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P R E F A C E  

PHILOSOPHY AND GOALS 

The purpose of the third edition of this book is to provide a basis for understanding 
the characteristics, operation, and limitations of semiconductor devices. In order to 
gain this understanding, it is essential to have a thorough knowledge of the physics of 
the semiconductor material. The goal of this book is to bring together quantum me- 
chanics, the quantum theory of solids, semiconductor material physics. and semicon- 
ductor device physics. All of these components are vital to the understanding of both 
the operation of present day devices and any future development in the field. 

The amount of physics presented in this text is greater than what is covered in 
many introductory semiconductor device books. Although this coverage is more ex- 
tensive, the author has found that once the basic introductory and material physics 
have been thoroughly covered. the physics of the semiconductor device follows quite 
naturally and can he covered fairly quickly and efficiently. The emphasis on the un- 
derlying physics will also be a benefit in understanding and perhaps in developing 
new semiconductor devices. 

Since the objective of this text is to provide an introduction to the theory of 
semiconductor devices, there is a great deal of advanced theory that is not consid- 
ered. In addition. fabrication processes are not described in detail. There are a few 
references and general discussions about processing techniques such as diffusion 
and ion implantation, but only where the results of this processing have direct im- 
pact on device characteristics. 

PREREQUISITES 

This book is intended for junior and senior undergraduates. The prerequisites for un- 
derstanding the material are college mathematics. up to and including differential 
equations, and college physics, including an intn~ductiou to nlodern physics and 
electrostatics. Prior co~npletion of an introductory course in electronic circuits is 
helpful, but not essential. 

ORGANIZATION 

The text begins with the introductory physics, moves on to the semiconductor mate- 
rial physics, and then covers the physics of semiconductor devices. Chapter 1 presents 
an introduction to the crystal structure of solids, leading to the ideal single-crystal 
semiconductor material. Chapters 2 and 3 introduce quantum mechanics and the 
quantum theory of solids, which together provide the necessary basic physics. 

Chapters4 through6 cover the semiconductorlnaterial physics. Chapter4 presents 
the physics of the semiconductor in thermal equilibrium; Chapter 5 treats the transport 



phenomena of the charge carriers in a semiconductor. The nonequilibrium excess car- 
rier characteristics are then developed in Chaptcr 6. Understanding the behavior of ex- 
cess carriers in a semiconductor is vital to the goal of understanding the device physics. 

The physics of the basic semiconductor devices is developed in Chapters 7 through 
13. Chaptcr 7 treats the electrostatics of the basic pn junction. and Chapter 8 covers the 
current-voltage characteristics of the pn junction. Metal-semiconductorjunctions, both 
rectifying and nonrectifying. and semiconductor heterojunctions are considered in 
Chapter 9, while Chapter 10 treats the bipolar transistor. The physics of the metal- 
oxide-semiconductor field-effect transistor is presented in Chapters I I and 12. and 
Chapter 13 covers the junction field-effect transistor. Once the physics of the pn junc- 
tion is developed, the chapters dealing with the three basic transistors may be covered 
in any order-these chapters are written so as not to depend on one another. Chapter 14 
considers optical devices and finally Chapter 15 covers power semiconductor devices. 

USE OF THE BOOK 

The text is intended fhr a one-semester course at the junior or senior level. As with 
most textbooks, there is more material than can be conveniently covered in one 
semester; this allows each instructor some flexibility in designing the course to hislher 
own specific needs. Two poshible orders of presentation are discussed later in a sepa- 
rate section in this preface. However, the text is not an encyclopedia. Sections in each 
chapter that can be skipped without loss of continuity are identified by an asterisk in 
both the table of contents and in the chapter itself. These sections, althoughimportant 
to the development of semiconductor device physics, can he postponed to a later time. 

