at the B- Cjunction is an exponential function of V¢, If Ve is reduced
from 0.5 volt to 0.3 volt, for example, the excess minority carrier concentration is
reduced by over 3 orders of magnitude. Thereduced excessstored chargein the base of
theSchottky transistor greatly reducesthe storage time— storagetimeson the order of
1ns or lessare common in Schottky transistors.

Figure1045 | (a) The Schottky-clamped transistor. (b) Circuit
symbol o the Schottky-clamped transistor.
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*10.8 | OTHER BIPOLAR TRANSISTOR }
STRUCTURES H

This section isintended to briefly introduce three specialized bipolar transistor struc-
tures. The first structure is the polysilicon emitter bipolar junction transistor (BJT),
the second is the SiGe-base transistor, and the third is the heterojunciion bipolar tran-
sistor (HBT). Thepolysilicon emitter BJT isbeing used in somerecent integrated dr-
cuits, and the SiGe-base transistor and HBT are intended for high-frequency/high-
speed applications.

§

10.8.1 Polyslicon Emitter BJT

The emitter injection efficiency is degraded by the carriers injected from the bese
back into the emitter. The emitter width, in general, is thin, which increases ged
and reduces parasitic resistance. However. a thin emitter increases the gradient in the
minority carrier concentration, asindicated in Figure 10.19. The increase in thegra
dient increases the B-E junction current, which in turn decreasesthe emitter injection
efficiency and decreasesthe common emitter current gain. This effect is also sown
in the summary of Fable 10.3.

Figure 10.46 shows the idealized cross section of an npn bipolar transistor with
a polysilicon emitter. As shown in the figure, there is a very thin nt single crystal
silicon region between the p-type base and the n-type polysilicon. Asafirst goproxi-
mation to the analysis, we may treat the polysilicon portion of the emitter as low-
mobility silicon, which means that the corresponding diffusion coefficient issmall.

Agsuming that the neutral widths of both the polysilicon and single-crystal por-
tions of the emitter are much smaller than the respective diffusion lengths, then the
minority carrier distribution functions will be linear in each region. Both the minority
carrier concentration and diffusion current must be continuousacross the polysilicen/
silicon interface. We can therefore write

p base

n colector

Figure 10.461 Simpliited CrossSection of an npn palysilicon
emitter BJT.
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p base

Metal l n” poly ’ n” silicon
emitter emitter

Figure1047 | Excess minority carrier hole
concentrationsin n* polysilicon and n* silicon emitter.

Since Dy potyy < D+, then the gradient of the minority carrier concentration at the
emitter edge of the B-E depletion region in the n™ region isreduced as Figure 10.47
shows. Thisimplies that the current back-injected from the base into the emitter isre-
duced so that the common-emitter current gain is increased.

10.8.2 Silicon-Germanium Base Transistor

Thebandgap energy of Ge(—0.67 V) is significantly smaller than the bandgap en-
egy of Si(—1.12eV). By incorporating Ge into Si, the bandgap energy will de-
crease compared to pure Si. If Geisincorporated into the base region of a Si bipolar
transistor, the decrease in bandgap energy will influence the device characteristics.
The desired Ge concentration profile is to have the largest amount of Ge near the
base—collector junction and the least amount of Ge near the base-emitter junction.
Figure 10.48a shows an ideal uniform boron doping concentration in the p-type base
and alinear Ge concentration profile.

The energy bands of a SiGe-base npn transistor compared to a Si-base npn tran-
sistor, assuming the boron and Ge concentrations given in Figure 10.48a, are shown
in Figure 10.48b. The emitter—base junctions of the two transistors are essentialy
identical, since the Ge concentration is very small in this region. However, the
bandgap energy of the SiGe-base transistor near the base-collector junction is
smaller than that of the Si-base transistor. The base current is determined by the
base-emitter junction parameters and hence will be essentially the same in the two
transistors. Thischange in bandgap energy will influence the collector current.
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Concentration

Boron T
2

Emitter

SiGe base

(b

Figure 1048 i {a) Assumed horon and germanium concen-
trationsin the base of the SiGe-base transistor. (b) Energy
band diagram df the Si- and SiGe-base transistors.

Collector Current and Current Gain Effects Figure 10.49 shows the them
equilibrium minority carrier electron concentration through the base region of t
SiGe and Si transistors. This concentration is given by

2

Ran = —
BO NB

where Ny is assumed to be constant. The intrinsic concentration, however, is afunc-‘

tion of the bandgap energy. We may write

where n;(S5iGe) is the intrinsic carrier concentration in the SiGe material, #,{Si) is
the intrinsic carrier concentration in the Si material, and AE, is the changein the
bandgap energy of the SiGe material compared to that of S

The collector current in a SiGe-base transistor will increase. As a first approxi-
mation, we can see this from the previous analysis. The collector current was found
from Equation (10.36a), in which the derivative was evaluated at the base-collector
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Electron
concentration

Figure 10.49 | Thermal equilibrium minority carrier electron
concentration through the base of the Si- and SiGe-base
transistors.

! junction. This means that the value of ng, in the collector current expression in
Equation (10.37) is the value at the base—collector junction. Sincethis value is larger
for the SiGe-base transistor (Figure 10.49), the collector current will be larger com-
pared to the Si-base transistor. Since the base currents are the same in the two tran-
sistors, the increase in collector current then implies that the current gain in the
SiGe-base transistor islarger. If the bandgap narrowing is 100 meV, then the increase
in the collector current and current gain will be approximately afactor of four.

Early Voltage Effects The Early voltage in a SiGe-base transistor is larger than
thet of the Si-base transistor. The explanation for this effect is less obvious than the
explanation for the increase in collector current and current gain. For abandgap nar-
rowing of 100 meV, the Early voltage is increased by approximately afactor of 12,
Incorporating Ge into the base region can increase the Early voltage by a large
factor.

Base Transit Timeand Emitter-Base Charging Time Effects The decrease in
bandgap energy from the base—emitter junction to the base-collector junction in-
duces an electric field in the base that helps accelerate electrons across the p-type
base region. For a bandgap narrowing of 100 meV, the induced electric field can be
on the order of 107 to 10* V/em. Thiselectric field reduces the base-transit time by
approximately afactor of 2.5.

The emitter—base junction charging time constant, given by Equation {10.87), is
directly proportional to the emitter diffusion resistance r,. This parameter is in-
versely proportional to the emitter current, as seen in Equation (10.88). For agiven
hasecurrent. the emitter current in the SiGe-base transistor islarger, since the current
gainislarger. Theemitter—base junction charging time isthen smaller in a SiGe-base
transistor than that in a Si-base transistor.

The reduction in both the base-transit time and the emitter—base charging time
increases the cutoff frequency of the SiGe-base transistor. The cutoff frequency of
thesedevices can be substantially higher than that of the Si-base device.
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10.8.3 Hetergjunction Bipolar Transstors

Asmentioned previously, one of the basic limitations of the current gain in the bipolar
transistor is the emitter injection efficiency. The emitter injection efficiency y canbe
increased by reducing the value of the thermal-equilibrium minority carrier con-
centration pgq in the emitter. However, as the emitter doping increases, the band
narrowing effect offsets any improvement in the emitter injection efficiency. O
possible solution is to use a wide-bandgap material for the emitter, which will
mize theinjection of carriers from the base hack into the emitter. i
Figure 10.50a shows a discrete aluminum gallium arsenide/gallium arsenidehet-
erojunction bipolar transistor, and Figure 10.50b shows the band diagram o the

N

Base

Collector

Figure1050 | (8) Cross section of AlGaAs/GaAs hetero-
junction bipolar transistor showing a discrete and integrated
structure. (b) Energy-band diagram of the n Al1GaAs emitter
and p GaAs basejunction.

{From Tiwari et al. {19].)



n-AlGaAs emitter to p-GiaAs base junction. The large potential barrier ¥y limits the
number of holes that will be injected back {rom the base into the emitter.
The intrinsic carrier concentration isafunction of bandgap energy as

or a given emitter doping. the numher of minority carrier holes injected into the

. emitter is reduced by a factor of
|

inchanging from a narrow- to wide-handgapemitter. If AE, = 0.30 eV, for example,
k‘ n? would he reduced by approximately 10° at T = 300 K. Thedrastic reduction in ]
for the wide-bandgap emitter mean? that the requirements of a very high emitter
doping can be relaxed and a high emitter injection efficiency can still be obtained. A
lower emitter doping reduces the handgap-narrowing effect.

Theheterojunction GaAs bipolar transistor has the potential of being avery high
_frequency device. A lower emitter doping in the wide-bandgap emitter leads to a
 smaller junction capacitance, increasing the speed of the device. Also, for the GaAs

npn device. the minority carriers in the base arc electrons with a high mobility. The
electron mobility in GaAsisapproximately 5 timesthat in silicon; thus, the base tran-
sit time in the GaAs base is very short. Experimental AlGaAs/GaAs heterojunction
transistors with hase widthson the order of 0.1 ;2zm have shown cutoff frequencieson
the order of 40 GHz.

One disadvantage of GaAs is the low minority carrier lifetime. The small
lifetimeis not a factor in the base of a narrow-base device, but results in alarger B-E
recombination current. which decreases the recombination factor and reduces the
current gain. A current gain of 150 has been reported.

!

109 | SUMMARY

B Thereare two complementary bipolar transistors-——npn and pnp. Each transistor has
three separately doped regions and two pn junctions. The center region (base)is very
narrow. so the two pn junctions are said to he interacting junctions,

m Intheforward-active mode. the B-E junction is forward hiascd and the B-C junction is
reverse biased. Majority carriers from the emitter arc injected into the hase wherc they
become minority carriers. These minority carriers diffuse across the base into thr B-C
space charge region where they are swept into the coflector.

m When atransistor is hiased in the forward-active mode of operation, the current & one
terminal of the transistor (collector current) iscontrolled hy the voltage applied across
the other two terminals of the transistor (hase—emitter voltage). This 1s the basic
transistor action

m The minority carricr concentrations were determined in each region of the transistor.
The principa currents in the device are determined hy the ditfusion of these minority
carriers.
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The common-base current gain, which leads to the common-emitter current gain, isa
function of three factors—emitter injection efficiency, base transport factor, and
recombination factor The emitter injection efficiency takes into account carriers fro
the base that areinjected back into the emitter, the base transport factor takes into
account recombination in the base region. and the recombination factor takes into
account carriers that recombine within the forward-biased B-E junction.

B Several nonideal effects were considered: !

1 Base width modulation, or Early effect— thechangc in the neutral base width wi
achange in B-C voltage, producing a change in collector current with a changein
B-C or C-E voltage.

2. High-injection effects that cause the collector current to increase a a slower rate
with base-emitter voltage. 1

3. Emitter bandgap narrowing that produces a smaller emitter injection efficiency
because of a very large emitier region doping concentration.

4. Current crowding effects that produce a larger current density at the emitter edge
than in the center of the emitter

5. A nonuniform base doping concentration that induces an electric field in the base
region, which aidsthe flow of minority carriers across the base. i

6. Two breakdown voltage mechanisms— punch-through and avalanche.

B Threeequivalent circuits or mathematical models of the transistor were considered. The
Ebers—Moll model and equivalent circuit are applicable in any of the transistor
operating modes. The Gummel-Poon model is convenient to use when nonuniform
doping exists in the transistor. The small-signal hybrid-pi model applies to transistors
operating in the forward-active mode in linear amplifier circuits.

The cutoff frequency of atransistor, a figure of merit for the transistor, is the frequency
at which the magnitude of the common-emitter current gain hccomes equal to unity.
The frequency responsc isafunction of the emitter—base junction capacitance charging
time, the base transit time, the collector depletion region transit time, and the collector
capacitance charging time.

B Theswitching characteristics are closely related to the frequency limitations although
switching involves large changesin currents and voltages. An important parameter in
switching is the charge storage time. which applies to a transistor switching from
saturation to cutoff.

GLOSSARY OF IMPORTANT TERMS

alphacutoff frequency The frequency at which the magnitude of the common base current
is | /+/2 of its low-Srequency value; also equal to the cutoff frequency.

bandgap narrowing The reduction in the forbidden energy bandgap with high emitter
doping concentration.

hasetransit time Thetime that it takes a minority carricr to cross the neutral base region.

basetransport factor Thefactor in the common base current gain that accounts for recom-
bination in the neutral base width.

base width modulation The changc in the neutral base width with C-E or C-B voltage.

beta cutoff frequency The frequency at which the magnitude of the common emitter cur-
rent gain is 1/+/2 of itslow frequency value.



collector capacitancecharging time Thetime constant that describes the time required for
the B- C and collector—substrate space charge widths to change with a change in emitter
current.

collector depletion region transit time Thetime that it takesacarrier to be swept across the
B-C space charge region.

common-base current gain  The ratio of collector current to emitter current.

rommon-emitter current gain  Theratio of collector current to base current.

current erowding  The nonuniform current density acrossthe emitter junction areacreated by
alateral voltage drop in the base region dueto afinite base current and base resistance.

cutoff The bias condition in which zero- or reverse-bias voltagesare applied to both transis-
tor junctions, resulting in zero transistor currents.

cutofffrequency Thefrequency at which the magnitude of the common emitter current gain
is unity.

early effect  Another term fur base width modulation.

early voltage Thevalue of voltage (magnitude) at the intercept on the voltage axis obtained
by extrapotating the /- versus V- curvesto zero current.

emitter—base junction capacitance charging time The time constant describing the time
for the B-E space charge width to change with a change in emitter current.

emitter injection efficiency factor The factor in the common-base current gain that takes
into account the injection of carriers from the base into the emitter.

forward active The bias condition in which the B-E junction is forward biased and the
B-Cjunction is reverse biased.

inverse active The bias condition in which the B-E junction is reverse biased and the
B-Cjunction isforward biased.

output conductance The ratio of a differential change in collector current to the corre-
sponding differential change in C-E voltage.

CHECKPOINT

After studying this chapter, the reader should have the ability to:

B Describethe basic operation of the transistor.

B Sketch the energy bands of the transistor in thermal equilibrium and when biased in the
various operating modes.

B Calculate, to agood hrst approximation, the collector current as a function of
base-emitter voltage.

B Sketch the minority carrier concentrations throughout the transistor under the various
operating modes.

B Definethe various diffusion and other current components in the transistor from the
minority carrier distribution curves.

B Explain the physical mechanisms of the current gain limiting factors.
Define the current-limiting factors from the current components in the transistor.

B Describe the physical mechanism of base width modulation and its effect on the
current—voltage characteristics of the transistor

B Describethe voltage breakdown mechanisms in a bipolar transistor

B Sketch the simplified small-signal hybrid-pi equivalent circuit of the transistor biased in
the forward-active mode.
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B Describe qualitatively the four time-delay or time-constant components in the frequen.
response of the bipolar transistor.

REVIEW QUESTIONS

1 Describe the charge flow in an npn bipolar transistor biased in the forward-active
mode. IS the current by drift or diffusion?

2. Definethe common-emitter current gain and explain why, to afirst approximation, the |
current gain is a constant.

Explain the conditions of the cutoff, saturation, and inverse-active modes.

Sketch the minority carrier concentrations in a pnp bipolar transistor biased in the
forward-active mode.

Define and describe the three limiting factors in the common-base current gain.
What is meant by base width modulation? What is another term used for this effect?
What is meant by high injection?

Explain emitter current crowding.

Define Icpa and fcen, and explain why fcep > Icpa

10. Sketch asimplified hybrid-pi model for an npn bipolar transistor and explain when
equivalent circuit is used.

W

© ® N O th

11. Describe the time-delay factors in the frequency limitation oi the bipolar transistor.

12. What is the cutoff frequency of a bipolar transistor?

13. Describe the response of a bipolar transistor when it is switching between saturation
and cutoff.

PROBLEMS

(Note: In the following problems, use the transistor geometry shown in Figure 10.13. Asu
T = 300 K unless otherwise stated.)

Section 10.1 TheBipolar Transistor Action

101  Fur auniformly doped n**p™n bipolar transistor in thermal equilibrium, (a) sketch
the energy-band diagram, (&) sketch the electric field through the device, and
(c) repesat parts (a)and (h) for the transistor biased in the forward-active region.

10.2  Consider ap*™ n+p bipolar transistor, uniformty doped in each region. Sketch the
energy-band diagram for the case when the transistor is (a) in thermal equilibrium,
(6) biased in the forward-active mode, {(¢) biased in the inverse-active region, and
(d) biased in cutoff with both the B-E and B-C junctions reverse biased.

103  The parametersin the base region of an npn bipolar transistor are 1, = 20cm’/s,
ngo = 10° =1 pm,and Agz = 10! em?. (@) Comparing Equations (10.1)
and (10.2), calculate the magnitude of 4. (#) Determine the collector current for
({)vgg = 05V, (il)yvge = 0.6V, and (|||) Vpig = 0.7V.

104  Assume the common-base current gain for the transistor described in Problem 10.3
isa = 0.9920. (a) What is the common-emitter current gain g7 [Note that 8 =
a/(1 — @).} (b) Determinethe cmitter and base currents corresponding to the collector
currents determined in Problem 10.3b.
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Problems

(a) In abipolar transistor biased in the forward-active region, the base current is

iy = 6.0 A and the collector current isi- = 510 it A. Determine 8, «, and ig.
(Notethat iz =i +i5.) (b) Repeat part () if is = 50 uA and i = 2.65 mA.
Assume that an npn bipolar transistor has acommon-emitter current gain of 8 = 100.
(a) Sketch theideal curreni—voltage characteristics (i versus ve ), like thosein
Figure 10.9, as i varies from zero to 0.1 mA in 0.01-mA increments. Let v vary
over therange 0 < v, < 10 V. (b) Assuming Vo = 10V and R = 1 k&2 inthe
circuit in Figure 10.8, superimpose the load line on the transistor characteristics in
part (a).(c) Plot, on the resulting graph, the value of i and v ¢ corresponding to
ig = 005 mA.

Consider Equation (10.7), Assume V- = 10V, R =2k$2, and Vz: = 0.6V.

(a} Plot V5 versus I over therange0 < I = 5 mA. (h)At what value of - does
V(_‘B = O)

Section 10.2 Minority Carrier Distribution

108

]
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10.10

1011

10.12
*10.13

10.14

A uniformly doped silicon npn bipolar transistor isto he biased in the forward-active
mode with the B-C junction reverse hiased by 3V The metdlurgical base width

is 1.10 um. The transistor dopings are Ng = 10" em™, Np = 10" em™?, and

Ne = 10" em™3, (a)For T = 300K, calculate the B-E voltage at which the minority
carrier electron concentration at x = Ois 10 percent of the majority carrier hole
concentration. (b) At this bias, determine the minority carrier hole concentration at
x' = 0. (¢} Determine the neutral base width for this bias.

A silicon npn bipolar transistor is uniformly doped and biased in the forward-active
region. The neutral base width isxz = 0.8 um. The transistor doping concentrations
areNg =5x 107 em™3, Nz = 10" cm ?, and N¢ = 10" em™*. (n) Calculate the
valuesof pra, rigo. and peo. (B) For Vy, = 0.625V, determineng atX = 0 and px
at x' = 0. (c) Sketch the minority carrier concentrations through the device and label
each curve.

A uniformly doped silicon pnp transistor is biased in theforward-active mode. The
doping concentrations are Ny = 10" cm™*, Ny =5 x 10! em™?, and N¢ =

10% cm . (a) Calculate the values of gy, pao, and neg. (B) For Veg =0.6350V,
determine pgz atx =0and #, at x' = 0. (¢) Sketch the minority carrier concentra-
tions through the device and label each curve.

Consider the minority carrier electron concentration in the base of an npn bipolar
transistor asgiven by Equation (1(.15a). In this problem, we want to compare

the gradient of the electron concentration evaluated at the B-C junction to that
evaluated at the B-E junction. In particular, calculate the ratio of d{dng)/dx at

x = xg tod(Sng)/dx atx ={for(a) xp/lp = 0.1, (M) xp/lp = 1.0, and

(C'} XB/LB = ).

Derive the expressions for the coefficients given by Equations (10.14a) and (10.14b).
Derive the expression for the excess minority carrier hole concentration in the base
region of auniformly doped pnp bipolar transistor operating in the forward-active
region.

The excess electron concentration in the base of an npn bipolar transistor is given
by Equation (10.13a). The linear approximation is given by Equation {10.15b). If
dngy(x) isthe linear approximation given by Equation (10.15b) and §a 4 (x) isthe
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10.15

*10.16

*10.17

10.18

10.19

actual distribution given by Equation {10.15a), determine

ax =uxg/2for(w)xp/Le=0.1and (b)xp/Ly = 1.0. Assume Vg, > kT /e.
Consider a pnp bipolar transistor. Assume that the excess minority carrier hole
concentrations at the edges of the B-E and B-C space charge regions are pz(0) =
8 x 10" em™* and 8pg(xg) = —2.25 x 10* cm™*, respectively. Plot, on the same
graph, 3pg(x} for {¢) theideal case when no recombination occurs in the base, and
(k) the case when xz = Lg = 10 um. {c) Assuming Dz = 10 cm?/s, calculate the
diffusion current density at ¥ = 0 and x = x for the conditions in parts (a)and (b)
Determine theratio .J(x = x5)/J(x = 0) for the two cases.

(@) A uniformly doped npn bipolar transistor & 7 = 300 K is biased in saturation.
Starting with the continuity equation for minority carriers, show that the excess
electron concentration in the base region can be expressed as

forxg /Ly < | where x isthe neutral base width. {#} Show that the minority
carrier diffusion current in the basc isthen given by

{¢) Show that the total excess minority carrier charge (C/cm’ ) in the base regionis
given by

Consider asilicon pnp bipolar transistor at 7 = 300 K with uniform dopings of
Ne=5x10" em™3, Ny =107 e, and Ne = 5% 10" cm*. Let Dy =

10 cm?/s, xz = 0.7 pm, and assume xz <K L. The transistor is operating in
saturation with J, = 165 A/cm? and Ve, = 0.75 V. Determine (@) Ve 4.

(b)Y Ve (san), (c)the #/em? of excess minority carrier holes in the base, and

{(d) the #/cm® of excess minority carrier electrons in the long collector. Let

LC = 35[11’[’1

An npn silicon bipolar transistor at 7 = 300 K has uniform dopings of ¥z =

10" em™, Np = 10" em™?, and Mo =7 x 10" ¢em™. The transistor is operat-
ing in the inverse-active mode with Vy, = —2 V and Vg = 0.565 V. (a) Sketch
the minority carrier distribution through the device. (5} Determine the minority
carrier concentrationsat x = xp and x” = 0. (¢)If the metallurgical base widthis
1.2 ;4m, determine the neutral base width.

A uniformly doped silicon pnp bipolar transistor &t 7 = 300 K with dopings of
Ne=5x10" cm™, Ny = 10" em™?, and N =5 x 10" cm *isbiased in the
inverse-active modc. What is the maximum B-C voltage so that the low-injection
condition applies?



Section 10.3 Low-Frequency Common-Base Current Gain

10.20

1021

1022

1023

10.24

The following currents are measured in a uniformly doped npn bipolar transistor:

l,, = 1.20mA l,, =0.10mA
Ic = 1.18mA Iz = 020 mA
[; =000lmA 4 = 0.001mA

Determine (a)a. {#) y. {crar, {d) 5, and (¢) 8.

A silicon npn transistor at T = 300 K has an areaof 10~ em?, neutral base width
of | wm. and doping concentrations of Nz = 10'® em™3, Ny = 10" em™, N =
10'¢ ¢cm™3, Other semiconductorparametersare Dp = 20cm?/s, Tep = T50 = 1077 s,
and r¢¢ = 1079 5. Assuming the transistor is biased in the active region and the
recombination factor is unity, calculate the collector current for: {a} Vgz =05V,
(b) fp = 1.5mA, and (¢} I5 = 2 LA,

Consider a uniformly doped npn bipolar transistor at 7 = 300 K with the following
parameters:

For Vg, = 0.60V and V- = 5V, calculate («) the curtents J, g, J,g. Jye. and Jp
and (b) thecurrent gain factors y, ¢; . §,a.and f.