The material in the text has been used extensively in a course that is required 
for junior-level electrical engineering students at the University of New Mexico. 
Slightly less than half of the semester is devoted to the first six chapters; the remain- 
der of the semester is devoted to the pn junction, thc bipolar transistor. and the metal- 
oxide-semiconductor field-effect transistor. A few other special topics may be briefly 
considered near the end of the semester. 

Although the bipolar transistor is discussed in Chapter I0 before the MOSFET or 
JFET, each chapter dealing with one of the three basic types of transistors is written 
to stand alone. Any one of the transistor types may be covered first. 

NOTES TO THE READER 

This book introduces the physics of semiconductor materials and devices. Although 
many electrical engineering students are more comfortable building electronic cir- 
cuits or writing computer programs than studying the underlying principles of semi- 
conductor devices, the material presented here is vital to an understanding of the 
limitations of electronic devices, such as the microprocessor. 

Mathematics is used extensively throughout the hook. This may at times seem 
tedious, but the end result is an understanding that will not otherwise occur. Although 
some of the mathematical models used to describe physical processes may seem 
abstract, they have withstood the test of time in their ability to describe and predict 
these physical processes. 



The reader is encouraged to continually refer to the preview sections so that the oh- 
jective of the chapter and the purposes of each topic can be kept in mind. This constant 
review is especially important in the first five chapters, dealing with basic physics. 

The reader must keep in mind that, although some sections may be skipped without 
loss of continuity, many instructors will choose to cover these topics. The fact that sec- 
tions are marked with an asterisk does not minimize the importance of these subjects. 

It is also important that the reader keep in mind that there may be questions still 
unanswered at the end of a course. Although the author dislikes the phrase. "it can be 
shown that.. .," there are some concepts used here that rely on derivations beyond 
the scope of the text. This hook is intended as an introduction to the subject. Those 
questions remaining unanswered at the end of the course, the reader is cncouraged to 
keep "in a desk drawer." Then, during the next course in this area of concentration, 
the reader can take out these questions and search for the answers. 

ORDER OF PRESENTATION 

Each instructor has a personal preference for the order in which the course material 
is presented. Listed below are two possible scenarios. The first case, called the clas- 
sical approach, covers the bipolar transistor before the MOS transistor. However, 
because the MOS transistor topic is left until the end of the semester. time constraints 
may shortchange the amount of class time devoted to this important topic. 

The second method of presentation listed, called the nonclassical approach, dis- 
cusses the MOS transistor before the bipolar transistor. Two advantages to this ap- 
proach are that the MOS transistor will not get shortchanged in terms of time devoted 
to the topic and, since a "real device" is discussed earlier in the semester, the reader 
may have more motivation to continue studying thih course material. A possible 
disadvantage to this appn~ach is that the reader may be somewhat intimidated by 
jumping from Chapter 7 to Chapter I I. However. the material in Chapters I I and I? 
is written so that this jump can be made. 

Unfortunately, because of time constraints, every topic in evcry chapter cannot 
be covered in a one-semester course. The remaining topics must be left for a second- 
semester course or for further study by the reader. 

Chapter 1 
Chapters 2, 3 

Chapter 4 
Chapter 5 
Chapter 6 
Chapters 7, 8 
Chapter 9 
Chapter 10 
Chapters 11, 12 

Classical approach 

Crystal structure 
Selectcd topics from quantum 
mechanics and theory of solids 
Srrniconductor physics 
Transpon phenomena 
Selected topic, from nirnequilibriurn characteristics 
The pn junction and diode 
A brief discussion of the Schottky diode 
The bipolar transistor 
The MOS trilnsistor 



Nonclassical approach 

Chapter l Crystal structure 
Chaptcrs 2, 3 Selected topics from quantum 

mechanics and theory of solids 
Chapter 4 Semiconductor physics 
Chapter 5 Transport phenomena 
Chapter 7 The pn junction 
Chapters l I ,  12 The MOS transistor 
Chapter 6 Selected topics from nonequilibrium characteristics 
Chapter 8 The pniunction diode 
Chapter 9 A hrief discussion of the Schottky diode 
Chaoter 10 The bivolar transistor 

FEATURES OF THE THIRD EDITION 

H Preview section: A preview section introduces each chapter. This preview 
links the chapter to previous chapters and states the chapter's goals, i.e., what 
the reader should gain from the chapter. 