Three npn hipolar transistors have identical parameters except for the bass doping
concentrations and neutral base widths. The base parameters for the three devices are
as follows:

Device  Baseduping Base width

A Ng = Ngo Xp = Xgo
B Ng = 2Ngq Xg = fpo
C Ng = Ngy xg =xgy/2

(Thebase doping concentration for the B device istwice that of A and C, and the

neutral base width for the C device ishalf that of Aand B.)

(¢) Determine the ratio of the emitter injection efficiency of (i) device B to device A
and {ii) device C todevice A.

(h) Repeat part (a)for the base Iranspon factor.

{¢) Repeat pan (a)for the recombination factor.

(<) Which device has thelargest common-emitter current gain 37

Repeat Problem 10.23 for three devices in which the emitter paramelers vary. The

emitter parameters for the three devices are as follows:

Device  Emitter doping Emitter width

A Ne = Ngo XE = Xgp
B NE :2Nm Xy = Xgn
C Ng = Ngo Xg = xgo/2
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10.25

10.26

10.27

10.28

*10.29

An npn silicon transistor is biased in the inverse active mode with ¥, = —3 Vand
Vze = 0.6V Thedoping concentrations are Nz = 10'% em=%, Ny = 1077 ¢m3,
Ne = 10' cm ?, Other parametersare x; = | pm, 759 = 140 = Teg = 2 X 1077

D, = 10em?*/s. By = 20 cm?/s, D¢ =15 em*/s,and A = 10~ cm'. (a) Calcul
and plot the minority carrier distribution in the device. (#} Calculate the collector
and emitter currents. (Neglect geometry factors and assume the secombination
factor is unity.)

(@) Calculate the base transport factor, a7, forxg/Lz = 0.01,0.10, 1.0. and 10.
Assuming that y and & are unity, determine £ for cach case. (b} Calcul ate the emitier
injection efficiency, y. for Nz /Ng = 0.01,0.10, 1.0, and 10. Assuming that e and
& are unity, determine g for ¢ach case. (¢)Considering the results of pans (a)and (&)
what conclusionr can be made concerning when the base transport factor or when the
emitter injection efficiency are the limiting factorsfor the common-emitter current
gain?

la) Calculate the recombination factor for Vg = 0.2,0.4, and 0.6 V. Assumethe
following parameters:

Dy = 25¢em¥/s Dy =10 cnr'/s
Ng=5x10%cm? Ng =1 x 10" ¢m™?
N,: =5 x ]015 Cr]j‘j_3 Xp = 0.7 pm

Tao = Teo = 1077 s Jo =2 x 1077 Afem?

n, = 15x% 10" cen ™3

(b} Assuming the base transport and emitter injection efficiency factors are unity,
cal culate the common-emitter current gain for the conditions in part («). (¢) Cons-
dering theresults of part (#), what can be said about the recombination factor being
the limiting factor in the commaon emitter current gain.

Consider an npn silicon bipolar transistor at T = 300 K with the following
parameters:

Dy = 25cm’ls Dg = 10 em’fs

g0 = Tgp =5 X

Ng = 10" ¢m™? xg =05 um

The recombination factor, §, has been determined to he § = 0.998. We need a
common-emitter current gain of § = 120. Assuming that «r = y. determine the
maximum base width, xz, and the minimum emitter doping, ¥, . to achieve this
specification.

(@} The recombination current density, J.4. in an npn silicon bipolar transistor a

T =300K is/o =5 X 107% Ajem?, The uniform dopings are Nz = 10'® ecm ™,
Ny =5x 10" cm™*. and N = 10*° ¢m™?. Other parameters are g = 10 cm?s,
Dy = 25cm?s. tgq = 107% s, and Tz = 10" 7 5. Determine the neutral base width
so that the recornbination factor is 8 = 0.995 when Vge = 0.55V (#) If J,y remains
constant with temperature, what isthe value of § when vy = ©.55 V for the case
when the temperature is T = 400 K'? Use the value of x; determined in pan (@).
(@) Plat, for abipolar transistor, the base transport factor. a7 . asafunction of (xz /L)
over therange 0.01 < (xz/Lg) < 10. (Usealog scale an the horizontal axis.)
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10.33

P

() Assuming that the emitter injection efficiency and recombination factorsare
unity, plot the common emitter gain for the conditions in part (a).(c)Considering the
results of pan (b),what can be said about the base transport factor being the limiting
factor in the common emitter current gain?

(a) Plot the emitter injection efficiency asa function of the doping ratio, N5 /N g .over
therange0.01 < Nz /Ng < 10. Assumethat Dy = Dy, Ly =Lp, andxy = x¢.
(Usealog scale on the horizontal axis.) Neglect bandgap narrowing effects. (b) Assum-
ing that the base transport factor and recombination factors are unity, plot the common
emitter current gain for the conditionsin part (a). (¢} Considering the resultsof part (),
what can be said about the emitler injection efficiency being the limiting factor in the
common emitter current gain.

(a) Plot the recombination factor as afunction of the forward-bias B-E voltage for
0.1 < Vg = 0.6. Assume the following parameters:

Dy = 25cm’/s Dy = 10cm¥s
Ne=5x10%em™? Ng=1x10" em™
Ne =5x 107 em™ xp =0.7pum

Tgy = TEp = 10 7s Joo = 2 x 1077 Alem?

n,=15x 10" em™*

(b Assuming the base transport and emitter injection efficiency factors are unity,
plot the comsnon emitter current gain for the conditions in part (a).{c) Considering
the results of part (b}, what can be said about the recombination factor being the
limiting factor in the common emitter current gain.

The emitter in a BJT is often made very thin to achieve high operating speed. In this
problem. we investigate the effect of emitter width an current gain. Consider the
emitter injection efficiency given by Equation {10.35a). Assume that Nz = 100Np,
D =Dg.andL; = L. Also let xz = 0.1L . Plot the emitter injection efficiency
for 0.01L, < xp < 10Lr. From these results, discuss the effect of emitter width on
the current gain.

Section 104 Nonideal Effects

10.34

#10.35

Asilicon pnp bipolar transistor & T = 300K has uniform dopings of ¥¢ = 10" em™2,
Ng = 10" em™?, and N = 10" cm~*. The metallurgical hase width is1.2 wm.
Let Dy = 10em?fsand 15 = 5 x 1077 s. Assume that the minority carrier hole
concentration in the hase can be approximated by a linear distribution. Let Vpz =
0.625 V {a) Determine the hole diffusioncurrent density in the basefor Vzgc =5V,
Vie = 10V, and Ve = 15V (h) Estimate the Early voltage.

The base width of a bipolar transistor is normally small to provide alargecurrent
gain and increased speed. The hase width also affectsthe Early voltage. In asilicon
npn bipolar transistor at T = 300 K, the doping concentrations arc &z = 10" em~?,
Ny =3x 10" cm™?, and N- =5 x 10"* em~3. Assume Dy = 20 cm?/s and

g0 = 5 X 1077 5, and let V3 = (.70'V. Using voltages Vcp =5V and Vs = 10V
as two data paints. estimate the Early voltage for metallurgical base widths of

() 1.0 pm, (b} 0.80 p£m, and (c) 0.60 gem.

!
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10.36 Annpnsilicon bipolar transistor has a base doping concentration of ¥z = 10'7 cm”
acollector doping concentration of ¥~ = 10'% ¢cm~3, a metallurgical base width of
1.1 um, and a base minority carrier diffusion coefficientof £z = 20 cm?/s. The
transistor is biased in the forward-active region with Vz = 0.60 V. Determine
(a)thechange in the neutral base width as V- changesfrom | V to5 V, and (b) the
corresponding change in the collector current.

1037 Consider a uniformly doped silicon npn bipolar transistor in which xgz = x5z,

LE =Lpg, and DE = DB" Assume that oy = § =0.995and let NB = 10” cm‘3.
Calculate and plot the common emitter current gain 8 for Nz = 107, 105, 10",
and 10 cm~*, and for the case( a) when the bandgap narrowing effect is neglected
and (b) when the bandgap narrowing effect is taken into account.

10.38 Assilicon pnp bipolar transistor at T = 300 K isto be designed so that the emitter
injection efficiency isy = 0.996. Assumethat xx = x5, Lg = Lp, Dy = Dy, ad
let Nz = 10" cm™3. (a) Determine the maximum base doping, taking into account
bandgap narrowing. (h) If bandgap narrowing were neglected, what would he the
maximum base doping required?

10.39 A first-approximation type calculation of the current crowding effect can be mede
using the geometry shown in Figure 10.51. Assume that one-half of the base current
enters from each side of the emitter strip and flowsuniformly to the center of the
emitter. Assume the base is p type with the following parameters:

Ng =10"% ¢m™3 xg =070 um
i, = 400 em?/V-3 S =8um
Emitter length L =100 um

(a) Calculate the resistance between x = 0 and x = §/2. (b) If 1 I = 10 pA,
calculate the voltage drop between x = 0 and x = §/2. (¢} If Vg = 0.6 Vatx =
estimate in percent the number of electrons being injected into the baseat x = §/2
compared to x = 0.

1040 Consider the geometry shown in Figure 10.51 and the device parametersin
Problem 10.39 except the emitter width S. The emitter width § is to be changed so
that the number of electrons injected into the hase at x = Sf2 is no more than 10
percent less than the number of electrons injected into the base at x = 0. Calculateﬁ

I i I \ Collector 1
x=0 x5 x=5812

Figure10.51 | Figure for Problems 10.39
and 10.40.



#10.41 The base doping in a diffused n* pn bipolar transistor can be approximated by an
exponential as

Np = Ng(0)exp (fi‘-)

X5

wherea isaconstant and is given by

(a) Show that, in thermal equilibrium, the electric field in the neutral base region isa
constant. (b) Indicate the direction of theelectric field. Does this electric tield aid or
retard the flow of minority carrier electrons across the base?(c}j Derive an expres-
sion for the steady-state rminority carrier electron concentration in the base under
forward bias. Assume no recombination occurs in the base. (Express the electron
congentration in terms of the electron current density.)

1042 Consider a silicon npn bipolar transistor with uniform dopings of ¥y =5 x 10% em =3,
Na =107 e¢m™*, and N = 5 x 10" ¢m™*, Assume the common-base current gain is
o = 0.9920. Determine (g) BVepo. (P} BVero, and {¢) the base—emitterbreakdown
voltage. (Assumer == 3for theempirical constant.)

10.43 A high-voltage silicon npn bipolar transistor is to be designed such that the uniform
basedoping is N = 10 and the common-emitter current grain is g = 50.
The breakdown voltage B Vs isto heat least 60 V. Determine the maximum
collector doping and the minimum collector length to support this voltage. (Assume
n=23)

1044 A uniformly doped silicon epitaxial npn bipolar transistor is tabricated with a base
doping of #y = 3 x 10" em~* and a heavily doped collector region with ¥¢ =
5x 1077 ¢cm™*. The neutral basewidth isxz = 0.70 wm when Vg = Vyr = 0.
Determine V- @ which punch-through occurs. Compare this value to the expected
avalanche breakdown voltage of thejunction.

1045 A silicon npn bipolar transistor has a base doping concentration of Ny = 10" em ™,
acollector duping concentration of N¢ == 7 x 10" cm™, and a metallurgical base
width of 0.50 um. Let Vgr = 0.60 V. (¢) Determine V¢ at punch-through.

(b) Determine the peak electric field in the B-C space charge region at punch-through.

1046 A uniformly doped silicon pnp bipolar transistor is to be designed with N: =
10" ¢ m*? and N¢ = 10" em~. The metallurgical base width is 0.75 wm. Deter-
mine the minimum base doping so that the punch-through voltage is no less than
V, =25V

Section 105 Equivalent Circuit Models

1047 The V¢ g(sat) voltage of an npn transistor in saturation continues to decrease slowly as
the base current increases. In the Ehers—Moll model. assumea = = 0.99. e = 0.20.
and f- = | mA. For T = 300 K, determine the base current, 15, necessary to give
(a) Vep(sat) =030V, (b) Veop(sat) = 0.20 V.and (c) Ve p(sat) = L10 V.

1048 Consider an npn bipolar transistor biased in the active mode. Using the Ebers-Mall
model, derive the equation for the basecurrent, 7. interms of wg,a,, fis. fcs, and
VBE .

—_

ﬁ
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10.49 Consider the Ebers—-Moll model and let the base terminal be openso f =10. §
that. when a collector-emitter voltage is applicd. we have

1050 Inthe Ebers-Moll model. let o, = 0.98.7,, =10 Y A,and I, , =5x 10 " A.
T =300 K. Plot /¢ versus V¢ 5 fOr --Vg, < Vg < 3V and for Vi = 0.2,04,
and 0.6 V. (Note that V¢ == —~Vue.} What can be said about the base width modu
lation effect using this model ?
—_= 1051 The collector—emitter Saturation voltage. from the Ebers—Mull model, js given by
Equation (10.77). Consider apower BIT in which «; = 0.98. ay = 0.20. and 4
= I A. Plot Vi (sat) versus fy over the range 0.03 < f; < LU A,

Section 10.6 Frequency Limitations

1052 Consider asilicon npn transistor st 7 = 300 K. Assuime thr following parameters:

i = 0.5 mA C.= 08pF
x5 =07 um D, =25 cm’/s
Xge = 2.0 um r. =30%2

C =C, =003pF B =50

(a)Calculate the transit time factors. (#) Calculate the cutoff and beta cutoff fre-
quencies. f; and f5. respectively.

10.53 1In aparticular bipolar transistor, the base transit time is 20 percent of the total delay
time. The base width is 0.5 ;2m and the base ditfusion coefficient is £y = 20 cm*
Determine the cutotf frequency.

10.54 Assume the base transit time of a BJT is 100 psand carriers cross the 1.2 gim B-C
space charge region at a speed of 107 ¢m/s. The emitter—base junction charging tir
is 25 ps and the collector capacitance and resistance are 0.10 pF and 10 €2. respec
tivcly. Determine the cutoff frequency.

Summary and Review

#*10.55 (a} A silicon npn bipolar transistor at 7 = 300 K is to be designed with an Early
voltage of at least 200 V and acurrent gain of at least g = 80. (b) Repeat pan («) far
S pnp bipolar transistor,

*10.56 Design a uniformly doped silicon npn bipolar transistor so that # = 100 a 7 =
300K. The maximum CE voltage is 1o be 15 V and any breakdown voltage iSto be
at least 3times this value. Assume the recombination factor is constant at & = 0.995.
The transistor is to be operated in low injection with a maximum collector current of
I = 5 mA. Bandgap narrowing effects and base width modulation effects areto ke
minimized. Let Dy = 6 em?/s, Dy = 25 em?/s, teg = 107% s.and 10 == 10 7s.
Determine duping concentrations, the metallurgical base width, the active area. and
the maximum allowable V..

== *10,57 Deign apair of complementary npn and piap bipolar iransistors, The wansistors are

to have the same metallurgical base and emuter widthsof Wy = 0.75 em and

i




Reading Ligt

xi = 05 pm, Assume that thefollowing minority carrier parameters apply to each
device.

D, =23cm’s T =105
D,, = 8 cm¥s T =5x% 107%s

The collector doping concentration in each deviceis5 x 10'% ¢m~* and the recom-
bination factor in each device isconstant a § = 0.9950. (a)Design, if possible, fhe
devicesso that # = 100 in each device. If this is not possible. how close a match can
be obtained! (F) With equal forward-bias base—emitrer voltages applied. the collector
currents areto he /¢ = 5 mA with each device operating in low-injection. Determine
the active cross-sectional areas.
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Fundamentalsof the
M etal-Oxide-Semiconductor
Field-Effect Transstor

PREVIEW

Transistor (MOSFET) is developed in thischapter. Although the bipolar tran-

sistor was discussed in the last chapter, the material in this chapter presumes
aknowledge only of the semiconductor material properties and characteristics of the
pn junction.

The MOSFET, in conjunction with other circuit elements, is capable of voltage
gain and signal-power gain. The MOSFET is also used extensively in digital circuit
applications where, because of its relatively small size, thousands of devices can be
fabricated in a singleintegrated circuit. The MOSFET is, without doubt. the core of
integrated circuit design at the present lime.

TheMOSdesignation isimplicity used only for the metal —silicon dioxide (S10»)-
silicon system. The more general terminology is metal —insul ator—semiconductor
(MIS), wheretheinsulator is not necessarily silicon dioxide and the semiconductor is
not necessarily silicon. We will use the MOS system throughout thischapter although
the same basic physics applies to the MIS system.

The heart of the MOSFET is a metal-oxide—semiconductor structure known
as an MOS capacitor. The energy bands in the semiconductor near the oxide—
semiconductor interface bend as a voltage is applied across the M OS capacitor. The
position of the conduction and valence bands relative to the Fermi level at the
oxide-semiconductor interface is a function of the MOS capacitor voltage, so that
the characteristics of the semiconductor surface can be inverted from p-type to
n-type, or from n-type to p-type, by applying the proper voltage. The operation and
characteristics of the MOSFET are dependent on this inversion and the creation of

T he fundamental physics of the Metal—Oxide—Semiconductor Field-Effect
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an inversion charge density at the semiconductor surface. The threshold voltageis
defined as the applied gate voltage required to create the inversion layer chargeand
isoneof the important parameters of the MOSFET.

The various types of MOSFETs are examined and a qualitative discussion of the
current-voltage characteristics isinitially presented. A mathematical derivation ofy
the current—voltage relation is then covered in detail. The frequency response and
limitations of the MOSFET are also considered.

Although we have not discussed fabrication processes in any detail in thistext,
thereisan MOS technology that should be considered, sinceit directly influences the
characteristics and properties of the MOS devices and circuits. We will consider the
complementary MOS (CMOS) process. The discussion of this technology will ke
brief, but should provide a good base for further in-depth study. B

11.1 I THETWO-TERMINAL MOSSTRUCTURE

The heart of the MOSFET is the metal-oxide—semiconductor capacitor shown in
Figure 11.1. The metal may be aluminum or some other type of metal, athoughin
many cases, it isactually ahigh-conductivity polycrystalline silicon that has beende-
posited on the oxide; however, the term metal is usually still used. The parameter t,
in the figure is the thickness of the oxide and ¢, is the permittivity of the oxide.

11.1.1 Energy-Band Diagrams

The physics of the MOS structure can be more easily explained with the aid of the
simple parallel-plate capacitor. Figure 11.2a shows a parallel-plate capacitor with the
top plate at a negative voltage with respect to the bottom plate. An insulator materiad
separates the two plates. With this bias, a negative charge exists on the top plate, a
positive charge exists on the bottom plate, and an electric field is induced between
the two plates as shown. The capacitance per unit areafor thisgeometry is

Semiconductor

()

Figure111 | The basic MOS capacitor
structure.
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Figure11.2 1 (a) A parald-platecapacitor showing the electric field and conductor charges. (b) A corresponding
MOS capacitor with a negative gate biasshowing the electricfidd and charge Row. (¢} TheMOS capacitor with
an accumuletion layer of holes.

 where € is the permittivity of the insulator and ¢ is the distance between the two
plates. The magnitude of the charge per unit areaon either plateis

Q=CV (11.2)

where the prime indicates charge or capacitance per unit area. The magnitude of the
. electric field is

Figure 11.2b shows an MOS capacitor with a p-type semiconductor substrate.
The top metal gate is at a negative voltage with respect to the semiconductor sub-
drate. From the example of the parallel-plate capacitor, we can see that a negative
charge will exist on the top metal plate and an electric field will be induced with
the direction shown in the figure. If the electric field were to penetrate into the
semiconductor, the majority carrier holes would experience a force toward the
oxide—semiconductor interface. Figure 11.2¢c shows the equilibrium distribution of
charge in the MOS capacitor with this particular applied voltage. An accuntdation
fayer of holes in the oxide-—semiconductor junction corresponds to the positive
charge on the bottom " plate™ of the MOS capacitor.
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Figure 11.3a shows the sameM OS capacitor in which the polarity of the gppli
voltage is reversed. A positive charge now exists on the top metal plate and the
duced electric field is in the opposite direction as shown. If the electric field pe
trates the semiconductor in this case, majority carrier holes will experience a forcm
away from the oxide—semiconductor interface. As the holes are pushed away
the interface, a negative space chargeregion is created because of the fixed io
acceptor atoms. The negative charge in the induced depletion region correspon
the negative charge on the bottom "plate™ of the M OS capacitor. Figure 11.3b sho
the equilibrium distribution of charge in the MOS capacitor with this applied volta

The energy-hand diagram of the M OS capacitor with the p-type substrate, for
casewhen anegativevoltageisapplied tothetop metal gate, isshownin Figure1l 4aj
The valence-band edgeis closer to the Fermi level at the oxide—semiconductor in
face than in the bul k material, which implies that there is an accumulation of h
The semiconductor surface appears to he more p-type than the bulk material.
Fermi level isaconstant in the semiconductor since the MOS system is in the
equilibrium and there is no current through the oxide.

Figure 11.4b shows the energy-band diagram of the MOS system when a po
tive voltageis applied to the gate. The conduction and valence band edges bend

Figure 11.3 1 The MOS capacitor with a moderate positive gate bias, showing (a) the electric fieldand charge flow and
(b} the induced space charge region.

Accumulation layer of holes Induced space charge region

() (b)

Figure 114 | The energy-band diagram of an MOS capacitor with a p-type subgtrate for (a) a negative gate bias and
(b) a moderate positive gate bias.
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nin the figure, indicating a space charge region similar to that in a pn junction.
he conduction hand and intrinsic Fermi levels move closer to the Fermi level. The
induced space charge width is x.

Now consider the case when a still larger positive voltage is applied to the top

~ metd gate of the MOS capacitor. We expect the induced electric field to increasein

magnitude and the corresponding positive and negative charges on the MOS capaci-

} torto increase. Alarger negative chargein the MOS capacitor implies alarger induced

gpacecharge region and more band bending. Figure 11.5 shows such acondition. The

intrinsic Fermi level at the surface is now below the Fermi level: thus, the conduction

band is closer to the Fermi level than the valence band is. Thisresult implies that the

surfacein the semiconductor adjacent to the oxide-semiconductor interface is n type.

By applying a sufficiently large positive gate voltage, we haveinverted the surface of

the semiconductor from a p-type to an n-type semiconductor. We have created an
inversion luver of electrons at the oxide-semiconductor interface.

In the MOS capacitor structure that we have just considered, we assumed a p-
type semiconductor substrate. The same type of energy-band diagrams can be con-
structed for an M OS capacitor with an n-type semiconductor substrate. Figure 11.6a
showsthe M OS capacitor structure with a positive voltage applied to the top gate ter-
mind. Apositive chargeexists on the top gate and an electricfield isinduced with the
direction shown in the figure. An accumulation layer of electrons will be induced in

version layer of el ectrons

Figurell.5 | Theenergy-band diagramof the M OS capacitor
with ap-type substratefor a"large’ positivegate bias.

Induced positive space | I
o dedrons

(@) (b)
Figure 116 | The MOS capecitor with an n-typesubgtrate for (a) a positivegate biasand (b) amoderate negetivegate bias.
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the n-type substrate. The case when a negative voltage is applied to the top gatei
shown in Figure 11.6b. A positive space charge region isinduced in the n—typessmi-
conductor in this situation.

The energy-band diagrams for this MOS capacitor with the n-type suhstrate
shown in Figure 11.7. Figure 11.7a shows the case when a positive voltage is
plied to the gate and an accumulation layer of electrons is formed. Figure 11.
shows the positive space charge region induced by an applied negative gate volt
in it the conduction and valence band energies bend upward. Figure 11.7¢ shows
energy bands when alarger negative voltage is applied to the gate. The conduction
and valence bands are bent even more and the intrinsic Fermi level has moved
above the Fermi level so that the valence band is closer to the Fermi level than the

-~ Accumuaion of electrons

Gate

Ee} a

Induced positive space
charge region

loversion |ayer of holes

Figure 11.7 | The energy-band diagram of the MOS
capacitor with an n-type subgtrate for (a) a posgtive
gate bias. (b) amoderaie negative bias, and (¢} a
"large' negative gate bias.
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conduction band is. This result implies that the semiconductor surface adjacent to
the oxide-semiconductor interface is p type. By applying a sufficiently large nega-
tive voltage to the gate of the MOS capacitor, the semiconductor surface has been
inverted from n type to p type. An inversion layer of holes has been induced at the
oxide-semiconductor interface.

11.1.2 Depletion Layer Thickness

We may cal culate the width of theinduced space charge region adjacent to the oxide-
semiconductor interface. Figure 11.8 shows the space charge region in a p-type semi-
conductor substrate. The potential@  isthe difference(in volts) between Er; and E,-
and isgiven by

where N, is the acceptor doping concentration and #; is the intrinsic carrier
concentration.

The potential ¢; iscalled the surface potential; it is the difference (in volts) be-
tween E -, measured in the bulk semiconductor and E ; measured at the surface. The
surface potential is the potential difference across the space charge layer. The space
charge width can now be written in aform similar to that of a one-sided pn junction.
Wecan write that

where ¢, is the permittivity of the semiconductor. Equation (11.5) assumes that the
abrupt depletion approximation is valid.

Figure 11.9 shows theenergy bands for the casein which ¢, = 2¢,. The Fermi
level at the surfaceisasfar above the intrinsic level as the Fermi level is below the

Figure 118 [ The energy-band diagram in the p-type
semiconductor, indicating surface potential.
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Figure 11.9 | The energy-hand diagram in the p-type
semiconductor &t the threshold inversion point.

intrinsic level in the hulk semiconductor. The electron concentration at the surfaceis
the same as the hole concentration in the bulk material. This condition is known as
the threshold inversion point. The applied gate voltage creating this condition is
known as the threshold voltage. If the gate voltage increases above this thresh
value, the conduction bend will hrnd slightly closer to the Fermi level. but
change in the conduction hand at the surface is now only a slight function of g
voltage. The electron concentration at the surface. however, isan exponential fu
tion of the surface potential. The surface potential may increase by a few (k7T
volts, which will change the electron concentration by orders of magnitude, butt
space charge width changes only slightly. In this case, then, the space charge regi
has essentially reached a maximum width.

Themaximum space charge width, x,;r. at thisinversion transition point can
calculated from Equation (11.5) by setting ¢, = 2¢,. Then |

EXAMPLE 111

Objective

To calculate the maximum space charge width given a particular semiconductor doping
concentration.

Consider silicon at T == 300 K doped to #, = 10'® cm~*. The intrinsic carrier concen,
trationisn, = L.5x 101" cm™.

m Solution
From Equatiun (11.4}, we have
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the maximum space charge widthis

(1.6 % 107123(101%)

xqr = 0.30x 107* ¢m = 0.30um

1 Comment
The maximum induced space charge width iS on the same order of magnitude as m junctien
space charge widths.

We have been considering a p-type semiconductor substrate. The same maxi-
mum induced space charge region width occursin an n-type substrate. Figure 11.10
istheenergy-band diagram at the threshold voltage with an n-type substrate. We can
write

Notethat we arealways assuming the parameters ¢, and ¢, to be positive quantities.
Figure 11.11 isaplot of x4+ & T = 300 K asafunction of doping concentration
in silicon. The semiconductor doping can be either n-type or p-type.

Figure11.10 | The cnergy-band diagrem in the n-type
semiconductor & the threshold inversion point.
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1014 1015 10[6 10]7 10]5(
N. semiconductor dopi ng ¢em™ %)

Figure11.11 | Maximum induced space charge region width
versus semiconductnr doping.

TEST YOUR UNDERSTANDING

Ell.1 (@) Condder asoxide-to-p-typesilicon junction & 7 = 300 K. The impurity doping
concentration in thedlicon isN, = 3 x 10" em~*. Calculatethe maximum space-
charge width in the silicon. {#) Repest part (a)for an impurity concentration of
N, = 10" cm3, (w7 £98'0(q) "l g1 (v} suy]

E11Z Consider an oxide-to-n-typeslicon junction & 7 = 300 K. The impurity doping
concentration in thesliconis #; = 8 x 10" ¢cm~*. Caculate the maximum pece:
charge width in the silicon. (W ¢¢0 'suy)

11.1.3 Work Function Differences

We have been concerned. so far. wtth the enerey-band diagrams of the semicondue-’
tor material. Figure 11.12a shows the energy levelsin the metal, silicon dioxide, and.
silicon relative to the vacuum level. The metal work function is ¢, and the electrgp;
affinity is x. The parameter y; is the oxide electron affinity and, for silicon dioxiq
Xi= 09 V. :

Figure 11.12b shows the energy-band diagram of the entire meta-oxide-
semiconductor structure with zero gate voltage applied. The Fermi level isaconstant
through the entire system at thermal equilibrium. We may define ¢, as a modifi
metal work function—the potential required to inject an electron from the metal ir*
the conduction band of the oxide. Similarly, x" is defined as a modified eectron
affinity. The voltage Vg is the potential drop across the oxide for zero applied gatg
voltage and is not necessarily zero because of the difference between ¢,, and .
potential ¢, is the surface potential for this case.
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Vacuum level

p-type SEMiconductor

Vacuum level

Figure 11.12 | (a) Energy levelsin an MOS system pnor to contact and (b) energy-handdiagram through the
MOS structurein thermd equilibrium after contact.

If we sum the energies from the Fermi level on the metal side to the Fermi level
an the semiconductor side, we have

, E
ey, +eVow =ex' T 72 —epo T ey (11.9)

Equation{11.9) can be rewritten as

We can define a potential ¢,,, as

which is known as the metal —semiconductor work function difference

Objective |  EXAMPLE 112

To calculate the metal —semiconductor work function difference ¢, for agiven MOS system
ad semiconductor doping.
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For an auminium-silicondioxide junction, ¢!, = 3.20 V and for aslicon—slicondiox-

i

idejunction, x" = 3.25 V. \We may assumethat E, = |.11 eV. Let the p-type doping ke &, =
104 em™2,
m Solution
For silicona 7 = 300 K, we may calculategy,, as
1014 )
— ] =0228V
(1.5 x 10" 8

Then the work functiondifferenceis

=3.20—(3.25+0.5554+0.228)

or
‘i)ms = _083V

B Comment
The value d ¢,., will become more negative as the doping of the p-type substrate incresses §

Degenerately doped polysilicon deposited on the oxide is also often used asthe
metal gate. Figure 11.13a shows the energy-band diagram of an MOS capacitor wit*
ann* polysilicon gate and a p-type substrate. Figure 11.13b shows the energy-bai
diagram for the case of ap™ polysilicon gate and the p-type silicon substrate. In the
degenerately doped polysilicon, we will initially assume that £ = E. for the n-
caseand Er = E, for the p* case.

For the n* polysilicon gate, the metal -semiconductor work function difference
can be written as 1

| L s ™~ T FaR ol \F

(@) {b)

Figure 11.13 | Energy-band diagram through the MOS structure with a p-type substrate a zero gate biasfor (a) an n*
polysilicon gate and (b) a p* polysilicon gate. i
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| and for the p* polysilicon gate, we have

 However, for degenerately doped n* polysilicon and p* polysilicon, the Fermi level
can be above £, and below £,, respectively, by 0.1 to 0.2 V. The experimental ¢,
vaues will then be dlightly different from the values calculated by using Equa-

itions (11.12) and (11.13).

‘ We hare been considering a p-type nemiconductor substrate. We may also hair
an n-type semiconductor substrate in an MOS capacitor. Figure 11.14 shows the
energy-band diagram of the MOS capacitor with a metal gate and the n-type semi-
conductor substrate, for the case when a negative voltage is applied to the gate. The
metal —semiconductor work function difference for this case is defined as

where ¢;,, isassumed to be a positive value. We will have similar expressionsfor n*
and p* polysilicon gates.

Figure 11.15 shows the work function differences as afunction of semiconduc-
tor doping for the various types of gates. We may note that the magnitude of ¢, for
the polysilicon gates are somewhat larger than Equations (11.12) and (11.13) predict.
Thisdifference again is because the Fermi level is not equal to the conduction band

Figure11.14 | Energy-band diagram through the MOS
structurewith an n-typesubstratefor a negative applied
gate bias.
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p* pely (n Si)
0.8 |
02
Au {p Si)
02
-04
—O.BF \Al(n Si)

Figure 11.15( Metal-semiconductor work
function difference versus doping for
aluminum, gold, and n* and p*
polysilicon gates.

{From Sze 1161 and \\erner [19].)

The metal - semiconductor work function difference becomesimportant in theflat-band
and threshold voltage parameters discussed next.

energy for then™ gate and is not equal to the valence band energy for the p* gate‘
TEST YOUR UNDERSTANDING 1
!

E11.3 Thesilicon impurity doping concentration in an aluminum-—silicon dioxide-siticon
MOS structureis N, = 3 x 10°® em~?, Using the parameters in Example 11.2, deter-
mine the metal-semiconductor work function difference @,,,,\ A 186'0— = "'@S“V)i

E11.4 Consider ann™ polysilicon gate in an MOS structure with a p-type silicon substrate.
The doping concentration of the silicon is N,, = 3 x [('* cm *. Using Equa-
tion (11.£2), find the value of @,,,. (A 1£6'0— = "¢ suy)

E115 Repeat Eli.4 forap* polysilicon gate using Equation (11.13).{A 611 0+ = "¢ suy)

11.1.4 Flat-Band Voltage

The flut-band voltuge is defined as the applied gate voltage such that there isno band
bending in the semiconductor and, as a result, zero net space charge in this region.
Figure 11.16 shows this Rat-band condition. Because of the work function difference
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Figure 11.16 | Energy-band diagram of an
MOS capacitor at flat band.

E and possible trapped charge in the oxide, the voltage across the oxide for thiscase is

| not necessarily zero.

| We have implicitly been assuming that there is zero net charge density in the
oxide material. This assumption may not be vdid—a net fixed charge density, usu-
aly positive, may exist in the insulator. The positive charge has been identified with
broken or dangling covalent bonds near the oxide—semiconductor interface. During
thetherma formation of Si0,, oxygen diffuses through the oxide and reacts near the
8i-5i0; interface to form the Si0,. Silicon atoms may also break away from the
silicon materia just prior to reacting to form Si(,. When the oxidation process is
terminated, excess silicon may exist in the oxide near the interface, resulting in the
dangling bonds. The magnitude of this oxide charge seems, in general, to be a strong
function of the oxidizing conditions such as oxidizing ambient and temperature. The
charge density can be altered to some degree by annealing the oxide in an argon or
nitrogen atmosphere. However, the charge is rarely zero.

The net fixed charge in the oxide appears to be located fairly close to the oxide~
semiconductor interface. Wewill assumein theanalysis of theM OS structurethat an
equivalent trapped charge per unit area, @', islocated in the oxide directly adjacent
to the oxide-semiconductor interface. For the moment, we will ignore any other
oxide-type charges that may exist in the device. The parameter ¢;, is usualy given
in terms of number of electronic charges per unit area.

Equation (11.10), for zero applied gate voltage, can be written as

If agate voltage is applied, the potential drop across the oxide and the surface poten-
tid will change. We can then write

Vo = AVix + Agy = (Vox — Vo) + (&5 — ¢0) (11.16)
Using Equation (11.15), we have
VG == VOX + ‘i’i‘ + d’m.\ (1117)

Figure 11.17 shows the chargedistribution in the MOS structure for the flat-band
condition. There is zero net charge in the semiconductor and we can assume that an
equivalent fixed surface chargedensity existsin the oxide. The charge density on the
metal is ;,, and from charge neutrality we have

0, t+0,=0 (11.18)
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_ p-type
Med Oxide semiconductor

Figure11.171 Charge distribution in
an MOS capacitor at flat band.

We can relate (2, to the voltage across the oxide by

Vo= 2,
C{JX

where C.y is the oxide capacitance per unit area.' Substituting Equation (11.18) in
Equation (11.19), we have
— Qs

COK

In the flat-hand condition, the surface potential is zero, or ¢, = 0. Then from Equax
tion (11.17). we have

ch -

(112}

Equation (11.21) isthe flat-band voltage for this MOS device.

EXAMPLE 113

Objective

To calculate the flat-band voltage for an MOS capacitor with a p-type semiconductor subgtrate.

Consider an MOS structure with a p-type semiconductor substrate doped to N, =
10" cm?, asilicon dioxide insulator with a thickness of z,, =500 A. and an n™ polysilic
gate. Assumethat @, = 10'! electronic charges percm'.

Solution
The work function difference, from Figure 11.15, is¢,,, = —1.1 V. The oxide capacitancecan
be found as
€ox o (39)(885 X 10_14)
Tox N 500 x

C, = = 6.9 x 107% Flem?
1

! Although we Will. in general, use the primed notation for capacitance per unit area or charge per unit
area. we will omit, fur convenience, the prime on the oxide capacitance per unit area parameter
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Theequivalent oxide surface charge density is
0., = (10")(1.6 x 10 ") = 1.6x 107" Clem®
The Hat-band voltage is then calculated as

® Comment
Theapplied gate voltage required t0 achicve the fat-band condition for this p-type substrate is
negative. If the amount of fixed oxide charge increases, the Hat-band voltage becomes even
more ncgative.

TEST YOUR UNDERSTANDING

E11.6 Consider the MOS structure described in El 1.3. Far an oxide thickness of ¢, =
200 A and an axide chargeof @7, = & X 10" em~2, calculate the flat-band voltage.
(A 90 1= = ¥44 suy) '

ElL7 Repeat E11.6 for the MOS device described in El 1.4, (A 10— = 74 suv)

E118 Repeat El 1.6for the MOS device described in E11.5. (A €010+ = 744 suy)

1115 Threshold Voltage

The threshold voltage was defined as the applied gate voltage required to achieve the
threshold inversion point. Thethreshold inversion point, in turn, isdefined asthe con-
dition when the surface potential is@ = 2@, for the p-type semiconductor and @, =
2¢y, for the n-type semiconductor. These conditions were shown in Figures |1.9a
and 11.10. The threshold voltage will he derived in terims of rhe clectrical and geo-
metrical properties of the MOS capacitor.

Figure 11.18 shows the charge distrihution through the MOS device at the
threshold inversion point for a p-type semiconductor substrate. The space charge

Figure 11.18 | Charge distribution in an
MOS capacitor with a p-type substrate &
the threshold inversion point.
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width has reached its maximum value. We will assume that there is an equivadent
oxide charge @, and the positive charge on the metal gate at threshold is Q;,, .The
prime on the charge terms indicates charge per unit area. Even though we are assum-
ing that the surface has been inverted, we will neglect the inversion layer charged
this threshold inversion point. From conservation of charge, we can write

O + O, = |Qp(max)! (11.22)
where

and is the magnitude of the maximum space charge density per unit area of the de
pletion region.

The energy-band diagram of the MOS system with an applied positive gate volt-
ageisshown in Figure 11.19. As we mentioned, an applied gate voltage will change
the voltage across the oxide and will change the surface potential. We had from Equ-
ation (11.16) that

At threshold, we can define V; = Vry. Where Vyy is the threshold voltage thet
creates the electron inversion layer charge. The surface potential is ¢, = 2¢y, a
threshold so Equation (11.16) can be written as

where V.7 isthe voltage acrossthe oxide at this threshold inversion point.

Figure 11.19 | Energy-band diagram through the MOS
structurewith apositive gpplied gate bias.
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The voltage V,,;r can be related to the charge on the metal and to the oxide capa-
citance by

fwhere again C, isthe oxide capacitance per unit area. Using Equation (I1.22}, we
- can write

Finaly, the threshold voltage can be written as

Using the definition of flat-band voltage from Equation {11.21}, we can also express
the threshold voltage as

_ | QTSD(mB.XN

+ Vi + 2¢4, (11.27¢)
Cox

Vrw
For agiven semiconductor material, oxide material, and gate metal, thethreshold volt-
ageisafunction of semiconductor doping, oxide charge (', and oxide thickness.

KRR

Obj ective

To design the oxide thickness of an MOS system to yield a specitied threshold voltage.
Consider an n* polysilicon gate and a ptype slicon substrate doped to N,, = 3 x
10 em™*. Assume @, = 10" em™2. Determinetheoxidethicknesssuctthet V7 y = +0.65V.

H Solution
Fom Figure 11.15, the work function differenceis ¢,,, = —1.13 V. The various parameters
can be calculated as

|0, (max)| = eN,xyr = (16X 10777)(3 x 10°3(0.18 x 1074

DESIGN
EXAMPLE 11.4
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The oxide thickness can be determined from the threshold voltage equation

Then

or
0.65 = 2.0 x 10°¢,, — 0.378
which yields
fox =504 A
B Comment
Thethreshold voltage for chiscase isa positivequantity, which meansthat the MOS deviceis

an enhancement mode device: a gate voltage must he applied to create the inversion layer
charge, whichis zero for zero applied gate voltage.

The threshold voltage must be within the voltage range of a circuit design.
Although we have not yet considered the current in an M OS transistor, the threshold
voltage is the point at which the transistor turnson. If acircuit isto operate between
0 and 5V and the threshold voltage of a MOSFET is 10 V. for example, the device
and circuit cannot be turned ""on™ and " off." Thethreshold voltage, then, isoneof the
important parameters of the MOSFET.

To calculate the threshold voltage of an MOS system using the auminum gate.

Consider a p-type silicon substrate a& T = 300K doped to N, = 10" cm™?, Ld
Q. =10 cm 2, 1, =500 A, and assume the oxide is silicon dioxide. From Figure 11.15,
we have that ¢,,, = —0.83 V.

W Solution
Wk can start calculatingthe various parametersas
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Then
(Qsp(max)| = eNyxgr = (L6 x 167'%)(10")(2.43 x 107%) = 3.89 x 107° Clem’
W& can now calculate the threshold voltage as

= - 0341V

m Comment

In this example, the semiconductoris very lightly doped which, in conjunction with the posi-
tive charge in the oxide and the work function potentia difference,is sufficient to induce an
dectron inversion layer charge even with zero gpplied gate voliage. This condition makes the
threshold voltage negative.

A negative threshold voltage for a p-type substrate implies a depl etion mode de-
vice. A negative voltage must be applied to the gate in order to make the inversion
layer charge equal to zero, whereas a positive gate voltage will induce alarger inver-
son layer charge.

Figure 11.20 is a plot of the threshold voltage vy as afunction of the acceptor
doping concentration for various positive oxide charge values. We may note that the
p-type semiconductor must be somewhat heavily doped in order to obtain an en-
hancement mode device.

The previous derivation of the threshold voltage assumed a p-type semiconduc-
tor substrate. The same type of derivation can be done with an n-type semiconductor
substrate, where a negative gate voltage can induce an inversion layer of holes at the
oxide-semiconductor interface.

Figure 11.14 showed the energy-band diagram o the MOS structure with an n-
type substrate and with an applied negative gate voltage. The threshold voltage for
thiscase can be derived and isgiven by

where
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Figure11.201 Threshold voltage of an n-channel MOSFET
versus the p-type substrate doping concentration for various
values of oxide trapped charge {r,, = 500 A, aluminum gate).

and

We may note that xs7 and ¢, are defined as positive quantities. We may also note
that the notation of Vrp is the threshold voltage that will induce an inversion layer of
holes. We will later drop the N and Psubscript notation on the threshold voltage, but,
for the moment, the notation may be useful for clarity. ‘

DESIGN
EXAMPLE 11.6

Objective

Todesign the semiconductor doping concentration to yield a specified threshold voltage.

Consider an aluminum-silicon dioxide-silicon MOS structure. The silicon is n type, the
oxide thickness is t,, = 650 A, and the trapped charge density is ¢, = 10" ¢cm™. Deter-
mine the doping concentration such that Vyp = —1.0V.

i

m Solution

The solution te thisdesign problem is not straightforward, since the doping concentration go-
pears in the terms ¢y, , x47. O (max) and ¢,,, . The threshold voltage, then, is a nonlinear
function of ¥,. Without acomputer-generated solution, we resort to trial and error.



11.1 TheTwo-Terminal MCSStructure

For Ny = 2.5 x 10 cm~3, wefind

| Qs p (max)] = eNgxsr = 6.48 x 1077 Clem?
3rom Figure 11.15,
Pns =—0.35V
The threshold voltageis

which yields
VTP =—1.008V
ind is essentialy equal to the desired result.

B Comment

Thethreshold voltageis negative,implying that this MOS capacitor, with the n-typesubstrate,
isan enhancement mode device. Theinversion layer chargeis zero with zero gate voltage, and
anegative gate voltage mud he applied to induce the hole inversion layer.

Figure 11.21 isa plot of Vrp versus doping concentration for several values of
Q... Wemay note that, for all valuesof positive oxide charge, this MOS capacitor is
aways an enhancement mode device. As the Q}, charge increases, the threshold
voltage becomes more negative, which means that it takes a larger applied gate volt-
ageto create the inversion layer of holes at the oxide-semiconductor interface.

11.1.6 ChargeDistribution

Welve discussed the various chargesin the MOS structure. We may gain a better un-
derstanding by considering the following figures. The electron concentration in the
inversion layer (p-type substrate) at the oxide interface is given by n, = (n7/N,)
exp¢/ V:). For silicon a8 T = 300K with an impurity doping concentration of
N, =1 x 10" cm™, the surface potential at the threshold inversion point is
&, = 2¢;, = 0.695 V. The electron concentration at the oxide interface at this sur-
face potential isjust #, = 1 x 10'®* cm™ as we have discussed before. Figure 11.22
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Figure11.21 [ Threshold voltage of ap-channcl MOSFET
versus the n-type substrate doping concentration for
various values of oxide trapped charge (£, = 500 A.
aluminum gate).

Figure11.22 | Electron inversion charge
density as afunction of surface
potential.
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p-typeSi (300 K
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Figure11.23 | Varidion ot surface charge dendity (accumulationcharge

and inverson charge) as atunction d surfecepotential.
(From Sze {16].)

showstheincreasein electron concentration at the surface with an increasein surface
potential. As discussed previously, since the electron concentration increases rapidly
with very small changes in surface potential, the space charge width has essentially
reached a maximum value.

Figure 11.23 shows the total charge density (C/cm?) in the silicon as afunction
d the surface potential. At flat band. the total charge is zero. For 0 < ¢, =< ¢,, we
are operating in the depletion mode since the inversion charge has not yet been
formed. For ¢, < ¢ < 2¢,. the Fermi energy at the surface isin the upper half of
the band diagram, which impliesan n-type material, but we have not yet reached the
threshold inversion point. Thiscondition isreferred to as weak inversion. The condi-
tion for ¢, > 2¢, is called strong inversion, since the inversion charge density in-
creases rapidly with an increasein surface potential. as we have seen.