H Exumples: An extensive number of worked examples are used throughout the 
text to reinforce the theoretical concepts being developed. These examples 
contain all the details of the analysis or design, so the reader does not have to 
fill in missing steps. 

H Test your underctunding: Exercise or drill problems are included throughout 
each chapter. These problems are generally placed immediately after an 
example problem, rather than at the end of a long section. so that readers can 
immediately test their understanding of the material just covered. Answers are 
given for each drill problem so readers do not have to search for an answer at 
the end of the book. These exercise problelns will reinforce readers' grasp of 
the material before they move on to the next section. 

H Summap section: A summary section, in bullet form, follows the text of each 
chapter. This section sulnmarizes the overall results derived in the chapter and 
reviews the basic concepts developed. 

H Glossary of importunt terms: A glossary of important terms follows the 
Surnmary section of each chapter. This section defines and summarizes the 
most important terms discussed in the chapter. 

H Checkpoint: A checkpoint section follows the Glossary section. This section 
states the goals that should have been met and states the abilities the reader 
should have gained. The Checkpoints will help assess progress before moving 
on to the next chapter. 

H Review questions: A list of review questions is included at the end of each 
chapter. These questions serve as a self-test to help the reader determine how 
well the concepts developed in the chapter have been mastered. 

H End-of-chupterproblems A large number of problems are given at the end of 
each chapter, organized according to the subject of each section in the chapter 



body. A larger number of prohlems have been included than in the hecond 
edition. Design-oriented or open-ended problems ilrf included at the end in a 
Summary and Review section. 

W Computersimulurion: Computer simulation problems are included in niany 
end-of-chapter problems. Computer simulation has not been directly 
incorporated into the text. However, a website has been established that 
considers computer simulation using MATLAB. This website contains 
computer simulations of material considered in most chapters. These computer 
simulations enhance the theoretical material presented. There also are exercise 
or drill problems that a reader may consider. 

W Reading list: A reading list finishes up each chapter. The references, that are 
at an advanced level compared with that of this text, are indicated by an 
asterisk. 
Answers to srlertedprob1em.s: Answers to selected problems are given in the 
last appendix. Knowing the answer to a problem is an aid and a reinforcement 
in problem solving. 

ICONS 
-- Computer Simulations 

Design Problem9 and Examples 

SUPPLEMENTS 

This hook is supported by the following hupplements: 

Solutions Manual available to instructors in paper form and on the website. 
W Power Point slides of important figures are available on the website. 

Computer simulations are available on the wehsite. 
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P R O L O G U E  

Semiconductors and the 
Integrated Circuit 

P R E V I E W  

W e often hear that we are living in the information age. Large amounts of 
information can be obtained via the Internet, for example, and can also be 
obtained quickly over long distances via satellite communication sys- 

tems. The development of the transistor and the integrated circuit (IC) has lead to 
these remarkable capabilities. The IC permeates almost every facet of our daily lives, 
including such things as the compact disk player, the fax machine, laser scanners at 
the grocery store, and the cellular telephone. Oiie of the most drarrraric exarriples of 
IC technology is the digital computer-a relatively small laptop computer today has 
more computing capability than the equipment used to send a man to the moon a few 
years ago. The semiconductor electronics field continues to be a fast-changing one. 
with thousands of technical papers published each year. W 

HISTORY 
The semiconductor device has a fairly long history, although the greatest explosion 
of IC technology has occured during the last two or three decades.' The metal- 
semiconductor contact dates back to the early work of Rraun in 1874, who discov- 
ered the asymmetric nature o f  electrical conduction between metal contacts and 
semiconductors, such as copper, iron, and lead sulfide. These devices were used as 

'This hrief introduction is intended to give a flavor of the history of the arnliconductur devicc and 
integrated circuit. Thousand, of engineers and scientists hake made significant contrihutiun, to the 
development of semtconductor electronics-the few events and naniea mentioned here are >rut meant 
to imply that these are the only significant evenla or people involved in thc semiconductor history. 



detectors in early experiments on radio. In 1906, Pickard took out a patent for a point 
contact detector using silicon and, in 1907. Pierce published rectification character- 
istics of diodes made by sputtering metals onto a variety of semiconductors. 