TEST YOUR UNDERSTANDING

E11.9 An MOS devicehas the following parameters: dluminum gate, p-type substrate with
N, =3x 10" am ¥, ¢, = 250A. and @, = 10! ¢ m*. Determine the threshold
voltage. (A [8T 0+ = A4 ‘suy)
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E1.10 Condder an MOS device with the following parameters. p* polysilicon gate,
n-typesubstrate with &, = 105 cm?, 1,, = 220A, and @', = 8 x 10" cm2,
(Use Figure 11.15). Determine the threshold voltage. (A #Z2°0+ = 44 "suy)

*E11,11 Thedevicedescribedin E11.10is to beredesigned by changing the n-type doping con-
centration such that thethreshold voltageisin therange—0.50 < ¥rp < —0.30V.
(W0 4,01 X p = "N I0) A SOF'0— = 94 2010 PUE BN A SUY)

11.2| CAPACITANCE-VOLTAGE
CHARACTERISTICS

The MOS capacitor structureis the heart of the MOSFET. A great deal of informa-
tion about the MOS device and the oxide-semiconductor interface can be obtai
from the capacitance versus voltage or C-V characteristics of the device. The
itance of adevice is defined as

dQ .
€=~ AL

where 4@ is the magnitude of the differential change in charge on one plate &
function of the differential change in voltage 4V across the capacitor. The capafl:
tanceisasmall-signal or ac parameter and i s measured by superimposing a small 4
voltage on an applied dc gate voltage. The capacitance, then, is measured as a furlé:
tion of the applied dc gate voltage.

11.2.1 Ideal C-V Characteristics

First we will consider the ideal C-V characteristics of the MOS capacitor and then
discuss some of the deviations that occur from these idealized results. We will ini-
tially assume that there is zero charge trapped in the oxide and also that there isno
charge trapped at the oxide—semiconductor interface.

There are three operating conditions of interest in the MOS capacitor: accumu-
lation, depletion, and inversion. Figure | 1.24a shows the energy-band diagram of an
MOS capacitor with a p-type substrate for the case when a negative voltage is ap-
plied to the gate, inducing an accumulation layer of holesin the semiconductor at the
oxide-semiconductor interface. A small differential change in voltage across the
MOS structure will cause a differential change in charge on the metal gate and aso
in the hole accumulation charge, as shown in Figure 11.24b. The differential changes
in charge density occur at the edgesof the oxide, asin aparallel-plate capacitor. The
capacitance C' per unit areaof the MOS capacitor for thisaccumulation mode is just
the oxide capacitance, or

60)(

C'(ace) = Coy = — (11.31)

CX

Figure 11.25a shows the energy-hand diagram of the MOS device when a
small positive voltage is applied to the gate, inducing a space charge region in the
semiconductor; Figure 11.25b shows the charge distribution through the device for
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Metal Oxide p-type Semiconductor

(@) (b)

Figure 11.24 | {a) Energy band diagram through an MOS capacitor for the accumulation mode. (b} Differential
charge distribution @ accumulation for adifferential change in gate voltage.

Meta Oxide p-type semicenductor

Figure11.25 (a) Energy-band diagram through an MOS capacitor for the depletion mode. (b) Differential
charge distribution at depletion for a differential change in gate voltage.

this condition. The oxide capacitance and the capacitance of the depletion region
are in series. A small differential change in voltage across the capacitor will cause
a differential change in the space charge width. The corresponding differential

changes in charge densities are shown in the figure. The total capacitance of the se-
ries combination is
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Since Cox = €ox/tox and Cyp, = €, /x4, Equation (11.32b) can be written as

As the space charge width increases, the total capacitance C'{depl) decreases.
We had defined the threshold inversion point to he the condition when the max-
imum depletion width is reached but there is essentially zero inversion charge den

¢

sity. This condition will yield a minimum capacitance C,,,, which is given by

Figure 11.26a shows the energy-band diagram of this MOS device for theinver-
sion condition. In the ideal case, asmall incremental change in the voltage acrossthe
MOS capacitor will cause a differential change in the inversion layer charge density
The space charge width does not change. If the inversion charge can respond to the
change in capacitor voltage as indicated in Figure 11.26b, then the capacitance -
again just the oxide capacitance, or

C’(inV) = Cox = ?

Figure 11.27 shows the ideal capacitance versus gate voltage, or C-V, characte”
istics of the MOS capacitor with a p-type substrate. The three dashed segments ccF
respond to the three components Cy,, Ci . and C,,.. The solid curveis the ideal rét
capacitance of the M OS capacitor. Moderate inversion, which isindicated in thefi8-
ure, is the transition region between the point when only the space charge dens

Metal Oxide p-type semiconductor

Figure 11.26 | (a) Energy-band diagram through an MOS capacitor for the inversion mode. (b} Differentid charge
digtributionat inversion for alow-frequency differentialchange in gate voltage.
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\_...—(_—J
Strong
inversion
Moderate
Depletion | . inversion

Figure11.27 | Ided low-frequency capacitanceversusgate
voltage of an MOS capacitor with a p-type substrate.
Individual capacitance components are also shown.

changes with gate voltage and when only the inversion charge density changes with
gate voltage.

The point on the curve that corresponds to the flat-band condition is of interest.
Theflat-band condition occurs between the accumulation and depletion conditions.
The capacitance at flat band isgiven by

EOK
€ox kT €,
-+(2) () ()
We may note that the flat-band capacitance isafunction of oxide thickness as well as

semiconductor doping. Thegeneral location of this point on the C-Vplot isshown in
Figure 11.27.

s
CFh‘ =

Objective
TocdculateC,y, C._, and Cr, for an MOS capacitor.

Consider apt;[';esilicon substrateat T = 300K dopedto &, = 10'¢ em~*. Theoxideis
silicon dioxide with athickness of 550 A and the gate is duminum.

N Solution
The oxide capacitanceis

€or _ (3.9)(8.85 x 1071%)
fox 550 x 10-#

To find the minimum capacitance, we need to caculate

= 6.28 x 107® F/em®

Co =

EXAMPLE 11.7
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Then

We may note that

The Ra-hand capacitance is

€
. ox
CFB =i

B Comment
Theraiosof C’;, to C, and of Ty t0 Cy aretypical values obtained in C-V plots

=

TEST YOUR UNDERSTANDING
E1112 For the device described in EI1.9. determine €, / Cox @ Cryy/ Cox.

unu

(9eL°0 = "2/ %12 veg 0 = /™0 suy)

Typical values of channel length and width are 2 em and 20 pem. respectively.

The total gate oxide capacitance for this example is then

CoxT = (6.28 x 107%)(2 X 107")(20 x 10 ") = 0.025 x F = 0.025pF

Thetotal oxide capacitancein atypical MOS device is quite small.

The same type of ideal C-V characteristics are obtained for an MOS capacitor
with an n-type subsrrate by changing the sign of the voltage axis. The accumulation



11.2 Capaditance-VoltageCharacteridtics

’ . Accumularion
inversion

Moderate
inversion

Figure 11.28 | Ided low-frequency capacitanceversus gate
voltage of an MOS capacitor with an n-type substrate.

condition is obtained for a positive gate bias and the inversion condition is obtained
fora negative gate bias. Thisideal curve isshown in Figure 11.28.

- 11.2,2  Frequency Effects

Figure 11.26a showed the MOS capacitor with a p-type substrate and biased in the
inversion condition. We have argued that a differential change in the capacitor volt-
L age in the ided case causes a differential change in the inversion layer charge den-
- dty. However, we must consider the source of electrons that produces achangeinthe
inversion charge density.

There are two sources of electrons that can change the charge density of the
inversion layer. Thefirstsource is by diffusion of minority carrier electronsfrom the
p-type substrate across the space charge region. This diffusion process is the same
as that in a reverse-biased pn junction that generates the ideal reverse saturation
current. The second source of electrons is by thermal generation of electron-hole
pairs within the space charge region. This process is again the same as that in a
reverse-biased pn junction generating the reverse-biased generation current. Both of
these processes generate electrons at a particular rate. The electron concentration in
theinversion layer. then, cannot change instantaneously. If the ac voltage across the
MOS capacitor changes rapidly, the change in the inversion layer charge will not be
able to respond. The C-V characteristics will then be a function of the frequency of
the ac signa used to measure the capacitance.

In the limit of a very high frequency, the inversion layer charge will not respond
to adifferential changein capacitor voltage. Figure 11.29 shows the charge distribu-
tion in the MOS capacitor with ap-type substrate. At a high-signal frequency, thedif-
ferential change in charge occurs at the metal and in the space charge width in the
semiconductor. The capacitance of the MOS capacitor is then C,;,, which we dis-
cussed earlier.

The high-frequency and low-frequency limits of the C-V characteristics are
shownin Figure 11.30. In general, high frequency correspondsto avalue on the order
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Meta Oxide p-type semiconductor

Figure11.29 | Differential charge distributionat inversion
for a high-frequency ditterential change in gate voliage.

Low
frequency

—————— s
Accumulation y

! High
[ frequency

£

——
Inversion

Figure 11.30 1 Low-frequency and high-frequency capacitance
versusgate voliage of an MOS capacitor with a p-type substrate.

of 1 MHz and low frequency correspond5 to values in the range of 5 to 100 Hz. Typ-
ically, the high-frequency characteristics of the MOS capacitor are measured.

11.2.3 Fixed Oxideand Interface Charge Effects

Inall of thediscussion concerning C-V characteristics sofar, we have assumed an ided
oxide in which there are no fixed oxide or oxide-semiconductor interface charges.
These two types of charges will change the C-V characteristics.

We previously discussed how the fixed oxide charge affects the threshold volt-
age. This charge will also affect the flat-band voltage. The fiat-band voltage from



Equation {11.21) was given by

where Q. is the equivalent fixed oxide charge and ¢,., i's the metal —semiconductor
work function difference. The flat-band voltage shiftsto more negative voltages for
apositive lixed oxide charge. Since the oxide chargeis not afunction of gate voltage,
the curves show a parallel shift with oxide charge. and the shape of the C-V curves
remainsthe same as the ideal characteristics. Figure 11.31 shows the high-frequency
characteristics of an MOS capacitor with a p-type substrate for several values of
fixed positive oxide charge.

The C-V characteristics can be used to determine the equivalent fixed oxide
charge. For agiven MOS structure, ¢, and C,, are known, so the ideal flat-band volt-
age and flat-band capacitance can be calculated. The experimental value of flat-band
voltage can be measured from the -V curve and the value of fixed oxide charge can
then be determined. The C-V measurements are a valuable diagnostic tool to charac-
terizean MOS device. Thischaracterization isespecially useful in the study of radia-
tion effects on MOS devices, for example, which we will discuss in the next chapter.

We first encountered oxide—semiconductor interface states in Chapter 9 in the
discussion of Schottky barrier diodes. Figure 11.32 shows the energy-band diagram
of asemiconductor at the oxide-semiconductor interface. The periodic nature of the
semiconductor is abruptly terminated at the interface so that allowed electronic
energy levels will exist within the forbidden bandgap. These allowed energy states
are referred to as interface states. Charge can flow between the semiconductor and
interface states, in contrast to the fixed oxide charge. The net charge in these interface
statesis afunction of the position of the Fermi level in the bandgap.

In general, acceptor states exist in the upper half of the bandgap and donor states
exigt in the lower half of the bandgap. An acceptor state is neutral if the Fermi level

¢ Acceptor stares

I
_______ R EF.'
states [Yonor states
f E\
Figure 11.31 | High-frequency capacitanceversus gate Figure 11.32 | Schemétic diagram
voltage of an MOS capacitor with a p-type substrate showing interfacestatesa the oxide-

for savera values of effectivetrapped oxide charge. semiconductor interface.
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is below the state, and becomes negatively charged if the Fermi level is abovethe
state. A donor state is neutral if the Fermi level is above the state and becomes pos-
tively charged if the Fermi level is below the state. The charge of the interface dates
isthen afunction of the gate voltage applied across the MOS capacitor.

Figure 11.33a shows the energy-band diagram in a p-type semiconductor o an
MQOS capacitor biased in the accumulation condition. In thiscase, there isa net pos-
itive charge trapped in the donor states. Now et the gate voltage change to produce
the energy-band diagram shown in Figure 11.33b. The Fermi level corresponds to
the intrinsic Fermi level at the surface; thus, al interface states are neutral. This

Neutral ==
acceptors

e

—————————————————— Ep
N € T\ E

acceptors { -

Negative I
accepiors

Neutral
donors

Figure 11.33 | Energy-band diagram in a p-type semi-
conductor showing the charge trapped in the interface states
when the MOS capacitor is biased (a) in accumulation,

(b) at midgap, and (c) & inversion.
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interface Midgap
states TN

Figure11.34 | High-frequency -V characteristics of an
MOS capacitor showing effects of interface states.

particular bias condition is known as midgeap. Figure 11.33¢ shows the condition at
inversion in which there is now a net negative charge in the acceptor states.

The net charge in the interface states changes from positive to negative as the
gae voltage sweeps from the accumulation, depletion, to theinversion condition. We
noted that the C-V curves shitied in the negative gate voltage direction due to posi-
tive fixed oxide charge. When interface states are present, the amount and direction
o the shift changes as we sweep through the gate voltage, since the amount and sign
o theinterface trapped charge changes. The C-V curves now become " smeared out™
asshown in Figure 11.34.

Again, the C-V measurements can be used as a diagnostic tool in semiconductor
device process control. For a given MOS device, the ideal C-V curve can be deter-
mined. Any ''smearing out" in the experimental curve indicates the presence of in-
terface states and any parallel shift indicates the presence of fixed oxide charge. The
amount of smearing out can be used to determine the density of interface states.
These types of measurement are extremely useful in the study of radiation effectson
MOS devices, which we will consider in the next chapter.

11.31 THE BASIC MOSFET OPERATION

Thecurrent in an MOS field-effect transistor is due to the flow of chargein theinver-
sion layer or channel region adjacent to the oxide-semiconductor interface. We have
discussed the creation of the inversion layer charge in enhancement-type MOS ca-
pacitors. We may also have depletion-type devices in which achannel already exists
a zero gate voltage.

1131 MOSFET Structures

There are four basic MOSFET device types. Figure 11.35 shows an n-channel
enhancement mode MOSFET. Implicit in the enhancement mode notation isthe idea
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that the semiconductor substrateisnot inverted directly under theoxide with zero gate I
voltage. Apositive gate voltage inducestheelectron inversion layer, which then"con
nects" the n-type sourceand the n-typedrain regions. Thesourceterminal isthesouroe'g
of carriers that flow through the channel to the drain terminal. For this n-channel de-
vice, electronsflow from the sourceto the drain so the conventional current will enter :
the drain and leave the source. The conventional circuit symbol for this n-channel |
enhancement mode device is also shown in thisfigure.

Figure 11.36 shows an n-channel depletion mode MOSFET. An n-channel re
gion exists under the oxide with zero volts applied to the gate. However, we have
shown that the threshold voltage of an MOS device with a p-type substrate may be:

Source (S} Gate (G)  Drain ID)

7 ? ? P

Substrate or

body (B)

Figure11.351 Cross section and circuit symbol for an
n-channel enhancement-mode MOSFET.

Source (S Gate(G)y Drain (D}

b

Bod) (B)

Figure11.36 | Cross sectiun and circuit symbol for an
n-channel depletion-modeM OSFET.
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negative; this means that an electron inversion layer already exists with zero gate
voltage applied. Such adevice is also considered to be adepletion mode device. The
n-channel shown in this figure can be an electron inversion layer or an intentionaliy
doped n-region. The conventiona circuit symbol for the n-channel depletion mode
MOSFET is also shown in the tigure.

Figures 11.37a and 11.37b show ap-channel enhancement mode MOSFET and a
p-channel depletion mode MOSFET. In the p-channel enhancement mode device, a
negative gate voltage must he applied to create an inversion layer of holes that will
""connect" thep-type sourceand drain regions. Holes flow from the sourcetothedrain,
so the conventional current will enter the source and leave the drain. A p-channel
region exists in the depletion mode device even with zero gate voltage. The conven-
tional circuit symbolsare shown in thefigure.

Source(S) Gate (Gy Drain (D)
Q Q@

o]
Body (B)

(a}

Source {S} Gate (G} Drain (D)
? Q

Figure 11.37 i Cross section and circuit symbol for (a) ap-chantel en-
hancement mode MOSFET and (bj ap-channe depletion mode MOSFET



CHAPTER 11 Fundamentasof the Metal-Oxide-Semiconductor Field-Effect Trandstor

11.3.2 Current-VoltageReationship —Concepts

Figure 11.38a shows an n-channel enhancement mode MOSFET with a gate-
source voltage that is less than the threshold voltage and with only a very sn
drain-to-source voltage. The source and substrate, or body, terminals are held
ground potential. With this bias configuration, there is no electron inversion lay
the drain-to-substrate pnjunction is reverse biased, and the drain current is zero (di
regarding pn junction leakage currents).

Figure 11.38b shows the same MOSFET with an applied gate voltage such
Ves = Vr. An electron inversion layer has been created so that, when a small dr
voltage isapplied, theelectrons in the inversion layer will Row from the source to
positivedrain terminal. Theconventional current enters thedrain terminal and leav
the sourceterminal. In thisideal case, thereis no current through the oxide to theg
terminal.

For small Vs values, the channel region hasthe characteristics of aresistor,
we can write

where g, is defined as the channel conductancein thelimit as V55 — 0. Thechann
conductance isgiven by

where 1, is the mobility of the electronsin the inversion layer and | Q| isthemagl
nitude of the inversion layer charge per unit area. The inversion layer charge isa
function of the gate voltage; thus, the basic MOS transistor action is the modulation
of the channel conductance by the gate voltage. The channel conductance. in tu;
determines the drain current. We will initially assume that the mobility isa constant;
we will discuss mobility effects and variations in the next chapter.

Figure 11.38 | The n-channd enhancement mode MOSFET (@) with an applied gate voltage Vs s < Vi, and (b) with an
applied gate voltage Vi s > V.
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The I versus Vs characteristics, for small values of Vpy, are shown in Fig-
ure 11.39. When Vs < V7, the drain current is zero. As Vg5 becomes larger than
Vr. channel inversion charge density increases, which increases the channel con-
ductance. A larger value of g, produces a larger initial slope of the I;; versus Vs
characteristic as shown in the figure.

Figure 11.40a shows the basic MOS structure for the case when Vs > Vi and
the applied Vps voltage issmall. The thickness of the inversion channel layer in the
figurequalitatively indicates the relative charge density, which isessentially constant
aong the entire channel length for this case. The corresponding I versus Vps curve
isshown in the figure.

Figure 11.40b showsthesituation when the Vpg valueincreases. Asthedrain volt-
age increases, the voltage drop across the oxide near the drain terminal decreases,
which means that the induced inversion charge density near the drain also decreases.
Theincremental conductance of the channel at the drain decreases, which then means
that the slope of the /5 versus Vs curve will decrease. Thiseffect is shown in the
I versus ¥pg curve in thefigure.

When V¢ increases to the point wherethe potential drop acrossthe oxide at the
drain terminal isequal to Vr, theinduced inversion chargedensity iszero at thedrain
terminal. This effect is schematically shown in Figure 11.40c. At this point, the in-
cremental conductance at the drain is zero, which meansthat the slope of the I, ver-
sus Vpg curve is zero. We can write

Vs — Vig(sat) = Vy (11.39a)
or

where V¢ (sat) is the drain-to-source voltage producing zero inversion charge den-
Sity at thedrain terminal.

Figure 11.391 /,; v&rUS V5 charac
teristics for small vauesof Vs a
three v; 5 voltages.
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Figure1140! Cross sectionand I, versus Vs curvewhen Vs < ¥y for (a) asmall ¥y
value, (byalarger V5 value, (c) avalueof V5 = Vps(sat), and (d)yavalued Vps > Vps(sat).
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When Vps becomeslarger than the Vs(sat) value, the point in the channel at
which the inversion charge is just zero moves toward the source terminal. In this
case, electrons enter the channel at the source, travel through the channel toward the
drain, and then, at the point where the charge goes to zero, the electrons are injected
into the space charge region where they are swept hy the E-field to the drain contact.
If we assume that the change in channel length AL issmall compared to the original
length £, then the drain current will beaconstant for Vps > Vpg(sat}). The region of
the I versus Vs characteristic isreferred to as the saturafion region. Figure 11.40d
shows thisregion of operation.

When V;5 changes, the /j, versus Vs curve will change. We saw that. if Vi
increases, the initial slope of Ip versus Vps increases. We can also note from
Equation {11.39b) that the value of Vp5(sat) isafunction of V5. We can generate
the family of curves for this n-channel enhancement mode MOSFET as shown in
Figure 11.41.

Figure 11.42 shows an n-channel depletion mode MOSFET. If the n-channel
region is actually an induced electron inversion layer created by the metal -
semiconductor work function difference and fixed charge in the oxide, the current-
voltage characteristics are exactly the same as we have discussed, except that Vy
is a negative quantity. We may also consider the case when the n-channel region is
actualy an n-type semiconductor region. In this type of device, a negative gate
voltage will induce a space charge region under the oxide, reducing the thickness
of the n-channel region. The reduced thickness decreases the channel conductance,
which reduces the drain current. A positive gate voltage will create an electron ac-
cumulation layer, which increases the drain current. One basic requirement for this
device is that the channel thickness 1. must be less than the maximum induced
space charge width in order to be able to turn the device off. The general {, ver-
sus Vps family of curves for an n-channel depletion mode M OSFET is shown in
Figure 11.43.

B
Figure 11.41 | Family of 7, versus vy

Curves for an n-channd enhancement- Figure 11.42 | Cross section of an
mods MOSFET. n-channel depletion-mode MOSFET,
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Figure11.43 | Family of I, versus Vps
curvesfor an n-channd depletion-mode
MOSFET.

In the next section we will derive the ideal current—voltage relation for the n-

channel MOSFET. In the nonsaturation region, we will obtain §
Wity Cox
Ip= % [2(Vgs — Vr)Vs — Vi)

and, in the saturation region, we will have

| Ip = —— (Vgs — V5)? { (11.41)

The operation of a p-channel deviceis the same as that of the n-channel device.
except the charge carrier is the hole and the conventional current direction and volt-
age polarities are reversed.

*11.3.3 Current-Voltage Relationship —Mathematical Derivation

In the previous section, we qualitatively discussed the current—voltage characteris.
tics. In this section, we will derive the mathematical relation between the drain cur-
rent, the gate-to-source voltage, and the drain-to-source voltage. Figure 11.44 shows
the geometry of the device that we will usein thisderivation.

In this analysis, we will make the following assumptions:

1. Thecurrent in the channel is dueto drift rather than diffusion.
There is no current through the gate oxide.

A gradual channel approximation is used in which 9E,/dy = 9E,/dx.
This approximation means that E, isessentially a constant.

4. Any fixed oxide charge is an equivalent charge density at the oxide-
semiconductor interface.

5. Thecarrier mobility in the channel isconstant.

w
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Channel

region |

Figure 11.44 i Geometry of aMOSFET for 7, versus Vps
derivation.

Westart theanalysis with Ohm'’s law, which can be written as

where a is the channel conductivity and E, is the electric field along the channel
created by the drain-to-source voltage. The channel conductivity is given by a =
eitan{y) where u, is the electron mobility and = (¥) is the electron concentration in
theinversion layer.

Thetotal channel current isfound by integrating J/, over the cross-sectional area
in they- and z-directions. Then

We may write that

where 2, istheinversion layer charge per unit area and is a negative quantity for this
case.
Equation (11.43) then becomes

where Wisthe channel width, the result of integrating over z.

Two concepts we will use in the current-voltage derivation are charge neutrality
and Gauss's law. Figure 11.45 shows the charge densities through the device for
Vss = Vr. The charges are all given in terms of charge per unit area. Using the
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Metal Oxide p-type semiconductor

| | Inversion
layer charge ¢J,,
Figure 11.45 | Charge distributionin the
n-channel enhancement mode MOSFET Figure 11.46 | Geometry for gpplying
for Vgg = Vr. Gauss's law.

concept of charge neutrality, we can write

0, T 0,10, + 0 ,(max) =0 (11.

The inversion layer charge and induced space charge will be negative for this
channel device.
Gauss's law can be wntten as

6En ds = QI‘ (1147)

where the integral isover aclosed surface. Q7 isthetotal chargeenclosed by thesur-
face, and E,, is the outward directed normal component of the electric field crossing
the surface S. Gauss's law will he applied to the surface defined in Figure 11.46.
Since the surface must he enclosed, we must take into account the two end surfaces
in the x-v plane. However, there is no z-component of the electric field so these two
end surfaces do not contribute to the integral of Equation (11.47).

Now consider the surfaces labeled i and 2 in Figure 11.46. From the gradua
channel approximation, we will assume that E, is essentially a constant along the
channel length. Thisassumption means that E, into surface 2 isthe sasme asE, out of
surface |. Sincethe integral in Equation (11.47) involves the outward component of
the E-field, the contributionsof surfaces | and 2 cancel each other. Surface 3isin the
neutral p-region, SO the electric field is zero at this surface.

Surface4 istheonly surfacethat contributes to Equation {11.47). Teking into ac-
count the direction of the electric field in the oxide, Equation (11.47) becomes
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where e, isthe permittivity of the oxide. Thetotal chargeenclosedis
Combining Equations (11.48) and (11.49), we have

We now need an expressionfor E... Figure 11.47a shows the oxide and channel.
We will assume that the source is at ground potential. The voltage V. isthe potential
in the channel at a point x along the channel length. The potential difference across
the oxide at x is afunction of V5. V. and the metal-semiconductor work function
difference.

The energy-band diagram through the MOS structureat point x is shown in Fig-

ure 11.47b. The Fermi level in the p-type semiconductor is Eg, and the Fermi level
in the metal is Ex,,. We have

Considering the potential barriers, we can write

which can also be written as

Vas — Vi = Vox T 2055 + s (11.53)

where ¢.,, is the metal —semiconductor work function difference, and ¢: = 2¢¢, for
theinversion condition.

The electric field in the oxide is

Figure1147 | (a) Potentids a a point x along the channel. (b) Energy-band diagram through the MOS
structured the point x.
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Combining Equations (11.50), (11.53). and {(11.54). we find that

750xon = 7%[(‘/65 - V\) - (ﬁb,m + Z(Pf,.,)]
=0, T 0, + 0y (max) (11.55)

I3

The inversion charge density, {2,,, from Equation (11.55) can he substituted in
Equation (11.45) and we obtain

av,
=—WMnCmel(Vos Vo o Vrl (115

whereE, = —dV, /dx and Vy isthe threshold voltage defined by Equation (ll.27).1
We can now integrate Equation (11.56) over the length of the channel. We have,

We are assuming a constant mobility (,. For the n-channel device, the drain current
enters the drain terminal and is a constant along the entire channel length. Lettin
Ip = —1I,, Equation (11.57) becomes J

Equation (11.538) isvalid for Vg > V¢ and for 0 < Vps = Vps(sat). 1
Figure 11.48 shows plots of Equation {11.58) as a function of Vg for severd

values of Vgs. We can find the value of Vpg a the peak current value from

dlp/0Vps = 0. Then, using Equation {11.58), the peak current occurs when

Vps = Vgs — Vr (1159

This value of Vys isjust Vis(sat), the point a which saturation occurs. For Vps >
Vps(sat), theided drain current isaconstant and is equal to

Figure 11481 Plotsof fp versus Vps
from Equetion (11.58).
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Using Bquation (11.59) for Vps(sat), Equation (t1.60} becomes

Equation (11.58) is the ideal current-voltage relationship of the n-channel
MOSFET in the nonsaturation region for 0 < V5 < Vpg(sat), and Equation (11.61)
isthe ideal current-voltage relationship of the n-channel MOSFET in the saturation
region for Vps = Vps(sat). These 1-V expressions were explicitly derived for an
n-channel enhancement mode device. However, these same equations apply to an
n-channel depletion mode MOSFET in which the threshold voltage Vr is a negative
quantity.

Objective

Todesign the width of a MOSFET such that a specified current isinduced for a given applied
bias.

Consider an ided n-channel MOSFET with parameterss, = 1.25um, p,, = 656 cm*/V-s,
C.. = 6.9 x 107* Flem®, and V7 = 0.65 V Design the channel width W such that 1, (sat) =
4mA fOI‘ V(;S =5V.

i Solution
We have, from Equation (11.61),
W.lu'ﬂ' CUX

Ip(sat) = T(Vcs -

Then
W =118 um
B Comment

The current capability of aMOSFET isdirectly proportional to the channel width w. The cur-
rent handling capability can be increased by increasing w.

TEST YOUR UNDERSTANDING

E11.13 The parameters of an n-channel MOSFET are i, = 650cm>/V-s, |, = 200 A,
W/L =50, and ¥y = 0.40 V. If the transistor is biased in the saturation region,
find thedrain current for Vg5 = 1,2, and 3 V. (VWL PUR "6]°L "10°] = | 'SUY)

E11.14 The n-channel MOSFET in E11.13 is to be redesigned by changing the W /L ratio
such that I, = 100 ;A when the transistor is biased in the saturation region with
Vgs = 175 V. (GL6°0 = T/M "suy)
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y Very small V5 T

I - =

[¢

F|gure 11491 (a) Ip versus Vi (forsmall Vi) for ¢nhancement mode MOSHET. !
(b) Ideal I;, versus Vi 5 in saturation region for enhancement mode (curveA) and '
depletion mode (curveB) n-channd MOSFETS.

We can use the /-V relations to experimentally determine the mobility
threshold voltage parameters. From Equation {11.58), we can write, for very an
values of Vs,

W HC i -
By = %(Vas - Vr)Vns

Figure 11.49a showsaplot of Equation (| |.62a) asafunction of V; for constant VD.
A straight line is fitted through the points. The deviation from the straight lineat lo
values of V5 isdue to subthreshold conduction and the deviation at higher vaues
Vs isduetomobility being af unctionof gate voltage. Both of these effectswill be¢
sidered in the next chapter. The extrapolation of the straight line to zero current g’vm1
thethreshold voltage and the slopeis proportional to the inversion carrier mobility.

If we take the square root of Equation (1 t.61}), we obtain

Figure |1.49b isaplot of Equation (I 1.62b). In the ideal case, we can obtain the
information from both curves. However, as we will see in the next chapter. thethresh=
oldvoltage may beafunction of Vg in short-channel devices. Since Equation (1 1.625)
appliesto devicesbiased in the saturation region. the V; parameter in this equation may
differ from the extrapolated value determined in Figure 11.49a. In general, the nonsat- ;
uration current—voltagc characteristics will produce the morereliable data. )

EXAMPLE 11.9

Objective

To determine the inversion carrier mobility from experimental results.

Condder an n-channel MOSFET with W =15 um, L =2um, and C,,=6.9x
10~¥ F/em?. Assume thet the drain current in the nonsaturation region for Vs = 0.10 V is
I, =3BuAatVye =15Vand I, =75 uAac Ve = 2.5 V.
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1 Solution
FrmrmEquation (11 62a), we can write

' Wi, Con

h o2 = Iy = == (Vasa = Vas: Vs
o that

15
7Bx®-3Bx10 = (7) 1 (6.9 x 10 #)(2.5 — 1.5)(0.10)
which yields
= 773 cm’/Ves
W& can then determine
Vr = 0625V
1 Comment

The mobility of carriersin the inversion layer is less than that in the bulk semiconducior due
to the surface scattering effect. We will discuss thiseffectin the next chapter.

The current-voltage relationship of a p-channel device can be obtained by the
sametype of analysis. Figure 11.50 shows a p-channel enhancement mode MOSFET.
The voltage polarities and current direction are the reverse of those in the
n-channel device. We may niote the change in the subscript notation for this device.
For the current direction shown in the figure, the 1-V relations for the p-channel
MOSFET are

Figure 1150 1 Cross section and biss
configuration for a p-channel
enhancement-mode MOSFET.
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for 0 = Vgp < Vsp(sat), and

for Vsp = Vgp(sat), where

Note the change in the sign in front of V and note that the mobility is now the mo-
bility of the holes in the hole inversion layer charge. Keep in mind that V; is negad
tive for a p-channel enhancement mode MOSFET and positive for a depletion m
p-channel device.

TEST YOUR UNDERSTANDING

E11.15 The parametersof ap-channgl MOSFET are i, = 310 cm?/V-s, 1, = 2204,
W/L =60. and Vr = —0.40 V. If the trandstor is biased in the saturation regy
find thedrain current for Vs, =1, 1.5. and 2 V.
{vwpg pue 11719760 = 9F suy)

E11.16 The p-channd MOSFET in E11.15 isto be redesigned by changing the (W /L)
ratiosuch that 7p = 200 A when the transistor is biased in the saturation region
With Ve = 125 V. (11 = T/M suy)

[~

One assumption we made in the derivation of the current-voltage relations;]
was that the charge neutrality condition given by Equation {11.46) was valid over the
entire length of the channel. We implicitly assumed that Q' ,(max) was constant
along the length of the channel. The space charge width, however, varies betweel
source and drain due to the drain-to-source voltage; it is widest at the drain when;
Vps > 0. Achangein the space charge density along the channel length must be bd-
anced by a corresponding change in the inversion layer charge. An increase in the
space charge width means that the inversion layer charge is reduced, implying that
thedrain current and drain-to-source saturation voltage are less than theideal vaues
The actual saturation drain current may be as much as 20 percent less than the pre-
dicted value dueto this bulk charge effect.

11.34 Transconductance 1

The MOSFET transconductanceis defined as the change in drain current with respect
to the corresponding change in gate voltage, or

The transconductance is sometimes referred to as the transistor gain.
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If we consider an n-channel MOSFET operating in the nonsaturation region,
thm. using Equation (11.58). we have

The transconductance increases linearly with Vs hut is independent of Vg5 in the
nonsaturation region.

The -V characteristics of an n-channel MOSFET in the saturation region were
given by Equation {11.61).Thetransconductancein thisregion of operation isgiven by

In the saturation region, the transconductance is alinear function of V;s and isinde-
pendent of ¥ps.

The transconductance is a function of the geometry of the device as well as of
carrier mobility and threshold voltage. The transconduciance increases as the width
of the device increases, and it also increases as the channel length and oxide thick-
nersdecrease. In the design of MOSFET circuits, the sire of the transistor. in partic-
ular the channel width W. is an important engineering design parameter.

1135 Substrate Bias Effects

Indl of our analyses so far, the substrate, or hody, has been connected to the source
and held at ground potential. In MOSFET circuits. the source and hody may not he
d the same potential. Figure t1.51a shows an n-channel MOSFET and the associated
double-subscripted voltage variahles. The source-to-substrate pn junction must al-
ways he zero or reverse biased, so Vg must always he greeter than or equal to zero.

If Vs = 0. threshold is defined as the condition when ¢, = 2¢/, as we
discussed previously and as shown in Figure 11.51b. When Vs = () the surface will
gill try to invert when ¢, = 2¢,. However, these electrons are at a higher potential

Figure 11517 (a) Applied voltages on an n-channel MOSFET (b) Encrgy-band diagram & inverson
point when Vg, = 0, (¢) Energy-band diagram at inversion point when Vg, = 0 isapplied.
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energy than are the electrons in the source. The newly created electrons will move
laterally and Row out of the source terminal. When ¢, = 2¢y, + Vsp. the surf
reaches an equilibrium inversion condition. The energy-band diagram for this condi
ton isshown in Figure 11.51¢. Thecurverepresented as E ¢, is the Fermi level fr
the p substrate through the reverse-biased source-substrate junction to the source
contact.

The space charge region width under the oxide increases from the original x,7
value when a reverse-biased source-substrate junction voltage is applied. With an
applied Vsp > 0, there is more charge associated with this region. Considering the
charge neutrality condition through the MOS structure, the positive chargeon thetop
metal gate must increase to compensate for the increased negative space chargein
order to reach thethreshold inversion point. So when Vg = O, the threshold voltage
of the n-channel MOSFET increases.

When Vs = 0, we had

Qsp(max) = —eN,xq7 = —y/2ee, N.(2¢;,) (11.69)

When V¢g = O, the space charge width increases and we now have

Osp = —eNoxg = —/2¢6 N, (2ps, T Vsp) (11.70)

The changein the space charge density is then

To reach the threshold condition, the applied gate voltage must be increased. The
change in threshold voltage can be written as g

where AVr = Vr{Vsg > 0) — V¢ (Vsp = 0). We may note that Vs must alwaysbe
positive so that, for the n-channel device, A V¢ isalways positive. Thethreshold volt-
age o the n-channel MOSFET will increase as a function of the source-substrate
junction voltage. i

EXAMPLE 11.10

Objective i

To calculate the change in the threshold voltage due to an applied source-to-body voltage.

Consider an n-channel siliconMOSFET a& T = 300 K. Assume the subdirate is doped to
N, = 3 x 10" ¢m~? and assume the oxide is silicon dioxide with athickness o r,,, = 500A.
LetVsg =1 V.

H Solution
We can calcul ate that
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Vi (VOILS) -

Figure1152 | Plotsof /7, versus
Vi;5 e several values of Vig foran
n-channel MOSFET.

We can dsofind
—14
Cux = eﬂ = (39)(885 x 19 ) =6.9x 10_3 FI‘CITI2
fox 500 x 10_8

Then from Equation (11.72), we can obtain

Comment
Fgure 11.52 shows plots of versus Vg s for various vaues of applied V5. The orig-
ind threshold voltage, Vry, is0.64 V.

If abody or substrate bias is applied to a p-channel device, the threshold voltage
is shifted to more negative values. Because the threshold voltage of a p-channel en-
hancement mode MOSFET is negative, a body voltage will increase the applied neg-
ative gate voltage required to create inversion. The same general observation was
madefor the n-channel MOSFET.

TEST YOUR UNDERSTANDING

BlL 17 A silicon MOS device has the following parameters: N, = 10" em~* and
tx = 200 A. Calculate(a) the body-effectcoefficientand (&} the changein
threshold voltage for (i) Vs =1V ad (ii) Vsg = 2V.

TAG9C0G = AV A 9ST0 = LAV NG} A £6£0 = 4 (9) suy]
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El1 18 Repesat exerciseEl 1.17 for asubstrateimpurity doping concentrationof &, =
10'90m -3, LA 88800 = ‘AV{M)'A 2S00 = AV () (9) ., AS010 = A (D)

11.41 FREQUENCY LIMITATIONS

In many applications, the MOSFET isused in alinear amplifier circuit. A small-sig
equivalent circuit for the MOSFET is needed in order to mathematically analyze
electronic circuit. The equivalent circuit contains capacitances and resistances
introducefrequency effects. Wewill initially developasmall-signal equivalent circ ™™
and then discuss the physica factors that limit the frequency response o
MOSFET. A transistor cutoff frequency, which isafigureof merit, will then bedefinaam
and an expression derived for thisfactor.

1141 Small-Signal Equivalent Cir cuit

The small-signal equivalent circuit of the MOSFET is constructed from the bas
MOSFET geometry. A mode based on the inherent capacitances and resistan
within the transistor structure, along with elements that represent the basic de
equations, isshownin Figure 11.53. One simplifying assumption we will make in
equivalent circuit is that the source and substrate are both tied to ground potential.
Two of the capacitances connected to the gate are inherent in the device. The
capacitancesare C,, and C,,. which represent the interaction between the gate ana
the channel charge near the source and drain terminals, respectively. The remainin
two gate capacitances, C,., and C.q,, are parasitic or overlap capacitances. Inr
devices, the gate oxide will overlap the source and drain contacts because of to
ance or fabrication factors. As we will see, the drain overlap capacitance—C 4y,
particular — will lower the frequency response of the device. The parameter Cy, iS

Figure 11.53 1 Inherent res stances and capacitancesin the
n-channel MOSFET structure.
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drain-to-substrate pn junction capacitance, and »; and r; are the series resistances as-
sociated with the sourceand drain terminals. Thesmall-signal channel current iscon-
trolled by the internal gate-to-source voltage through the transconductance.

The small-signal equivalent circuit for the n-channel common-source MOSFET
isshown in Figure 11.54. The voltage Véij isthe internal gate-to-source voltage that
controls the channel current. The parameters C,,r and C,4r are the total gate-to-
source and total gate-te-drain capacitances. One parameter, #4, shown in Fig-
ure 11.54, is not shown in Figure 11.53. This resistance is associated with the slope
Ip versus Vps. Intheideal MOSFET biased in the saturation region, {5 isindepen-
dent of V5 so that r,;; would be infinite. In short-channel-length devices, in particu-
lar, r4; isfinite because of channel length modulation, which we will consider in the
next chapter.

A simplified small-signal equivalent circuit valid at low frequency is shown in
Figure11.55. The series resistances, r, and r,. have been neglected, so the drain cur-
rent is essentially only afunction of the gate-to-source voltage through the transcon-
ductance. The input gate impedance is infinite in this simplified model.

The source resistance r, can have asignificant effect on the transistor character-
istics. Figure 11.56 shows asimplified, low-frequency equivalent circuit including r,
but neglecting ry4;. Thedrain current isgiven by

Figure 11.54 t Small-signal equivalent circuit of acommeon
source n-channel MOSFET.

Figure 1156 | Simplified, low-frequency
small-signal equivalent circuit of a
common-source n-channel MOSFET.
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Figure 11.56 | Simplified,iow-
frequency small-signd equivalent circuit
of common-sourcen-channel MOSFET
including source resistance r,

and the relation between V,, and v, can befound from
Vg.i = V;;_; it (gmvé\)r.s = (I + gmrs)vgfs (1174)

Thedrain current from Equation {11.73) can now be written as

The source resistance reduces the effective transconductance or transistor gain.

The equivalent circuit of the p-channel MOSFET is exactly the same as that of
the n-channel except that all voltage polarities and current directions are reversed.
The same capacitances and resistances that are in the n-channel model apply to the
p-channel model.

114.2 Frequency Limitation Factorsand Cutoff Frequency

There are two basic frequency limitation factors in the MOSFET. The first factor is
the channel transit time. If we assume that carriers are traveling at their saturationg
drift velocity v, then the transit timeis t, = L /vy, where L is the channel length.
If v = 107 cm/s and L = 1 wm, then 7, = 10 ps, which translates into a maximum
frequency of 100 GHz. Thisfrequency ismuch larger than the typical maximum fre- |
quency response of a MOSFET. The transit time of carriers through the channel is
usually not the limiting factor in the frequency responses of MOSFETs.

Thesecond limiting factor is the gate or capacitance charging time. If we neglect
oo Fds Fas. @nd Cye, the resulting equivalent small-signal circuit is shown in Fig-
ure 11.57 where R; isaload resistance.

The input gate impedance in this equivalent circuit is no longer infinite. Sum-
ming currents at the input gate node, we have i
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Figure 1157 i High-frequency smali-
sgnd equivalent circuit of common- Figure 1158 | Small-signal equivalent
source n-channe MOSFET. circuit including Miller capacitance.

where |, is the input current. Likewise, summing currents at the output drain node,
we have

Combining Equations {11.76) and ¢{11.77) to eliminate the voltage variable V;, we
can determine the input current as

Normally, wR; Cgyr is much less than unity: therefore we may neglect the
(jwR ¢ Ceqr) term in the denominator. Equation {11.78) then simplifies to

Figure 11.58 shows theequival ent circuit with theequivalent input impedance de-
scribedby Equation (11.79). The parameter 'y isthe Miller capacitanceandisgiven by

The serious effect of the drain overlap capacitance now becomesapparent. When the
transistor is operating in the saturation region, C,,; essentially becomes zero, but
C,4p 1s @constant. This parasitic capacitance is multiplied by the gain of the transis-
tor and can become a significant factor in the input impedance.

The cutoff frequency f is defined to he the frequency a which the magnitude
of the current gain of the deviceis unity, or when the magnitude of the input current
I; isequal to the ideal load current I;. From Figure 11.58, we can see that

f = fw(CgK\'T + CM)V;;\ (1181)
and the ideal load current is
Ja‘ :gmvgs (1]82)

The magnitude of the current gain isthen
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Setting the magnitude of the current gain equal to unity at the cutoff frequency,
find

- 8m — Bm
ZJT(Cg.sT + Cy) 2nCg

fr

where Cy; is the equivalent input gate capacitance.

In the ideal MOSFET, the overlap or parasitic capacitances, Cysp and Cyap,
zero. Also, when the transistor isbiased in the saturation region, C,; approaches zero
and C,, is approximately Cyx WL. The transconductance of the ideal MOSFET bi-
ased in the saturation region and assuming a constant mobility was given by Equa-
tion (11.68) as

Wu n COX
L

Ems = (VGS - VT)

Then, for thisideal case, the cutoff frequency is

WitnCox (s _ vr)

fre o — Vs —V7) (1..89)
27 2 (Cox WL) 2nL2 ‘
EXAMPLE 11.11 | Objective i

To calculate the cutoff frequency of an idel MOSFET with a constant mobility.
Assume that the electron mobility in an n-channel device is i, = 400 cm’/V-s and tha
the channel lengthisL = 4 um. Alsoassumethat Vr = | Vand let Vgs = 3 V.

W Solution
From Equation (11.85), the cutofffrequency is

Comment ’.
In an actual MOSFET, theeffect of the parasitic capacitance will substantially reducethecut-
off frequency from that calculated in this example.

TEST YOUR UNDERSTANDING

E11.19 An n-channel MOSFET hasthe following parameters: pi, = 400 cm?/V-s, £, =
200 A, w/L = 20.and Vy = 0.4 V. Thetransistor ishiased at V55 = 2.5 Vinthe
saturation region and isconnected to an effective load of R, = [00k€2. Calculate
theratio of Miller capacitance C, t0 gate-to-drain capacitance €, 7. (T6T "SU¥)

E11.20 An n-channel MOSFET has the same parameters as described in E11.19. The
channe! length isL = 0.5 um. Determine the cutoff frequency. (ZHD S ES 'suy)



11.5 TheCMOS Technology

*11.51 THE CMOSTECHNOLOGY

Theprimary objectiveof thistext istopresent the basic physics of semiconductormate-
rialsand devices without considering in detail the various fabrication processes; this
important subject isleft to other texts. However, there is one MOS technology that is
usedextensively, for which the basic fabrication techniques must be considered in order
tounderstand essential characteristicsof these devicesandcircuits. The one M OStech-
nology we will consider briefly isthe complementary MOS, or CM OS, process.

We have considered the physics of both n-channel and p-channel enhancement
mode MOSFETs. Both devices are used in a CMOS inverter, which is the basis of
CMOS digital logic circuits. The dc power dissipation in a digital circuit can he re-
duced to very low levels by using a complementary p-channel and n-channel pair.

It isnecessary to form electrically isolated p- and n-substrate regions in an inte-
grated circuit to accommodate the n- and p-channel transistors. The p-well process
has been a commonly used technique for CMOS circuits. The process starts with a
fairly low doped n-type silicon substrate in which the p-channel MOSFET will be
fabricated, A diffused p-region, called a p well, is formed in which the n-channel
MOSFET will befabricated. In most cases. the p-type substrate doping level must be
larger than the n-type substrate doping level to obtain the desired threshold voltages.
The larger p doping can easily compensate the initial n doping to form the p well. A
simplifiedcross section of the p-well CMOS structureisshown in Figure 11.5%9a. The

Poly-5i gate ——__ _———Poly-8i gate —___

_———Poly-5i gdte

porn subsirate

Figure 1159 | CMOS gtructures. (a) p well, (b) nwell, and {c) twin well
(From Yang {27} )
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notation FOX stands for field oxide, which isa relatively thick oxide separating the
devices. The field oxide prevents either the n or p substrate from becoming inverted
and helps maintain isolation between the two devices. In practice, additional pro-
cessing steps must he included; for example, providing connections so that the
p well and n suhstrate can be electrically connected to the appropriate voltages. The
n substrate must always be at a higher potential than the p well; therefore, thism
junction will always be reverse biased.