By 1935. seleniu~ii rectifiers and silicon point contact diodes were available for 
use as radio detectors. With the developlnent of  radar. the ~ ~ e e d  for detector diodes 
and mixers increased. Methods of achieving high-purity silicon and germanium were 
developed during this time. A signiticant advance in our understanding of the metal- 
semiconductor contacr was aided by developments in the smliconductor physics. 
Perhaps most important during this period was Bethe's thcrnmionic-emission theory 
in 1942, according to which thc current is determined by the process of emission of 
electrons into the metal rather than by drift or ditTusion. 

Another big breakthrough calile in December 1947  hen the first transistor was 
constructed and tested at Bell Telephone Laboratories by William Shockley, John 
Bardeen, and Walter Brattain. This tirst trar~sistor was a point contacr device and used 
polycrystalline germanium. The transistor effect was soon demo~istrated in silicon as 
well. A significant improvement occurred at the end of 1949 when single-crystal 
material was used rather than rhe polycrystalline material. The single crysral yields 
uniform and improved properties throughout the whole semiconductor material. 

The next significant step in the derelop~ile~it of the transistor was the use nf thc 
diffusion process to form the necessary junctions. This process allowed better control 
of the transistor characteristics and yielded higher-frequency devices. The diffused 
mesa transistor was co~nmercially available in germaliiur~i in 1957 and in silicon in 
1958. The diffusion process also allowed Inany transistors tc> be fabricated on a sin- 
gle silicon slice. so the cost of these devices decrcased. 

THE INTEGRATED CIRCUIT (IC) 
Up to this point, each component in an electronic circuit had ro he individually con- 
nected by wires. In September 1958. Jack Kilby of Texas Instruments demonstrated 
the first integrated circuit, which was fabricated in germanium. At about the same 
time, Robert Noyce of Fairchild Semiconductor introduced the integrated circuit in 
silicon using a planar technology. The tirst circuit used bipolar transistors. Practical 
MOS transistors were then developed in the mid-'60s. The MOS technologies, espe- 
cially CMOS, have beco~iie a major focus for IC design and development. Silicon is 
the main semiconductor material. Galliu~n arsenide and other con~pound semicon- 
ductors are used for special applications requiring vcry h i ~ h  frequency devices and 
for optical devices. 

Since that first IC, circuit design has become more \ophisticared. and the inle- 
grated circuit more complex. A single silicon chip lnay be on the order of 1 square 
centimeter and contain over a million transistors. Some 1Cs may have more than a 
hundred terminals, while an individual transibtor has only thrce. An IC can contain 
the arithmetic, logic. and memory functions on a single semiconductor chip-the 
primary example of this type of IC is the microprocessor. Intense research on silicon 
processing and increased automation in design and manufacturing have lcd to lower 
costs and higher fabrication yields. 



FABRICATION 
The integrated circuit is a direct result of the development of various processing tech- 
niques needed to fabricate the transistor and interconnect lines on the single chip. 
The total collection of these processes for making an IC is called a rechnolog?. The 
following few paragraphs provide an introduction to a few of these processes. This 
introduction is intended to provide the reader with some of thc basic terminology 
used in processing. 

Thermal Oxidation A major reason for the success of silicon ICs is the fact that an 
excellent native oxide, S O 2 ,  can be formed on the surface of silicon. This oxide is 
used as a gate insulator in the MOSFET and is also used as an insulator, known as the 
field oxide, between devices. Metal interconnect lines that conncct various devices 
can be placed on top of the field oxide. Most other semiconductors do not form na- 
tive oxides that are of sufficient quality to be used in device fabrication. 