With ion implantation now being extensively used for threshold voltage control,
both the n-well CM OS processand twin-well CM OS process can be used. The n-well
CMOS process, shown in Figure 11.59b, starts with an optimized p-type suhstrate)
that is used to form the n-channel MOSFETs. (The n-channel MOSFETs, in generd,
have superior characteristics, so this starting point should yield excellent n-channel
devices.) The nwell isthen added, in which the p-channel devicesare fabricated. The
n-well doping can be controlled by ion implantation.

Thetwin-well CMOS process, shownin Figure 11.59¢, allows both the p-well an
n-well regions to be optimally doped to control the threshold voltage and transcen-
ductance of each transistor. The twin-well process allows a higher packing densty
because of self-aligned channel stops.

One mgjor problem in CMOS circuits has been latch-up. Latch-up refersto
high-current, low-voltage condition that may occur in a four-layer pnpn structure.
Figure 11.60a showsthecircuit of a CMOS inverter and Figure 11.60b showsasimpli-
fied integrated circuit layout of theinverter circuit. Inthe CMOS layout, the p*-source
to n-substrate to p-well to n+-source forms such afour-layer structure.

The equivalent circuit of thisfour-layer structureis shown in Figure 11.61, T
silicon controlled rectifieraction involvesthe interaction of the parasitic pnp and nin
transistors. The npn transistor corresponds to the vertical n* sourcetop well ton sub
strate structure and the pnp transistor corresponds to the lateral p-well to n-substrat
to p*-source structure. Under normal CM OS operation, both parasitic bipolar tran-
sistors are cut off. However, under c¢ertain conditions, avalanche breakdown mey
occur in the p-well to n-substrate junction, driving both bipolar transistors into satu-
ration. This high-current, low-voltage condition—latch-up—can sustain itself by

p channel

Input Output

n channel

Figure 11.60 | (a) CMOS inverter circuit. (b) Smplified integrated circuit cross section of CMOS inverter.



Figure1161} (a) The splitting of the basic pnpn structure. (b) The
two-transistor equivaent circuit of the four-layered pnpn device.

positive feedback. The condition can prevent the CMOS circuit from operating and
can also cause permanent damage and burn-out of the circuit.

Latch-up can be prevented if the product 8,8, is less than unity at all times,
where 8, and £, are the common-emitter current gains of the npn and pnp parasitic
bipolar transistors, respectively. One method of preventing latch-upisto "kill" the
minority carrier lifetime. Minority carrier lifetime degradation can be accomplished
by gold doping or neutron irradiation. either of which introduces deep traps within
the semiconductor. The deep traps increase the excess minority carrier recombina-
tion rate and reduce current gain. A second method of preventing latch-upis by using
proper circuit layout techniques. If the two bipolar transistors can he effectively
decoupled, then latch-up can be minimized or prevented. The two parasitic bipolar
transistors can also be decoupled by using a different fabrication technology. The
silicon-on-insulator technology, for example, allowsthe n-channel and the p-channel
MOSFETs to be isolated from each other by an insulator. Thisisolation decouplesthe
parasitic bipolar transistors.

11.61 SUMMARY

m Thefundamenta physicsand characteristicsof the metalkoxide-semiconductor field-
effect transistor (MOSFET) have been considered in thischapter

1 The heat of the MOSFET is the MOS capacitor. The energy hands in the semiconductor
adjacent to the oxide—semiconductor interface bend, depending upon the voltage applied
across the MOS capacitor. The position of the conduction and valence bands relative to
the Fermi leve & the surfaceis afunction of the MOS capacitor voltage.

B The semiconductorsurfacea the oxide-semiconductor interface can be inverted from

p type ton type by applyinga positive gate voltage, or from n type top type by applying
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anegative gate voltage. Thus, an inversion layer of mobike charge can be created
adjacent to the oxide. The basic MOS field-effect actionis the modulation of the
inversion charge density, or channel conductance. by the gatc voltage.

The C-V characteristics of the MOS capacitor were considered. The amount of equival
oxide trapped charge and the density of interface states, tor example. can be determi
from the -V measurements.

Two basic types of MOSFETS are the n channel, in which current is due to the flow of
electrons in the inversion layrr. and the p channel, in which current is due to the flow
of holes in the inversion layer Each of these devices can be cither enhancement mode,
in which the device is normally "off" and is turned on by applying a gate voltage. or
depletion mode. in which the device is norally "on™ and is turned ott hy applying a
gate voltage.

The flat-band voltage is the gale voltage that must be applied to achieve the flat-bandi
condition, in which the conduction and valence bands 1n the semiconductor do not be
and there is no space charge region in the semiconductor. The Hat-hand voltage is a
function of the metal-oxide barrier height. the semiconductor-oxide barrier height, &
the amount of fixed trapped oxide charge.

The threshold voltage is the applied gate voltage required to reach the threshold
inversion point. which is the condition at which the inversion charge density is equal
in magnitude to the semiconductor doping concentration. The threshold voltage is a 1
function of the flat-band voltage. semiconductor doping concentration, and oxide
thickness.

The currentin a MOSFET is due lo the flow of carriers in the inversion layer between
the source and drain terminals. The inversion layer charge density and channel
conductance are controlled by the gate voltage. which means that the channel current is
also controlled by the gate voltage.

When the transistor is biased in the nonsaturation region (Vps < Vpgs(sat)), the
inversion charge extends completely across the channel trom the source to the drain
terminals. The drain current is a function of bath the gate-to-source and drain-to-source
voltages. When the transistoris biased in the saturation region (Vpy > Vig(sat)), the
inversion charge density is ginched off near the drain terminal. and the ideal drain
currentis only a function of the gate-to-source voltage.

The MOSFET is actually a four-terminal device. with the substrate or body being the
fourth terminal. As the magnitude of the reverse-bias source-to-substrate voltage
increases. the magnitude of the threshold voltage increases. The substrate bias effect
may become important in integrated circuils in which the source and substrate are not
electrically tied together.

A small-signal equivalentcircuit. including capacitances, of the MOSFET was develope(‘
The various physical factors in the MOSFET that affect the frequency limitations were
considered. In particular, the drain overlap capacitance may be a limiting tactor in the
frequency response of the MOSFET because of the Miller effect. The cutoft frequency,

a figure of merit for the frequency response of the device. is inversely proportional to
channel length: thus. a reduction in channel length resultsin an increased frequency I
capability of the MOSFET.

The CMOS technology, in which both n-channel and p-channel devices are fabricated
in the same semiconductor chip, was briefly considered. Electrically isolated p- and
n-substrate regions arc required to acconunodate the two types of transistors. Various
orocesses are used to fabricate this structure. One potential problem encounteredin the
CMOS structure is latch-up —the high-current, low-voltage condition that may occur in
a four-layer pnpn structure.,




I Glossary of Important Terms

GLOSSARY OF IMPORTANT TERMS

accumulation layer chargc Theinduced charge directly under an oxide that isin excess of
the thermal-equilibrium majority carrier concentration.

bulk charge effect The deviation in drain current from the ideal due io the space charge
width variation along the channel length caused by a drain-to-source voltage.

channel conductance The ratio uf drain current to drain-to-source voltage in the limit as
Vps — 0.

channel conductance modulation The process whereby the channel conductance varies
with gate-to-source voltage.

CMOS Complementary MOS; the technology that uses both p- and n-channel devicesin an
electronic circuit fabricated in a single semiconductor chip.

cutoff frequency Thesignal frequency at which the input ac gate current isequal to the out-
put ac drain current.

depletion mode MOSFET Thetype of MOSFET in which a gate voltage must be applied
to turn the device off.

enhancement mode MOSFET The type of MOSFET in which a gate voltage must he ap-
plied to turn the device on.

equivalent fined oxide charge The effective fixed charge in the oxide, ... directly adja-
cent to the oxide—semiconductor interface.

flat-band voltage The gate voltage that must be applied to create the flat-band condition in
which there is no space charge region in the semiconductor under the oxide.

gate capacitance charging time Thetime during which the input gate capacitance is being
charged or discharged because of a step change in the gate signal.

interface states The allowed electronic energy states within the bandgap energy & the
onide-semiconductor interface.

inversion fayer charge Theinduced charge directly under the oxide, which is the opposite
type compared with the semiconductor doping.

inrersion layer mobility ~The mohility of carriers in the inversion layer.

latch-up  The high-current, low-voltage condition that may occur in afour-layer pnpn struc-
ture such asin CMOS.

maximum induced space charge width The width of the induced space charge region
under the oxide at the threshold inversion condition.

metal — semiconductor werk function difference  The parameter ¢,,;. a function of the dif-
ference between the metal work function and semiconductor electron affinity.

moderate inversion The condition in which the induced space charge width is changing
slightly when the gate voltage is at or near the threshold voltage and the inversion charge
density isof the same magnitude as the semiconductor doping concentration.

oxide capacitance The ratio of oxide permittivity to oxide thickness, which is the capaci-
tance per unit area, Coy

saturation The condition in which the inversion charge density is zero at the drain and the
drain current is no longer a function of the drain-to-source voltage.

stronginversion Thecondition in which theinversion charge density islarger than the mag-
nitude of the semiconductor doping concentration.

threshold inversion point  The condition in which the inversion charge density is equal in
magnitude to the semiconductor doping concentration.
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threshold voltage The gate voltage that must be applied to achieve the threshold invers!
point.

transconductance Theratio of an incremental change in drain current to the correspondil
incremental change in gate voltage.

weak inversion The condition in which the inversion charge density is less than the
tude of the semiconductor doping concentration.

CHECKPOINT
After studying this chapter, the reader should have the ability to:

B Sketch the energy band diagrams in the semiconductor of the MOS capacitor under
various bias conditions.
B Describe the process by which an inversion layer of charge is created in an MOS

capacitor.

B Discuss the reason the space charge width reaches a maximum value once the inversion
layer isformed.

8 Discusswhat is meant by the metal-semiconductor work function difference, and
discuss why this valueis different between aluminum. n* polysilicon, and p*
polysilicon gates.

M Describe what is meant by flat-band voltage.

B Define threshold voltage.

M Sketch the C-Vcharacteristics of an MOS capacitor with p-type and n-type
semiconductor substrates under high-frequency and low-frequency conditions.

B Discuss the effectsof fixed trapped oxide charge and interface states on the C-V
characteristics.

B Sketch the cross-sections of n-channel and p-channel MOSFET structures.

B Explain the basic operation of the MOSFET. '

B Discuss the /-V characteristics of the MOSFET when biased in the nonsaturation and
saturation regions.

B Describe the substrate bias effects on the threshold voltage.

B Sketch the small-signal equivalent circuit. including capacitances, of the MOSFET, and
explain the physica origin of each capacitance.

B Discuss the condition that defines the cutoff frequency of a MOSFET. l

B Sketch the cross section of a CMOS structure. :

B Discuss what is meant by latch-up in aCMOS structure.

REVIEW QUESTIONS *

1. Sketch theenergy band diagrams in an MOS capacitor with an n-type substrate in
accumulation, depletion, and inversion modes.

2. Describe what is meant by an inversion layer of charge. Describe haw an inversion
layer of charge can be formed in an MOS capacitor with a p-type substrate.

3. Why does the space-charge region in the semicunductor of an MOS capacitor reach a
maximum width once the inversion layer is formed?

Define electron affinity in the semiconductor of an MOS capacitor

Sketch the energy band diagram through an MOS structure with a p-type substrate and
an n* polysilicon gate under zero bias.



Define the Rat-band voltage.

7. Definethe threshold voltage.

8. Sketch the C-¥ characteristics of an MOS capacitor with an n-type substrate under the
low-frequency condition. How do the characteristics change for the high-frequency
condition?

9. indicate the approximate capacitance at flat-band on the C-V characteristic of an MOS
capacitor with a p-type substrate under the high-frequency condition.

10. What is the effect on the C-V characteristics of an M OS capacitor with a p-type
substrate if the amount of positive trapped oxide charge increases?

11 Qualitatively sketch theinversion charge density in the channel region when the tran-
sistor is biased in the nonsaturation region. Repeat for the case when the transistor is
biased in the saturation region.

12. Define Vy5(sat).

13 Defineenhancement mode and depletion mode for both n-channel and p-channel devices.

14. Sketch the charge distribution through an MOS capacitor with a p-type substrate when
biased in the inversion mode. Write the charge neutrality equation.

15. Discuss why the threshold voltage changes when a reverse-biased source-to-substrate
voltage is applied to a MOSFET.

PROBLEMS

{Note: In the following problems, assume the semiconductor and oxide in the M OS system
aresilicon and silicon dioxide, respectively. and assume the temperature is7T = 300 K un-
less otherwise stated. Use Figure 11.15 to determine the metal-semiconductar work func-
tion difference.)

Section 11.1 TheTwo-Terminal MOS Structure

111

1.2

113

114

115

The dc charge distributions of four ideal M OS capacitors are shown in Figure 11.62.
For each case: («}) |s the semiconductor n- or p-type? {#} |Is the device biased in the
accumulation. depletion. or inversion mode'?(¢) Draw the energy-band diagram in
the semiconductor region.

(a)Calculate the maxtrum space charge width x;+ and the maximum space charge
density [, (max)( in p-type silicon. gallium arsenide, and germanium semiconduc-
tors of an MOS structure. Let T = 300 K and assume N,, = 10'* cm'. (b) Repeat
part (a) if T = 200 K.

(«e} Consider n-typesilicon in an MOS structure. Let ¥ == 300 K. Determine the
semiconductor doping so that | Q' , (max)| = 7.5 x 10~ Ciem®. (b) Determine the
surface potential that resultsin the maximum space charge width.

Determine the metal-semiconductor work function difference ¢,,, in an MOS
structure with p-type silicon for the case when the gate is {a) aluminum. (b) n*
polysilicon, and (¢) p* polysilicon. Let N, = 6 X 10" cm™?

Consideran MOS structure with n-type sikicon. A metal —semiconductor work function
differenceof ¢, = —0.35 V isrequired. Determine the silicon doping required to
meet this specification when the gatsis{a) n* polysilicon, (h)p' polysilicon, and
(¢} @uminum. If a particular gate cannot meet this requirement, explain why.
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116

117

118

119
11.10

*11.11

Figure11.62| Figurefor Problem 11.1

Consider ann™ polysilicon-silicon dioxide-n-type silicon MOS capacitor. Let

w, = 1013 ¢m—3, Calculate the flat-band voltage for (a) #x = 500 A when g, is
(1) 10" em™2, (i) 10" em=?, and (i#) 5 x 10" cm~?. (b) Repeat pan (a)when
tox = 250 A,

Consider an aluminum gate-silicon dioxide—p-typesilicon M OS structure with

tox = 450 A. Thesilicon dopingis N, = 2 x 10' em~3 and theflat-band voltage
is Ve = —1.0V Determine the fixed oxide charge @, .

An MOStransistor isfabricated on a p-type silicon substrate with &, = 2 x 10" em™.
The oxide thicknessisz,, = 450 A and the equivalent fixed oxide chargeis ¢, =

2 x 10" em™2. Calcul ate the threshold voltage for (a)an aluminum gate, () ann*
polysilicon gate, and (¢} ap™ polysilicon gate.

Repeat Problem 11.8 for an n-type silicon substrate with Ny = 10" ¢m™*.

A400 A oxide is grown on p-type silicon with N, = 5 x 10" em~*. Theflat-band
voltage is —0.9 V. Calculate the surface potential at the threshold inversion point

as well as the threshold voltage assuming negligible oxide charge. Also find the
maximum space charge width for this device.

An MOS transistor with an aluminum gate is fabricated on a p-type silicon substrate.
The oxide thickness is #,, = 750 A, and the equivalent fixed oxide charge is @, =
10" em~2. The measured threshold voltage is V; = +0.80 V. Determine the p-type
doping concentration.
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1113

1114

1115

1116

1117

11.18

1119

Kepeat Problem | 1.11 for an n-type silicon substrate if the measured threshold
voltage is V¢ = —1.50V. Determine the n-type doping concentmtion.

An Al-silicon dioxide-silicon MOS capacitor has an oxide thickness of 450 Aand
adoping of N, = 10" ¢m~?. The oxide charge density is 0! = 3 x 10" em™2.
Calculate (a) the flat-band voltage and (#} the threshold voltage. Sketch theelectric
field through the structure at the onset of inversion.

An n-channel depletion mode MOSFET with an n™ polysilicon gate is shown in
Figure 11.42. The n-channel doping is ¥, = 10" ¢cm~*, and the oxide thicknessis

tsx = 500 A. The equivalent fixed oxide chargeis €, = 10" cm~2. The n-channel
thicknesst, isequal to the maximum induced space charge width. (Disregard the space
charge region at the n-channel —p-substratejunction.) (a) Determine the channel thick-
nesst,, and (&) caculate the threshold voltage.

Consider an MOS capacitor with an n' polyrilicon gate and n-type silicon substrate.

Assume N, = 10 cm~? and let Er — E, = 0.2 eV inthen™ polysilicon. Assume
the oxide has a thicknessof I,,, = 300 A. Also assume that x* (polysilicon) = ¥’
(single-crystal silicon). (0) Sketch the energy-band diagrams (i) for ¥i; = 0 and
(i) at flat band. (h) Calculate the metal —semiconductar work function difference.
(c) Calculate the threshold voltage for the ideal case of zero fixed oxide charge and
zero interface states.

The threshold voltage of an n-channel MOSFET is given by Equation (11.27). Plot
Vr versus temperature over the range 200 = T = 450 K. Consider both an alu-
minum gate and an n* polysilicon gate. Assume the work functions are independent
of temperature and use device parameters similar to those in Example 11.4.

Plot the threshold voltage of an n-channel MOSFET versus p-type substrate doping
concentration similar to Figure 11.20. Consider hoth n* and p~ polysilicon gales.
Use reasonable device parameters.

Plot the threshold voltage of a p-channel MOSFET versus n-type substrate doping
concentration similar to Figure 11.21. Consider both n' and p* polysificon gates.
Use reasonabl e device parameters.

Consider an NMOS device with the parameters given in Problem 11.10. Plot V4
Versus t,, over the range 20 = #,, < 500 A.

Section11.2 Capacitance-Voltage Char acteristics

11.20

1121

#11.22 Using superposition, show that the shift in the Rat-band voltage due to a fixed charge

Anideal MOS capacitor with an aluminum gate has a silicon dioxide thickness of
l,, = 400 A on a p-type silicon substrate doped with an acceptor concentration of
N, = §0'" cm~*. Determine the capacitances Cyx, €55+ Cpyir @nd C'(inv) a

(@) f = 1 Hz and (b} f = | MHz. (c) Determine Veg and Vr. Sketch C'/Cy,
versus V; for parts (a) and ().

Repeat Problem 11.20 for an n-type silicon substrate duped with a donor concentra-
tionof Ny = 5 x 10" em™7.

distribution p(x) in the oxide is given by

*11.23 Using the results of Problem 11.22, calculate the shift in the flat-band voltage for

the following oxide charge distributions: {a) @', =5 x 10" cm~ isentirely

!

| u'\Q

Q!\f

I
I

i)
I

b

"F
|

pe
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1124

1125

11.26

1127

located at the oxide-semiconductor interface. Let t,, = 750 A. () g, =

5 x 10" em™? is uniformly distributed throughout the oxide. which has a thickn
of 15, = 750 A. (€)Q., = 5 x 10! cm~? formsatriangular distribution with the
peak at x = 1,, = 750 A (the oxide—semiconductor interface) and which goesto
zero at x = 0 (the metal-oxide interface).

An ideal MOS capacitor is fabricated by using intrinsic silicon and an n* polysilig
gate. (@) Sketch the energy-band diagram through the MOS structure under flat-
conditions. (b) Sketch the low-frequency C-V characteristics from negativeto
positive gate voltage.

Consider an MOS capacitor with a p-type substrate. Assume that donor-type
interface trapsexist only a midgap (i.e., a Er;). Sketch the high-frequency C-V
curve from accumulation to inversion. Compare this sketch to theideal C-Vplot.
Consider an SOS capacitor as shown in Figure 11.63. Assume the SiQ- s ideal (no
trapped charge) and has a thickness of r,, = 500 A. The doping concentrations are
Ny = 10 em™® and N, = 10'¢ em~?, (a) Sketch the energy band diagram through
the devicefor (i) flat-band, (ii) V; = +3 V, and (iii) V; = —3V. (&) Caculatethe
flat-band voltage. (¢) Estimate the voltage across the oxide for (i) Vi = +3V ad
(i) V; = —3 V. (d) Sketch the high-frequency C-V characteristic curve.

The high-frequency C-V characteristic curve of an MOS capacitor is shown in
Figure 11.64. The areaof thedeviceis2 x 10~ cm'. The metal —semiconductor
work function differenceis¢,,, = —0.50 V, the oxide is SiQ),, the semiconductor
issilicon, and the semiconductor doping concentration is2 X 10'® cm=*, (a)Isthe

Figure 11.63i Figure for Problem 11.26. 4

Figure 11.64 1 Figure for Problem 1127
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Figure 11.65 | Figure for Problem 11.28

semiconductor n or p type () What is the oxide thickness? (r ) What isthe
equivalent trapped oxide charge density? (¢) Determine the flat-hand capacitance.
Consider the high-frequency C-Vplot shownin Figure 11.65. (a) Indicate which
points correspond to flat-band, inversion, accumulation, threshold, and depletion
made. (b) Sketch the energy band diagram in the semiconductor for each condition

Section 11.3 TheBasic MOSFET Operation

1129

11.30

1131

1132

An expression that includes the inversion charge density was given by Equa-

tion (11.55). Consider the definition of threshold voltage and show that the inversion
charge density goes to zero at thedrain terminal at saturation. (Hint: Let ¥, = Vps =
Vps(sat).)

Anidea n-channel MOSFET has the following parameters:

W = 30 m iy = 450 cm?/V-s
B fox = 350 A
Ve =4+080V

(a) Plot I, versus Vs for0 < Vs <5 VandforVoy =0.1,2,3.4, and5 V.
Indicate on each curve the v, s{sat) point. (b) Plot /T, (sat) versus V5 for0 <
Vs = 5V. (c) Plot f;; versus Vs for Vps = 0.1V and for 0 = Vs < 5V.

Anidea p-channel MOSFET hasthe following parameters:

W = 15 um ttp = 300 cm” /V-s
L=15pum tox = 350 A
Vr = —0.80V

(a)Plot I;; versus ¥sp for0 < Vsp =5V andfor Vs =0,1,2,3,4, and5 V.
Indicate on each curve the Vip{sat) point. (b} Plot {5 versus Vsg for Vi =01 V
andfor < Vg; <= 5V.

Consider an n-channel MOSFET with the same parameters as given in Problem 11.30
except that Vr = —2.0V. (8) Plot I versus Vs for0 < Vps < 5V and for Vs =
—2.—1,0, 41, and +2 V.(b) Plot +/{ (sal) versus Vps for —2 5 Vg5 < +3 V.
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Figure 11.66 | Figure for Problem 1133

Figure11.67 1 Figure for Problem 11.34

11.33 Consider an n-channel enhancement mode MOSFET biased as shown in Figure 11.66.
Sketch the current-voltage characteristics, fpversus Vs, for (@) Vap = 0, (b)) Vgp =
VT/Z, and (C) VGD = 2VT

11.34 Figure 11.67 shows the cross section of an NMOS device that includes source and
drain resistances. These resistances take into account the bulk #* semiconductor
resistance and the ohmic contact resistance. The current—voltage relations can be
generated by replacing Vs by Ve — Ip Ry and Vs by Vi — I5(Rs + Rp)inthe
ideal equations. Assume transistor parameters of Vr = | V and K,, = | mA/V?

(a) Plot the following curves on the same graph: 75 versus Vy, for Vg = 2V ad
Vg =3V overtherangeQ < Vi = 5V for{i] Ry = Ry =0Qand (i} Rs = Rp =
1 k2. (b) Plot the following curves on the same graph: versus V; for
Vp=01Vand ¥V, =353 Vovertherange0 < /p < | mA for (i) Rs = Rp = 0 ad
(H} Rs = RD =1k,

1135 An n-channel MOSFET has the same parameters as given in Problem 11.30. The gate
terminal isconnected to thedrain terminal. Plot {, versus Vpgs forQ < Vyg <5V,
Determine the range of V5 over which the transistor is biased in the nonsaturation
and saturation regions.
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11.38
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1141

Figure11.681 Figure for Problem 11.37.

The channel conduclance for a p-channel MOSFET isdefined as

Plot the channel conductance for the p-channel MOSFET in Problem 11.31 for
0= Vgg <5V

The experimental characteristics of an ideal n-channel MOSFET biased in the
saturation region are shown in Figure 11.68. If W/L = 10and#,, = 425 A,
determine V; and i,,.

One curve of an n-channel MOSFET is characterized by the following parameters:
Ip(sat) =2 X 10°* A, Vps(saty =4V, and Vr =0.8 V.

(a) What isthe gate voltage?

(h)y What isthe value of the conduction parameter?

icy IfVe=2VandVps =2V, determine /p.

(dy If Vg =3V and Vps = 1V, determine fp

(e) For each of the conditionsgiven in (c) and (d), sketch the inversion charge
density and depletion region through the channel.

(@) An ideal n-channel MOSFET hasan inversion carrier mobility i, = 525 cm®/V-s,

athreshold voltage Vr = +0.75 V, and an oxide thickness,, = 400 A. When biased

in the saturation region, the required rated current is 7 (sat) = 6 mA when Vg5 =

5V. Determine therequired W/ L ratio. () Ap-channel MOSFET has the same

Consider the transistor described in Problem 11.30. (a)Calculate g,,; for Vps = 0.5V.
(b) Calculate gy, for Vgs = 4 V.

Consider the transistor described in Problem 11.31. (a)Calculate g,,; for Vsp = 0.3 V.
(b} Calculate g,; for Vsg = 4V.
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11.42 An n-channel MOSFET has the following parameters:
fux = 400 A N, =5x 10" em™?
Veg = —05V L=2um
W = 10 um t, = 450 cm*/V-s

Plot ./T;, versus Vg5 over the range 0 < 7, < 1 mA when the transistor is biased
the saturation region for the following values of source-to-body voltage: Vg = 0.1,
and4 V.

11.43 Consider ap-channel MOSFET with £, = 600A and Ny =5 x 105 ¢m?,
Determine the body-to-sourcc veliage. Vs, such that the shift in threshold voltage.
AVr, fromthe Vi, = 0curveis AVy = —1.5V,

11.44 An NMOSdevice has the following parameters: n* poly gate, 1, = 400 A. N,, =
10% cm~3, and Q, = 5 X 10" cm™. (a) Determine ¥r. () Is it possible to goply
a Vi voltage such that vy = 07 If so, what isthe value of Vi ?

1145 Investigate the threshold voltage shift due to substrate bias. The threshold shift is
given by Equation (11.72). Plat AV, versus Vs over therange0 < Vg, < 5 Vfor
severd valuesof &, and I,, . Determine the conditions for which AV; islimited toam
maximum value of 0.7 V over the range of Vg

Section11.4 Freguency Limitations

11.46 Consider an ideal n-channel MOSFET with a width-to-length ratio of (W/L} = 10,
an electron mohitity of jz, = 400 cm?/V-s, an oxide thickness of 7, = 475 A, anda
threshold voltage of V¥ = +0.65 V. (@) Determine the maximum value of source
resistance so that the saturation transconductance g,,, isreduced by no more than
20 percent from its ideal value when Vs = 5 V. (b) Using the value of r, calenlat
in part (a3, how much is g, reduced from its ideal valuewhen V;; = 3V

1147 An n-channel MOSFET has the following parameters:

e = 400 cin/V-s l,, =500A
L=2um W =20um
Vy = +0.75V

Assume the transistor is biased in the saturation region at V; 5 = 4 V. (a) Calculate
theidea cutoff frequency. (b) Assume that the gate oxide overlaps both the source
and drain contacts by 0.75 um. If aload resistanceof B, = 10 kS2 is connected to the
output. calculate the cutoff frequency.

11.48 Repeat Problem | 1,47 for the case when the electrons are traveling at a saturation
velocity of vy = 4 x 10° em/s.

Summary and Review

#]11.49 Design an idea silicon n-channel MOSFET with apolysilicon gate to have athreshold
voltage of ¥y = 0.65 V Assume an oxide thickness of 1,, = 300 A. achannel length
of L = 1.25 ym. and a nominal value of Q' = 1.5 x 10! em™2. ltis desired to have ‘
adrain current of /,; == 50 uAat Vo5 = 2.5 Vand V55 = 0.1 V. Determine the
substrate doping concentration, channel width. and type of gale required.



*11.50

*11.51

#11.52

Design an ideal silicon n-channel depletion mode MOSFET with apolysilicon gate to
havc athreshold voltage of V; = —0.65 V. Assume an oxide thicknessof ¢,, = 300 A,
achannel length of L = 1.25 zm, and anominal vajue of ¢}, = 1.5 x 10" ecm .01
isdesired to havc adrain current of I;(sat) == 50 A at V,; 5 = 0. Determine the type
of gate, substrate doping concentration, and channel width required.

Consider the CM OSinverter circuit shown in Figure 11.60a. Ideal n- and p-channel
devicesarc to bedesigned with channel lengths of L = 2.5 j¢mand oxide thicknesses

of 1,,, = 450 A. Assume theinversion channel mobilities arc one-halithe bulk values.
The threshold voltages of the nand p-channel transistors arc to be +0.53V and — 0.5V,
respectively. Thedraincurrentistobe /,; == 0.236mA when theinput voltagetothe
inverteris 1.5V and1.5V with V55 = 5V. Thegate materia istobethesamein each
device. Determinethe type of gate, substrate doping concentrations, andchannel widths.
A complemeniary pair of ideal n-channel and p-channel MOSFETs are to be
designed to produce the same /-V characteristics when they are equivalently biased.
The devices are to have the same exide thickness of 250 A and the same channel
length of L = 2 yum. Assume the SiO- layer isideal. The n-channel device isio have
a channel width of W = 20 srm. Assume constant inversion layer mobilitiesof g, =
600 cm?*/V-s and p, = 220 cm*/V-s. («) Determine p-type and n-type substrate
doping concentrations. (#) What are the threshold voltages? (¢) What is the width

of the p-channel device?
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A PPENDIX

Selected List of Symbols

his list does not include some symbols that are defined and used specifically in

only one section. Some symbols have more than one meaning; however, the
context in which the symbol is used should make the meaning unambiguous. The
usual unit associated with each symbol is given.

Unit cell dimension (A), potential well width, acceleration,
gradient of impurity concentration, channel thickness of a
one-sided JFET {(cm)

Bohr radius (A}

Speed o light {cm/s)

Distance (cm)

Electronic charge (magnitude) (C), Napierian base
Frequency (Hz)

Fermi-Dirac probability function

Cutoff frequency (Hz)

Generation rate (cm > s~ 1)

Generation rate of excess carriers (cm > $~1)
Density of statesfunction (cm™ eV ")

Density of states function in the conduction band and
valence band {cm™ eV™!)

Channel conductance(S), small-signal diffusion
conductance (S}

Transconductance (A/V)

Generation rate for electrons and holes (e s~}

Planck's constant (J-s), induced space charge width in a
JFET (cm)

Modified Planck's constant (A /27 )
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Small-signal common emitter current gain
Imaginary constant, +/—1

Boltzmann’s constant (J/K), wavenumber (cm—1)
Conduction parameter (A/V?)

Mass (kg)

Rest mass of the electron (kg)

Effective mass (kg)

Effective mass of an electron and hole (kg)
Integer

Quantum numbers

Electron and hole concentration (cm—)
Index of refraction

Constants related to the trap energy (cm™)

Thermal-equilibrium minority carrier electron
concentration in the base and minority carrier hole
concentration in the emitter and collector {cm™)

Density of electrons in the donor energy level {cm=)
Intrinsic concentration of electrons (cm ™)

Thermal-equilibrium concentration of electrons
and holes (cm™)

Minority carrier electron and minority carrier hole
concentration (em™*)

Thermal-equilibrium minority carrier electron and
minority carrier hole concentration (cm ™)

Density of a two-dimensional electron gas {cin )
Momentum

Density of bolesin the acceptor energy level (cm™?)
Intrinsic hole concentration (= #;)(cm™)

Charge (C)

Spherical coordinates

Small-signal diffusion resistance (2}

Small-signal drain-to-source resistance (£2)
Surface recombination velocity (cm/s)

Time (s)

Delay time (s)

Gate oxide thickness {cm or A)

Storage time (s)

Periodic wave function

Velocity {cm/s)

Carrier drift velocity (cm/s)
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Carrier saturation drift velocity {cm/s)

Cartesian coordinates

Molefraction in compound semiconductors

Neutral base, emitter, and collector region widths (cm)
Induced space charge width (cm)

Maximum space charge width {cm)

Depletion width from the metallurgical junction into n-type
and p-type semiconductor regions (cmy)

Area (cm?)

Effective Richardson constant (A/K2/cm?®)

Magnetic flux density (Wb/m?)

Base, emitter, and collector

Breakdown voltage of collector-basejunction with emitter
open (volt)

Breakdown voltage of collector-emitter

with base open (volt)

Capacitance (F)

Capacitance per unit area (F/cm?)

Diffusion capacitance (F)

Flat-band capacitance (F)

Gate-source, gate-drain, and drain-source capacitance (F}
Junction capacitance per unit area (F/cm?)

Miller capacitance (F)

Constants related to capture rate of electrons and holes
Gate oxide capacitance per unit area (Ffcm?)
Reverse-biased B-C junction capacitance (F)

Drain, source, and gate of an FET

Ambipolar diffusion coefficient (cm?s)

Base, emitter, and collector minority carrier diffusion
coefficients (cm?¥s)

Density of intertace states (#/eV-cm?)

Minority carrier electron and minority carrier hole
diffusion coefficient (cm¥s)

Energy (jouleor eV)
Acceptor energy level (eV)

Energy at the bottom edge of the conduction band and top
edge of the valence band (e V)

Difference in conduction band energies and valence band
energies at a heterojunction {(eV)

Donor energy level (eV)
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Fermi energy (eV)

Intrinsic Fermi energy (aV)

Quasi-Fermi energy levelsfor electrons and holes(eV)
Bandgap energy (eV)

Bandgap narrowing factor (eV), differencein bandgap
energies at a heterojunction (eV)

Trap energy level (eV)

Force (N)

Electron and hole particle flux (em=2s~")
Fermi—Dirac integral function

Generation rate of electron-hole pairs (cm=3s7)
Excess carrier generation rate (cm 2 s™!)

Thermal equilibrium generation rate for electrons and
holes (cm™3s71)

Conductance (S)

Current (A)

Anode current (A)

Base, emitter, and collector current (A)
Reverse-bias collector-base junction current with
emitter open (A)

Reverse-bias collector-emitter current with base open (A)
Diode current (A), drain current (A)

Saturation drain current (A)

Photocurrent (A)

Pinchoff current (A)

Ideal reverse-bias saturation current (A)
Short-circuit current (A)

Photon intensity (energy/cm?/s)

Electric current density (A/em?)

Generation current density (A/cm?)

Photocurrent density (A/cm?)

Electron and hole electric current density (A/cm®)
Electron and hole particle current density (cm 2 s~!)
Recombination current density (A/cm?)
Zero-biasrecombination current density (A/cm?)
Reverse-bias current density (A/cm?)

Ideal reverse-bias saturation current density (A/cm?)

Ideal reversesaturation current density in a
Schottky diode (A/cm?)

Length {cm)}, inductance (H), channel length (cm)
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Channel length modulation factor (cm)

Minority carrier diffusion length in the base, emitter,
and collector (cm)

Debye length (cm)

Minority carrier electron and hole diffusion length (cm)
Multiplication constant

Number density (cm™?)

Density of acceptor impurity atoms (cm™3)

Base, emitter, and collector doping concentrations (cm=*)

Effective density of states function in the conduction band
and valence band (cm )

Density of donor impurity atoms (em™3)

Interface state density (em—2)

Trap density (cm—)

Power (watt)

Probability density function

Charge (C}

Charge per unit area {C/cm?)

Gate controlled bulk charge (C)

Inversion channel charge density per unit area (C/cm?)
Signal charge density per unit area (C/cm?)
Maximum space charge density per unit area (C/cm?)
Equivalent trapped oxide charge per unit area (C/cm?)
Reflection coefficient, recombination rate (ecm=3 s~1),
resistance (52)

Radial wave function

Specific contact resistance (§2-cm?)

Capture rate for electronsand holes (cm™3 s~ 1)
Emission rate for electrons and holes (cm=* s~1)
Recombination rate for electrons and holes (em— s~ 1)
Thermal equilibrium recombination rate of electrons
and holes (em=3 s~ 1)

Temperature (K), kinetic energy (Jor eV),
transmission coefficient

Potential (volt), potential energy (J or eV)

Applied forward-bias voltage (volt)

Early voltage (volt), anode voltage (volt)

Built-in potential barrier (volt)

Breakdown voltage (volt)

Breakdown voltage at the drain (volt)
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Vee

Base-emitter, collector-base, and collector-emitter
voltage (volt)

Drain-source and gate-source voltage (volt)
Drain-source saturation voltage (volt)
Flat-band voltage (volt)

Gate voltage (volt)

Hall voltage (volt)

Open-circuit voltage (volt)

Potential difference across an oxide (volt)
Pinchoff voltage (volt)

Punch-through voltage (volt)

Applied reverse-bias voltage (volt)
Source-body voltage (volt)

Thermal voltage (kT /e)

Threshold voltage (volt)

Threshold voltage shift (volt)

Total space charge width (cm), channel width {cm)
Metallurgical base width (cm)

Admittance

Photon absorption coefficient (cm~'}3, ac common
base current gain

Electron and hole ionization rates (cm™")

dc common base current gain

Base transport factor

Common-emitter current gain

Emitter injection efficiency factor
Recombination factor

Excess electron and hole concentration (cm )

Excess minority carrier electron and excess minority
carrier hole concentration (cm )

Permittivity (F/cm?)

Permittivity of free space (F/cm?)
Permittivity of an oxide (F/cm?)

Relative permittivity or dielectric constant
Permittivity of asemiconductor (F/cm?)
Wavelength (¢cm or pm)

Permeability (H/cm)

Ambipolar mobility (cm? V-s)

Electron and hole mobility (cm?% V-s)
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Permeability of free space (H/cm)

Frequency (Hz)

Resistivity (R-cm), volume charge density (C/cm?®)
Conductivity (€2~ 'em™1)

Photoconductivity (' em™1)

Intrinsic conductivity (2~ fem 1)

Conductivity of n-type and p-type semiconductor (€2~!em™!)
Lifetime(s)

Electron and hole lifetime (s}

Excess minority carrier electron and hole lifetime (s)
Lifetime in space charge region (s)

Potentia (volt)

Time-dependent wave function

Schottky barrier lowering potential (volt)

Schottky barrier height (volt)

Ideal Schottky barrier height (volt)

Potential difference (magnitude) between £5; and £,
in n-type and p-type semiconductor (volt)

Potential difference (with sign) between E,; and £
in n-type and p-type semiconductor (volt)

Metal work function (volt)

Modified metal work function (volt)

M etal -semi conductor work function difference (volt)
Potential difference (magnitude) between £, and £,
in n-type and between E, and £ in p-type
semiconductor (volt)

Semiconductor work function (volt). surface potential (volt)
Electron affinity (volt)

Modified electron affinity (volt)

Time-independent wave function

Radian frequency (s~)

Reflection coefficient

Electricfield (V/cm)

Hall electricfield (V/cm)

Critical electric field at breakdown (V/cm)

Angular wave function

Photon flux (ecm 25"

Angular wave function

Total wave function



System of Units,
Converson Factors,
and General Congants

Table B.1 | International system of units*

Quantity Unit Symbol Dimension
Length meter m

Mass kilogram kg
Time second § Or sec
Temperature kelvin K
Current ampere A

Frequency hertz 1/s
Force newton kg-m/s*
Pressure pascal Nfm?
Energy joule N-m
Power watt Ifs
Electric charge coulomb A-s
Potential volt Ic
Conductance siemens AN
Resistance ohm VIA
Capacitance farad CN
Magnetic flux weber V-s
Magnetic flux density tesla Whim?
Inductance henrv WhiA

*The cm is the common unit of fength and the electron-volt is the common unit of energy
(see Appendix F) used in the sudy of semiconductors. However. the jouleand in same
cases the meter should be used in moat formules.
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TableB.2 | Conversion factors

Prefixes

I A (angstrom) = 10~% cm = 10~ m 10-13 femto-
1 gem (micron) = 1074 cm 10-12 pico-
1mil =107 in. = 254 um 10-° nano-
254cm=1in. 1078 micro-
leV =16 X J 10-3 milli-
17 =10 erg 10+3 kilo-

10+¢ mega-

10+9 giga-

10712 tera

Table B.3| Physical constants

N4 =6.02 x 1075
atoms per gram
molecular weight

Avogadro’s number

Boltzmann’s constant

Electronic charge
(magnitude)

Free electron rest mass
Permeability of free space
Permittivity of free space

Planck’s constant

Proton rest mass
Speed of light in vacuum

Thermal voltage (T = 300 K)

me=9.11 x 10 * kg
o =4 x 1077 Wm
€ = 8.85 x 107 "% Flem
= 8.85 x 107" F/m
h = 6.625x 10~ J-s
=4.135 x 107" eV-s

— k= 1054 x

Y =

M = 1.67 x 1073 kg
¢ =2.998 x 10" cmfs

V, = k% = 0.0259 volt
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TableB.4 | Silicon, gallium arsenide, and germanium properties (7 = 300 K)

Property S GaAs Ge
Atoms (cm?) 5.0 x 10% 4.42 x 10% 4.42 x 1072
Atomic weight 28.09 144.63 72.60
Crysta structure Diamond Zincblende Diamond
Density (g/cm %) 2.33 5.32 5.33
Lattice constant (A) 5.43 5.65 5.65
Melting point (‘C) 1415 1238 937
Dielectric constant 11.7 131 16.0
Bandgap energy (eV) 112 1.42 0.66
Electron affinity. y (volts) 4,01 4.07 4.13
Effective density of statesin 2.8x 10%° 4.7 x 10”7 1.04 x 10"
conduction band, &, (em~3}

Effective density of statesin 1.04 x 10*° 7.0 x 108 6.0 x 108
vaence band. N, (cm™?)
Intrinsic carrier concentration (cm™) 1.5x 10 1.8 x 10° 2.4 x 104
Mobility (cm?/V-s)
Electron, i, 1350 8500 3900
Hole, i4p 480 400 1900
Effective mass (m—*)
fitp
Electrons m; =0.98 0.067 164
m} =0.19 0.082
Holes my;, = 0.16 0.082 0.044
m;, =0.49 0.45 0.28
Effective mass (density of states)
Electrons (m—) 0.067 055
g 1.08
m*
Holes (—”) 0.56 0.48 0.37
iy
Table B.5 | Other semiconductor parameters

Material E, (eV) a(h) € X "
Aluminum arsenide 2.16 5.66 12.0 35 2.97
Gadlium phosphide 2.26 5.45 10 43 3.37
Aluminum phosphide 2.43 5.46 9.8 3.0
Indium phosphide 135 5.87 12.1 4.35 3.37
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TableR.6 | Properties of $i0, and Si,N, (T = 300K)

Property

Si0, Si,N,

Crystal structure

Atomic or molecular
density (cm™*)
Density (g-cm™?)
Energy gap
Dielectric constant
Melting point (°C)

[Amorphous for most integrated
circuit applications]

2.2 x 10% 1.48 x 102
2.2 34
~YeV 47eV
39 75
21700 1900




ThePeriodic Table

1902 193] 195.2

Rare earths

Vi 57La  58Ce 59R 60Nd 61Pm 62Sm 63Eu MGd 65Tb 66Dy 67Ho 68Er 69Tm 70Ybh 71la
57-71 13892 140.13 14092 14427 147 15043 1520 1569 159.2 162.46 16490 167.2 1694 173.04 174.99

The numbers in front of the symbols of the ¢lements denote the atomic numbers; the numbers underneath are the atomic weights.



A PPENUDIX

The Error Function




" Derivation" of Schrodinger's
Wave Equation

chrodinger's wave equation was stated in Equation (2.6).The time-independent

form of Schrodinger's wave equation was then developed and given by Equa-
tion (2.13).The time-independent Schrodinger's wave equation can also be devel-
oped from the classical wave equation. We may think of this development morein
terms of ajustification of the Schrodinger’s time-independent wave equation rather
than astrict derivation.

The time-independent classical wave equation, in terms of voltage, is given as

wherew is the radian frequency and v, is the phase velocity.
If we make achangeof variable and let v (x} = V(x), then we have

We can write that

where v and A are the wave frequency and wavelength, respectively.
From the wave-particle duality principle, we can relate the wavelength and
momentum as

Then
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h
and sinceh = —, wecan write
2m
Now

where T, E, and V are the kinetic energy, total energy, and potential energy terms.
respectively.
We can then write

Substituting Equation (E.8) into Equation (E.2), we have

which is the one-dimensional, time-independent Schrodinger's wave equation



Unit of Energy—The
Electron-Volt

he electron-volt {eV) is a unit of energy that is used constantly in the study of

semiconductor physics and devices. This short discussion may help in " petting
afeel" for the electron-volt.

Consider a paralel plate capacitor with an applied voltage as shown in Fig-
ure F.1. Assume that an electron is released a x =) at time + = 0. We may write

where ¢ is the magnitude of the electronic charge and E is the magnitude of theelectric
field as shown. Upon integrating, the velocity and distance versus time are given by

FigureF.1| Pardld plae
capacitor.
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and

where we have assumed that v = O at ¢ = 0.
Assumethat at ¢ = t; the electron reaches the positive plate of the capacitor so
that X = d. Then

The velocity of theelectron when it reaches the positive plate of the capacitor is

The kinetic energy of the electron at thistimeis

Theelectric fieldis

sothat the energy is
T=¢V (E8)
If an electron is accelerated through a potential of 1 volt, then the energy is
T=e¢-V=(16x 107")1) =1.6x 107'% joule (F9)
Theelectron-volt (V) unit of energy isdefined as

Electron-volt = Joile (F.20)
€
Then, the electron that is accelerated through a potential of 1 volt will have an energy
of

orlev.

We may note that the magnitude of the potential (1 volt) and the magnitude of
the electron energy (1 eV) are the same. However, it isimportant to keep in mind that
the unit associated with each number is different.