Silicon will oxidize at room temperature in air forming a thin native oxide of ap- 
proximately 25 A thick. However, most oxidations are done at elevated temperatures 
since the basic process requires that oxygen diffuse through the existing oxide to the 
silicon surface where a reaction can occur A schematic of the oxidation process 
is shown in Figure 0 .1 .  Oxygen diffuses across a stagnant gas layer directly adjacent 
to the oxide surface and then diffuscs through the existing oxide layer to the silicon 
surface where the reaction between 0 2  and Si forms Si02. Because of this reaction, 
silicon is actually consumed from the surface of the silicon. The amount or  silicon 
consumed is approximately 4 4  percent of the thickness of the final oxide. 

Photomasks and Photolithography Thc actual circuitry on cach chip is created 
through the use of photomasks and photolithography. The photomask is a physical 
representation of a device or a portion of a device. Opaque regions on the mask are 
made of an ultraviolet-light-absorbing material. A photosensitive layer, called p h o ~  
toresist, is first spread over the surface of the semiconductor. The photorcsist is an 
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Figure 0.2 I Schecnatic showing the uqe of a photomask 

organic polymer that undergoes chemical change when exposed to ultraviolet light. 
The photoresist is exposed to ultraviolet light through the photomask as indicated in 
Figure 0.2. The photoresist is thcn developed in a chemical solution. Thc developer 
is used to remove the unwanted portions of the photoresist and generate the appro- 
priate patterns on the silicon. The photomasks and photolithography process is 
critical in that it determines how small the devices can he made. Instead of using 
ultraviolet light, electrons and x-rays can also be used to expose the photoresist. 

Etching After the photoresist pattern is formed, the remaining photoresist can be 
used as a mask, so that the material not covered hy the photoresist can be etched. 
Plasma etching is now the standard process used in IC fabrication. Typically. an etch 
gas such as chlorofluorocarbons are injected into a low-pressure chamber. A plasma is 
created by applying ;I radio-frequency voltage between cathode and anode terminals. 
The silicon wafer is placed on the cathode. Positively charged ions in the pl;~sma are 
accelerated toward the cathode and bombard the wafer normal to the surface. The 
actual chemical and physical reaction at the surface is complex. but the net result is 
that silicon can he etched anisotropically in very selected regions of the wafer. If pho- 
toresist is applied on the surfacc o l  silicon dioxide. then the silicon dioxide can also 
be etched in a similar way. 

Diffusion A thermal process that is used exte~~sively in IC fabrication is diffusion. 
Diffusion is the process hy which specific types of "impurity" atoms can be intro- 
duced into the silicon material. This doping process changes the conductivity type of 
the silicon so that pn junctions can be formed. (The pn junction is a basic building 
block of semiconductor devices.) Silicon wafers are oxidized to f i~rm a layer of sili- 
con dioxide and windows are opened in thc oxide in selected areas using photolitho- 
graphy and etching as just described. 

The wafers are thcn placed in a high-temperature lumace (about 1100 C) and 
dopant atoms such as boron or phosphorus are introduced. The dopant atoms gradu- 
ally diffuse or move into the silicon duc lo a density gradient. Since the diffusion 
process requires a gradient in the concentration of atoms, the final concentration of 



diffused atorns is nonlinear. as shown in Figure 0.3. When the wafer is removed from 
the furnace and the wafer temperature return:, to room temperature, the diffusion co- 
efficient of the dopatit atorns is essentially zero so that the doyant atoms are then 
fixed in the silicon material. 

Ion Implantation A fabrication process that is an alternative to high-temperature 
diffusion is ion implantation. A beam of dopant ions is accelerated to a high energy 
and is directed at the surface of a semiconductor. As the ions enter the silicon, they 
collide with silicon atoms and lose encrgy and finally come to rest at some depth 
within the crystal. Since the collision process is statistical in nature, there is a distri- 
bution in the depth of penetration of the dopant ions. Figure 0.4 shows such an ex- 
ample of the implantarion of boron into silicon at a particular energy. 

Two advantages of the ion implantation prtlcess compared to diffusion are 
( I )  the ion implantation process is a low temperature process and (2) very well de- 
fined doping layers can be achieved. Photoresist layers or layers of oxide can he used 
to block the penetration of dopant atoms so that ion implantation can occur in very 
selected regions of the silicon. 
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Figure 0.4 1 Final concentration of 
ion-implanted homn inlo silicon. 



One disadvantage of ion implantation is that the silicon crystal is damaged 
by the penetrating dopant atoms because of collisions between the incident dopant 
atoms and the host silicon atoms. However, most of the damage can he removed by 
thermal annealing the silicon at an elevated temperature. The thermal annealing tem- 
perature, however, is normally much less that the diffusion process temperature. 

Metallization, Bonding, and Packaging After the semiconductor devices have 
been fabricated by the processing steps discussed. they need to be connected to each 
other to form the circuit. Metal films are generally deposited by a vapor deposition 
technique and the actual interconnect lines are formed using photolithography and 
etching. In general, a protective layer of silicon nitride is finally deposited over the 
entire chip. 

The individual integrated circuit chips are separated by scribing and breaking the 
wafer.The integratedcircuit chip is then tnounted in apackage. Lead bonders are finally 
used to attach gold or aluminum wires between the chip and package terminals. 

Summary: Simplified Fabrication of a pn Jnnctiun Figure 0.5 shows the basic 
steps in fomung a pn junction. These steps involve some of the processing described 
in the previous paragraphs. 
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T E R  

The Crystal Structure of Solids 

P R E V I E W  

T his text deals with the electrical properties and characteristics of semicon- 
ductor materials and devices. The electrical properties of solids are therefore 
of primary interest. The semiconductor is in general a single-crystal material. 

The electrical properties of a single-crystal material are determined not only by the 
chemical composition but also by the arrangement of atoms in the solid; t h i ~  being 
true, a brief study of the crystal structure of solids is warranted. The formation, or 
growth, of the single-crystal material is an important part of semiconductor technol- 
ogy. A short discussion of several growth techniques is included in this chapter to 
provide the reader with some of the terminology that describes semiconductor device 
structures. This introductory chapter provides the necessary background in single- 
crystal materials and crystal growth for the basic understanding of the electrical 
properties of semiconductor materials and devices. H 

1.1 I SEMICONDUCTOR MATERIALS 
Semiconductors are a group of materials having conductivities between those of met- 
als and insulators. Two general classifications of semiconductors are the elemental 
semiconductor materials, found in group IV of the periodic table, and the compound 
semiconductor materials, most of which are formed from special combinations of 
group I11 and group V elements. Table 1.1 shows a portion of the periodic table in 
which the more common semiconductors are found and Table 1.2 lists a few of the 
semiconductor materials. (Semiconductors can also be formed from combinations of 
group I1 and group VI elements. but in general these will not beconsidered in this text.) 

The elemental materials, those that are composed of single species of atoms, are 
silicon and germanium. Silicon is by far the most common semiconductor used in in- 
tegrated circuits and will be emphasized to a great extent. 
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Table 1.1 1 A portion Table 1.2 1 A list of some semiconductor 
of the periodic table n~aterials 

111 IV V Elemental semiconductors 

B C Si Silicon 
Al Si P Ge Germanium 
Ga Gr As 
In Sb Compound semiconductors 

AIP Aluminurn phosphide 
Al As Aluminum arsenide 
Gap Gallium phosphidr 
GaAs Galliom arscnidc 
InP Indium phosphide 

The two-element, orbinur\: compounds such as gallium arsenide or gallium phos- 
phide are formed by combining one group 111 and one group V element. G.11' 'I lum 
arsenide is one of the more common of the compound semiconductors. Its good optical 
properties make it useful in optical devices. GaAs is also used in specialized applica- 
tions in which, for example, high speed is required. 