ANSWERS TO SELECTED PROBLEMS

Chapter 1

11

13  («)52.4 percent, (h) 74 percent. (c) 68 percent,
(/) 34 percent
15 (a)2.36A.(#) 5 x 107 atoms/cm’
17 (b)a =284, (c)2.28 x 10 em~* for both Na
and C1, (d) 2.21 gm/cm?
19  (a)3.31 x 10" atoms/cm?; Samefor A atoms and
B atoms. (b) Same as (a) .(c) Same material.
113 {(ai5.63 A, (h)3.98 A.{c)3.25A
115 (g} 6.78 x 10" cm™2, (b) 9.59 x 10’ cm ™2,
(c) 7.83 x 10" em™
117 2 x 10% em™?
119 (a)4 x 10 percent. ()2 x 10~% percent
121 d=7.94X10 Scmord/a, = 146
Chapter 2
25 & =0.254m (gold). » = 0.654 pm (cesium)
27 E,. =0.01727 eV,
P =71x10"% kg-mfs. A =93.3 A
29 (@E=114x10 *eV. .
p = 1825 107 kp-mis, A = 364 A
(b) p =5.3x 1072 kg-m/s,
v =582x10° cr/s, E = 9.64 x 1077 eV
211 (a)Ap = 1.054 x 10~ kg-m/s
(by AE =0.198eV
213 (a)Ap=8.78x kg-m/fs
(b)) AE =4.82 x 1077 eV
215 (@) Ap = 1.054 x 107> kg-m/s

(a)4 atoms. (h) 2 atoms, (¢) 8 atoms

(b} Ar =6.6 x 5

217 AP =1, ot A=+1.—1.+j. —j
219 {a) P=0.393. (hi P=0.239,{c) P =0.865
221 W(x, 1) = Aexpl—jlkx + wt)] where
k=6.27x 10® m 'and
w =228 x 10" radfs
223 (a)F, = 0.261 eV, E; = 1.04¢V,
(BYA =139 um
225 E; =2.06 x 10% eV (neutron).
E, = 3.76 x 1¥ eV (¢lectron)
2.29 (ky(i) AE=3.85x 1077 ¢V,
(iil) AE =2.46 x 1077 eV
231 (a) P = 0.118 percent.
(b)Y P =19 x 107" percent
233 (a)T =0.138,(b) T = 1.27 x 107°
238 E; = —13.58eV.E. = —3.395¢V,
Ey=—151eV, £y =—-0849¢V
Chapter 3
39 (a)AE =0.488¢V, (b) AE = 1.87¢V,
(c)AE =3.83eV.(d) AE =627 eV
311 (@) AE=0.638eV.(b6) AE =236¢V.
(€) AE = 4.73 eV, (d) AE = 7.39 eV
313 m* (A)<m* (B)
3.15 A, B: velocity = —x; C, D: velocity = +x;
B. C: positive mass; A, D: negative mass
317 A:m/my = 0.476; B: m/mg = 0.0953
323 g=:3.28x 10" ¢m™?
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0.15eV, g, = 2.96 x 10* cm™? eV ™'}
0.20eV, g, = 341 x 10" em3 eV,
(BYAtE, g, =0,

—0.05¢V, g, = 0.637 x 10" em eVl
—(h10eV, g, = 0.901 x 10¥ em~ % ev—;
—0.15eV, g, = L10 x 10* em 3 eV™';
—-00.20ev, g, = 1.27 x 108 cm— 3 ev!

3.29 {(a) f(E)=0.269, ()1 —f{E)=0269
331 (a)l—f (E) =0.269,
(B) 1 — f(E) = 6.69 X 1073,
()1 — f(E) =454 x107°
3.37 (a)f (E) = 6.43 x 10~* percent,
(b) f(£) = 4.53 percent, {¢) T = 756 K
339 (a)Far £ = E;.f(E)=93x10%;
For £ = E», 1 — f{E)=178 x 10713,
(b)For £E = E|, f{E) =845 x 1+ '3,
For E=E;,, 1-f(E)=1Y6xX 1077
343 T =461 K
Chapter 4
41 (a)n, = 7.68 x 10 em~?; 2.38 x 10 em™;
9.74 x 10™ cm™7,
(cyn, = 1.38cm ?;3.28 x 10° cm™?;
572 x 102 em™
45 (a)E = E, + kZT (BE = E, — %T

Er — Emidgap = —0.0128 eV (51}

Ep — Emidgap = —0.0077 eV (Gc)

E  — Emiggap = T0.038 &V (GaAs)

Eri — Emidgp = —8.51 meV, —17.0 meV,
—25.5 meV

ri =104 A E = (L0053 eV

po=2.13x 10% cm 3, ny = 227 x 10¢ cm?
E.— Er =088¢V,ng=4.9x 10* cm™>
(a) Po = 1.33 x 10l2 Cm_3,

(BYEp;, — Er =0.207 eV,

(c) For (a) ny = 2.44cm™*;

For (b) fy = 8.09 x 10 cm™3

E, — Er = —-0.034eV

(a)ng = 2.45 x 10" cm™?,

2o = 912 x 10'® em~?,

(b) g = 1.87 x 10" em~,

po = 9.20 x 10" em™?

429 (a)pp =295 x 10" em~?,
ng = 1.95 X 10" ¢m=?, (h)rg =5 x 10" em™,
po=2115x 10" cm ?
431 (gyng =2 x 10" ecm=%, py = 1.125 x 10° cm™?,
(b) pp = 10" em™% ny = 2.25x 10* em ™3,
(cyny = py =n; = 15X 10" em™?,
(d) po = 1.0x 10" cm2,
fto = 5.66 X 10" cm~2,
(e)ny = 1.49 x 10M cm~3,
po =489 x 104} em™
433 (ayptype () Sis pp = 1.5 x 107 em ™2,
np=15x10em™,
Ge: Po= 3.26 x 10” cm™”,
ng = 1.77 x 10" cm™3, GaAs:
po=15x 10" cm™?, ny = 0.216 cm ™3
435 ny = 1125 x 10" em~, n-type
441 (@)ntype,no = 10" cm™?,
p, = 2.25x 10% cm™, (b) p-type;
po=2.8x 10" em™* ny = 8.04 X 10 em ™
443 T =200K = Er, — Ez =0.1855 eV
T =400K = E5, — £, = 0.01898 ¢V
T =600K = Er, — Ex =0.000674¢V
445 T =762K
449 N, =12x 10" ¢m™
451 (a) EF - Ef-"f = 0.2877 CV,
(b) Er, — E; = 0.2877 eV. (c)For (a)
ng = 10" ecm=3, For (h)ny = 2.25 x 10° em™
453 (aYEr - Er, =0.3056¢V,
(b) Fr; — £r = 0.3473eV,
(C’) EF = Ej-'j. (d) EF,‘ - Ef = (.1291 €V,
(e)E,. — Er; =0.0024eV
455 ptype, Er — £, =0.3294¢V

Chapter 5

51 (a)ng = 10" em=? py =3.24 x 107* cm™?
(b) 1, = 7500 cm*/V-s s0
J = 120 Alem?, (¢) (i) pg = 10" em ™,
ny = 3.24x 1074 cm™;
(i) p, = 310 cm¥/V-s
S0 J = 4.96 A/em?

53 (a)f =0.44mA, (b) | = 4.4mA,
(c)For (a) v, =5.5 x 10' cm/s,
For (b) v, = 5.5 x 10¢ em/s

55 (&), = 3333cm?N-s.
(h)vy = 24 x 10' cm/s

57 (a)o; =4.39 x 107% (R-cm)™',
(b) o; = 1.03 X 10~ (©-¢m)~!



59

511

513
517
5.19
5.23
525

527

5.29

531

535

5.39
541

543

APPENDIX G Answersto Sdected Problems

7 (300 K) = 3.91 % 107 cm 2, E,=1.122eV;
n,(500K) = 2.27 x 10'3 cm~%,

o(300K) =5.81 x 1077 (Q-cm)~!

(a) Ny = 9.26 x 10™ cm™3,

(5} p(200 KY &= 2.7 S2-cm,

p = 9.64 2-cm

(a)T =56 x 107% eV, (b)) T =5.6x 107* eV
i@ = 316 cm¥/V-s

i =167 cm*/V-s

1=18mA

J =16 Alem?

_ ,
J,, =3.41exp (2—23) Alem
(@) Inayr = 1.6 exp (%x) Alem?,

(B} ety = 4.8 — 1.6 exp (%x) Alem?

(a¢)n = n, exp

0.4 - 25 x 10°x

by J, = —5.79 X 10~
) P [ 0.0259

Ny(x) = Aexp(—ax) where

o = 3.86 x 10" ¢m™!

(8) Vi = 2.19 mV, (b)Ey = 0.219 Viem
() ptype, (b)p = 8.08 x 10" cm™7,

(B) 1, = 387 cm?/V-s

(a)ntype, (b) » = 8.68 x 10" cm—3,

(¢) pt, = 8182 cm’/V-s,

{d) p =0.88 2-cm

Chapter 6

6.1
6.3

6.7

R =5 x 10" em™* s~ !

() T,0 = 8.89 x 107% g,

(G =1125x 107 cm™¥ g,
()G =R=1125x 107 e 3 s~*
dF:

L — 210 em 57!
9x

6.11
6.13
6.15

6.17

6.19

6.29

6.31

6.33

6.37

6.39

7.1

725

a=84+0.114(1 — e~ '/70}, T = 1075

I = (542206 %) mA, 7, =3 x 1077 5
() R;,/RP(, =4.44 x 10°,

(0) To =225 x 1077 5

(@)For0<r < 2x

Sn = 10"(1 — ¢ '/™) wherer,, = 107 s:
Fort > T =2 x 1]

dn = 0.865 x 10" exp[

Ta0

(a)rpo = 2.25 X 10° em™,

(b)8r(0) = —nyy = —2.25x 10° cm™,
{€)dn = —nype "/t

GyL
ForL <« x < 3L,§p =
DF

(AL —x);

Ery — Epi =0.3498 eV,
Ey, — Er, = 02877 eV
dn =3p=5x 10" em™3,
(a) Er, — Er =0.0025 eV,
(b)Y Ei — Er, = 0.5632 eV
(a)dp =5 x 10" cm™?,
(b) Epy — E.r-';‘ = 0.1505 eV
{a) For n-type, R = L 1077 571,
dn T
1
Tpo | Tat
= 1.67 X 108 57!

]

... R
(P) For intrinsic, —
on

dng sinh[(W —x)/L,]
sinh[W/L, ]
dng=10"ecm~*and L,, = 35.4 urn.

(a)&n =

{a) For N; = 10Y em™3; (i) Vi, = 0.575,
(i) 0.635 V, (i) 0.695 V. (iv) 0.754 V,

(b) For Ay = 10'% cm™*; (i) 0.754V,

(i} 0.814 V, (iii) 0.874V, (iv) 0.933V
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726
5 (a)nside. Er — £, =0.3294 eV,

pside. Er; — Fp = 0.4070 eV
(#) V,; = 0.3294+0.4070 = 0.7364 V
(c) V,, = 0.7363 V
(d) x, = 0.426 um, x, = 0.0213 yum,
Bmax | = 3.29 x 10* Viem

7.7 (b){nregion),ny = Ny = 8.43 x 10" em~7,
ip region), py = Ny = 9.97 x 10" cm ™,
(¢) Vi =0.690 V

79 (a) Vi, =0.635V,(h)x, =0.864 um,
x, =0.0864 pum,
(d)|Emax | = 1.34 X 10* Viem

711 (a)V,; = 0.8556 V, () T = 302.4K

713 () Viy = 0456 V, (b) x,, = 2.43 X 10-7 cm,
(©)x, =243 X 10~ cm,
(d)|Emax | = 3.75% 10 Vicm

717 (a) Vi, = 0.856 V,
(Y W =0.301 x 10~ cm,
() Bmax = 3.89 x 107 Vicm,
(d) C =3.44pF

7.19 (a)Neglecting change in V,;, 41.4 percent
increase; (&) 17.95 mV increase

721 (a)Ves =73V, {h)V, =7.18V,
{cy Vg = 0570V

725 Ny, =324x 10" ¢cm*

727 (a} Vy = 0557V, (B) x, = 5.32 X 1079 ¢m,
X, = 2.66 x 107* cm, (¢) Ve = 70.3V

729 (m{iyC = 1.14 pF, (ii) C = 0.521 pF,

7.33 (a)E(x = 0) = 7.73 x 10* V/cm,
(¢) Vg =232V

735 a=11x10"em™*

Chapter 8

81 («j60mV,{# 120mV

87 AN,/N;=0.083

89 Is=291x107%A, (@] =655 A,
(hy f = —2.91 nA

811 (a) I, =4.02x A.

(b) Fuo = 6.74 X 107 A,

(c) p,, = 342 x 10" ¢m™3,
(d)1, =3.43x 1077 A

813 (a)V, =0.253V,(h) V, = 0.635 V
815 E,;=0.769¢eV
818 7o = 519K
820 For 300K, V; = 0.60 V; For 310 K,
Vp =0.5827 V; For 320K. Vv = 0.5653 V
8.23 For 10kHz, Z = 25.9— ;j0.0814:
For 100 kHz, Z = 25.9— j0.814,
For 1MHz, Z — 23.6 — i7.41:
For 10 MHz, Z = 2.38 — j7.49
825 1, =13X 10775 Cyi=25x107°F
827 (a)R=723%2.1 = .38 mA
829 V, =0.443V
831 J; =857 x 107"® Alem’.
Joen = 1.93 x 107° Afem?
833 (a)ForV, =0.3V,1 =7.96x 10~ A;
Forv, =05V.1 =336 x [1I"° A
839 V¥V, =0548V
841 N, ~3x 10" A =199 X 107 cm?
843 V, =199V
845 Vp =554V
847 Vi, =15V
849 I/l = L.11.1/Th =~ 065
851 W=619A
Chapter 9
9.1 ()¢, = 0206V, ¢y =027V,
Vii = 0064V, |[Epax | = 1.41 x 10* Viem,
(d) ¢p, = 0.55V, |Epex| = 3.26 x 107 V/icm
93 (U) ¢go = 103V, (B} ¢, = 0.058 V,
(€) Vo =0.972 V, (dl x; = 0.416 um,
(&) |Epax | = 2.87 x 10° Vlem
95 (a)C=4.75pF. (b} C = 15 pF
97 (@) Vi =0334V, x; =0.211 pem,
|Epux | = 3.26 x 10% Viem.
() A@= 20 mV. x,, = 0.307 x 10-° ¢m,
(¢) |Emax | = 1.16 X 10° Vicm,
A@= 378 mV, x,, = 0.163 X 10~ cm
9.9 (a)Vy =0.812V,xy =0.153 um,
|Emas | = 1.06 X 10° V/cm,
By Ve =747V
911 (@) ¢y = 1.13V, (b) ¢, = 0.858 V.,
() o = 043 V. g, = 0,733 V
9.13 (u) @,=0.206 V,

(b) Vs, = 0.684 V.



915 (a)V, =0.603V,(h) AV, =18 mV

9.17 Vi = 0474V, (a) Ig; = 1.52 x 1078 A,
by In, =186 x 1072 A

9.19  For Schottky diode, ¥, = 0.467 V; for pn diode.
V. =0.705V

9.21 (a)For Schottky diode, | =2 0.5 x 10~ A;
for pndiode, | = 1.02 x 1078 A; () for
Schottky diode. ¥,, = (.239 V; for pn diode,
V, =0.519V

925 (b)N; = 1.24 x 10 ¢cm™, (¢) 0.20 V

927  (h) ¢z = @,=0.138V

Chapter 10

103  (a} iy = 3.2 x 107 A (B) (D ic = 7.75 pA,
(i) i = 0.368 mA, (iii) ir = 17.5 mA

105 (a)B = 85,2=0.9884.i; =516 uA:
{6y =53.a =0.9815, i =2.70 mA

10.7 (Bl =4.7mA

109 (&) pry=45x 10 cm™3,
ngo = 2.25 X 10* em™?,
peo = 2.25 x 10° em™3,
(b)Y np(0) =6.80 x 10" em™,
p:(0) = 1.36 x 10"* cm™

1011  Assumeexp(Vgg/V,) = coshixg/Ly),
(a)0.9950, (b) 0.648, (c) 9.08 x 1073

1015 (c}Forxy K Lg, Jlxp)/J{0)=1;
Forxy = Lg =10 um,
J(xp)/J (D) =0.648

10.17 (8) Ve =0.70V, (b) Vee(sat) =0.05Y,
(c)3.41 x 10" holes/cn?,
(d)8.82 X 10" electrons/cm?

10.19 Vep =048V

10.21 (o)lf = 17.4 uA. (b) a= 0.9067.

= 1.36mA, (c) Ic = 19.4 puA
1023 (@) LB | Nno Dr s
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{€) Js; = 13 x 10°% Alem?,
(d)V, = 0.488 V

y(a4) Ne DB XE
. 1.
()(A) ()()T(A)
L ar(C) 1 x
(i) —— 2 (A) |+2 L_ ; (¢) neglect
changes in space charge width,
—Vie\
LI
3(A} eDgngo

27

va
(d) DeviceC
1025 0y Io = 1.19 mA, 7z = 0.829 mA
S
(b)ﬁ— —5 () for Vep < 0.4V,
recombmanon factor will be the limiting factor in
current gain.
1029 (a)xy = 0.742 pm, () S = 0.9999994
1035 (a)V4=47.8V,.(b) V, =334V,
(© Vs =19.0V
10.39 (a) R =893, () V = 8.93mV,
{c) 70.8 percent
(¢) Total solutionis
E
where A = ¥ and
1043 BVego =221V, Ne = 1.5 x 10" cm™,
xc = 6.75um
1045 (a)V,, = 295V: however, junction breakdown
for these doping concentrations is Vg = 70V, so
punchthrough will not be reached.
1047 (a) fz = 0.105 mA. (b) I = 11.9 A,
(o) 1" =10.14 A
10.53 f; =509 MHz
Chapter 11
11.1  (a)ptype, inversion; (b} p type, depletion;
{(c) p type. accumulation: () n type, inversion
113 (a)By trid and error,

115

117
119

Ny = 3.27 x 10" em™?

(B, = —0.518 V

(a) Ny = 4.98 x 10'* em™, () cannot use p*
poly gate, (¢) Ny = 3.43x 10" ¢m™?

O Je=12x 10" em?

Vip = — 1.4+ dpe (a) Vrp = —1.76V,
(D)Vrp = =171V, (¢} Vrp = —0592 V
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By trial and error, N,, = 1.71 x 10'® ¢m™
(@) Vig = =132V, (b) Vr = —0.764V
(B) P, = —L11V, (0) Viy =+0.0012V
(a)C,, =8.63 x 10~% Flem?,

Crp =342 x 107% Flem?,

C ., =0.797 x 1073 Frem?,

C'(inv) = Cyy

{») Same as (u) except C'(inv) = C/ .

(C) V:r r = —0989 \

(a) AVep = —174V,

() AVep = —0.869 V.,

() AVrg =—1.16V

{a) ntype, (b) 1., = 345 A,

() 07, = 1.875x 10" cm™2,

(d} Cry = 150 pF

Vs = 1V, Ip(sat) = 0.00592 mA:

Vee = 3V, I(sat) = 0.716 mA;

Vi =B V. Ip(sat) = 2.61 mA

Vr 2 02V, i1, = 342 cm¥V-s

(a) W/L = 147, (b) W/L = 25.7

(a} gmi = 0.148 mS, (») g,.. = 0.917 mS
Vs =7.92V

(@) fr =5.17 GHz, (b) f; = 1.0 GHz

Chapter 12

12.1

12.3

12.7

Voo
In = 10“5exp((2 T)SV ) r = (0%,

P=1Ir. Vm):for Vs = 0.5V,

In =9.83pA, It =9.83 uA,
P=49.2 uW:for V;5 =07V,

In =0.388 nA, Iy = 0.388 mA.

P =194 mW;for Vs = 0.9V,

In =15.4nA. Iy = 154mA, P =77 mW
{a) AVpg = 1V, AL = 0.0451 jam;
AVps =3V, AL = 0.122 pm;

AVps =5V, AL =0.188 um;

(h) L = 1.88 um

(a) Assume Vjs(sat) = | V then
L=3um= E, =3.33 X 10° Vlcm
L =1 um= Eg = 10*V/cm

L =05 um=> By, =2 x 10* Vicm
(b)Y Assume ji, = 500 cm?/V-s,
v=p,Eg.

L=3pm=v=167 x 10°cm/s

12.13

L=1um=v=35x 10%cm/s

L 0.5 pum = v = 107 cfs

(a) Both bias conditions. Ip == kI,
(h) P = k2P

1215 (a)(H7p = L.764mA,
(i) I, = 0.807 mA:
(b) (i) P = 8.82 mW, (ii) P = 2.42 mW;
(¢} current: 0.457; power: 0.274
1217 L =159 um
1223 AVy = 40118V
1227 (a)Vep =15V, (b)Vy =5V
1231 L =0.844 um
1233 (a) Vr = —0.478V, (b) implant acceptors.
D, =425 x 10" cm 2
12.35 (a) Vr = —0.624 V, (b) implant acceptors,
D, =437 x 10" em™2, (¢) Vr = 1.24V
12.37 (a) Vr = —1.53 V; enhancement PMOS,
(b) implant acceptors,
Dy, =413 x 10" em™2
1239 AV, =-2.09V
Chapter 13
133 (a)Ve =4.91V. () for Vgs =1V,
(Ha-h=0.215 pm,
(ifta — h = 0.0653 ym,
(iiif)a —h = —0.045 pm (zerodepletion width)
135 (@) Vpy = 15.5V.(b) Vs = —4.66 V
137 (a)Vpo = 1.863V, Vp = 0511 V;
(b)()a — h =4.45x 10° cm,
(i)a—h =1.70x 10=* cm
139 (a)For Vps =0. V5 = —1.125V:
(ByFor Ve =1 V. Vs = —-0.125V
1311 Vg5 =0,g, = 0.523x 107 V55 = —0.53V,
2 =0.236 x 107 Vog = =106 V. g, =0
13.13  g..(max) = 1.31 mS/mm
1315 (a) Vpg =259V, Vr = =178,
(P) depletion mode
1317 Vps =0.a—h = 0.716 um;
Vps =2V, a —h = 0545 pm;
Vps =5V, a —h =0410 um
1319 N, 2 5.45 x 10% ecm™?
1321 (a} V,, = 0612V, Vpy = 2,47V,

Vi = —1.86V, Vyyg(sat) = 0.858 V,
(b) add donors, ¥, = 1.64 x 10'¢ em™;
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Ve =0.628V, Vy = =387V,
Vf)j(Sa[) =287V

13.23 (a) W = 2h.4 um; (b) for Vy5 = 04 V
Ip) =788 pA; for Vg = 0.65 V.
Ip(sat) = 0.56 mA

13.29 (a) With velocity saturation.

{1 (sat) = 4.86 mA,; without velocity
saturation, /51 (sat) = 18.2 mA

1331 (@)1 =20 ps, (b) ty = 20 ps

13.33 (a) g,,, =2.82mS, (b) r, = 88.7 ,
(c)L=0.67 um

1335 (&) f+ =755 GHz, (b) /7 = 159 GHz

13.37 (a) g,/ W = 502 mS/mm,

() Ip)(sat)/ W = 537 mA/mm

Chapter 14

141 {a) k= L.24/E
(i) E=0.66 == A= 188 um
(DE=1.12=A=111pum
(i E=1.42 = A =0.873 um
(MH{HA=570nm = E =2.18¢eV
()4 =700NnM= E = 1.77 eV

143 dn=g'v =144 x 10" em™

145 (n)x =1.98 um, (b) x =0.41 um

1411 Iy =500 mA, V, = 0.577V,

l,, =478.3mA. £, =276 mW

1413 Forhv = 17¢V,x =23 um;
Forhv =2.0eV, x = (.23 um

1415 (@) dp =8n = 10" ecm ™3,

(b) Ao = 1.32x 1072 (S2-em) ',
(¢) I, = 0.66mA. (d) T,y = 4.13

1417 (@) Ju, = 9.92 mA/cm?,
(b) Jr = 0.528 AJem*

1419 W=1gum= J, =4.15 mA,
W= 10um= J; = 15.2 mA,
W =100 um = J; = 16 mA,

1421 0.625 <X <0.871 um

14.23 {a) 8.83 percent, () 5.95 percent

Chapter 15

151 |, =533A

15.7 Vee =25V

15.9 (L = 184A L =166A I3 =151 A
P =609 W, P, =548 W, P, =498 W
(b) 1 ,=216A, [, =108A I =177A,
Pl =838W P, =419W, P, =685W

15.11 (H)
(i) Vos =5 V. Ip =025 A. Vs =37.9V,

P=0938W

(||) VGS = 6V, ID =10 A, V[)) =30 V,
P=30W

(i) Vegs =7V, I =225A Vps =175V,
P =394W