We can also form a three-element, or ternor3 compound semiconductor. An ex- 
ample is A1,Gal-,As, in which the subscript x indicates the fraction of the lower 
atomic number element component. More complex semiconductors can also be 
formed that provide flexibility when choosing material properties. 

1.2 1 TYPES OF SOLIDS 
Amorphous, polycrystalline, and single crystal are the three general types of solids. 
Each type is characterized by the size of an ordered region within the material. An or- 
dered region is a spatial volume in which atoms or molecules have a regular geomet- 
ric arrangement or periodicity. Amorphous materials have order only within a few 
atomic or molecular dimensions, while polycrystalline materials have a high degree 

Figure 1.1 I Schematics of three general types of clystals: (a) amorphous, (b) polycrystalline, 
(c) single crystal. 



of order over many atomic or molecular dimensions. These ordered regions. or 
single-crystal regions, vary in size and orientation with respect to one another. The 
single-crystal regions are called grains and are separated from one another by grain 
boundaries. Single-crystal materials, ideally, have a high degree of order, or regular 
geometric periodicity, throughout the entire volume of the material. The advantage 
of a single-crystal material is that. in general, its electrical properties are superior to 
those of a nonsingle-crystal material, since grain boundaries tend to degrade the 
electrical characteristics. Two-dimensional representations of amorphous, polycrys- 
talline, and single-crystal materials are shown in Figure 1.1. 

1.3 1 SPACE LATTICES 
Our primary concern will be the single crystal with its regular geometric periodicity 
in the atomic arrangement. A representative unit, or group of atoms, is repeated at 
regular intervals in each of the three dimensions to form the single crystal. The pen- 
odic arrangement of atoms in the crystal is called the lattice. 

1.3.1 Primitive and Unit Cell 

We can represent a particular atomic array by a dot that is called a lattice point. 
Figure 1.2 shows an infinite two-dimensional array of lattice points. The simplest 
means of repeating an atomic array is by translation. Each lattice point in Figure 1.2 
can be translated a distance a ,  in one direction and a distance bl in a second nonco- 
linear direction to generate the two-dimensiunal lattice. A third noncolinear transla- 
tion will produce the three-dimensional lattice. The translation directions need not 
be perpendicular. 

Since the three-dimensional lattice is a periodic repetition of a group of atoms, 
we do not need to consider the entire lattice, but only a fundamental unit that is being 
repeated. A unit cell is a small volume of the crystal that can be used to reproduce the 
entire crystal. Aunit cell is not a unique entity. Figure 1.3 shows several possible unit 
cells in a two-dimensional lattice. 

Figure 1.2 I Two-dimensional Figure 1.3 I Two-dimensional representation of a single-crystal 
represenldtiun of a single-crystal lattice. lattice showing various possible unit cells. 
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Figure 1.4 1 A generalized 
primitive unit cell. 

The unit ccll A can be translated in directions o: and hz ,  the unit ccll B can be 
translated in directions ai  and Oz. and the entire two-dimensional lattice can be con- 
structed by the translations of either of these unit cells. The unit cells C and D in Fig- 
ure 1.3 can also be used to construct the entire lattice by using the appropriate trans- 
lations. This discussion of two-dimensional unit cells can easily be extended to three 
dimensions to describe a real single-crystal material. 

Aprirnitive cell is the smallest unit cell that can be repeated to form the lattice. 
In many cases, it is more convenient to use a unit cell that is not a primitive cell. Unit 
cells may be chosen that have orthogonal sides, for example, whereas the sides of a 
primitive cell may be nonorthogonal. 

A generalized three-dimensional unit cell is shown in Figure 1.4. The relation- 
ship between this cell and the lattice is characterized by three vectors Z, 6, and ?, 
which need not be perpendicular and which may or may not be equal in length. Every 
equivalent lattice point in the three-dimensional crystal can he found using the vector 

wherep, q, and s are integers. Since the location of the origin is arbitrary, we will let 
p. q, and J be positive intcgers for simplicity. 

1.3.2 Basic Crystal Structures 

Before we discuss the semiconductor crystal, let us consider three crystal structures 
and determine some of the basic characteristics of these crystals. Figure 1.5 shows 
the simple cubic, body-centered cubic, and face-centered cubic structures. For these 
simple structures, we may choose unit cells such that the general vectors a, 6, and 7 
are perpendicular to each other and the leneths are equal. The simple cubic (sc) struc- 
ture has an atorn located at each corner: the hod?-centered rubic (bcc) structure has 
an additional atom at the center of the cube; and the fore-cenrrr~,dr~nrhic (fcc) structure 
has additional atoms on each face plane. 

By knowing the crystal structure of a material and its lattice dimensions, we can 
determine several characteristics of the crystal. For example, we can determine the 
volume density of atoms. 



Figure 1.5 I Three lattice types: (a) simple cuhic. (b) budy-centered cubic. ( c )  face-centered cuhic. 

Objective I EXAMPLE 1.1 

To find the volume density of atoms in a crystal. 
Consider a single-crystal material that is a body-centered cuhic with a lattice constant 

a = 5 A = 5 x cm. A corner arom is shared by eight unit cells which meet at each corner 
so that each comer atom effectively contrihutes one-eighth of its volume to each unit cell. The 
eight comer atoms then contribute an equivalent of one atom to the unit cell. If we add the body- 
centered atom to the comer atoms. each unit cell contains an equivalent of two atoms. 

w Solution 
The volume density of atoms is then found as 

2 atoms 
Density = = 1.6 x 10" atoms per cm' 

( 5  10-93 

Comment 
'Thc volume density of atoms just calculated represents the order of magnitude of density for 
most materials. The actual density is a function of the cryrtal type and crystal structure since 
the packing density-number of atomc per unit cellLdepends un crystal structure. 

TEST YOUR UNDERSTANDING 1 
El.1 The lattice ci~nstant of a face-centered-cubic structurc is 4.75A. Determine the vol- 

ume density of atoms. (,-U3 ziO1 X EL'C 'SuQ) 
E1.2 The volume deniity of atoms for a simple cubic lattice is 3 x 10" c m 3 .  Assume that 

the atoms are hard spheres with each atom touching its nearest neighbor. Determine 
the lattice constant and the radium of the atom. (y 19.1 = J 'V ZZ'C = "u 3uV) 

1.3.3 Crystal Planes and Miller Indices 

Since real crystals are not infinitely large, they eventually terminate at a surface. 
Semiconductor devices are fabricated at or near a surface, so the surface properties 
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may influence the device chnracteristics. We would like to be able to describe these 
surfaces in terms of the lattice. Surfaceces, or planes through the crystal, can be de- 
scribed by first considering the intercepts of the plane along the ; , b ,  and ? axes used 
to describe the lattice. 

EXAMPLE 1.2 I Objective 

To describe the plane shown in Figure 1.6. (The lattice points in Figure 1.6 are shown along 
the 5 .6 ,  and? axes only.) 

Figure 1.6 1 A representative crystal 
latt~ce plane. 

Solution 
Fmm Equation (1.1). the intercepts of the plane correspond t o p  = 3, y = 2, and s = I. Now 
write the reciprocals of the intercepts, which gives 

Multiply by the lowest common denominator, which in this case is 6. to obtain (2, 3, 6). The 
plane in Figure 1.6 is then referred to as the (236) plane. The integers are referred to as the 
Miller indices. We will refer to a general plane as the (hkl) plane. 

Comment 
We can show that the same three Miller indices are obtained for any plane that is parallel to the 
one shown in Figure 1.6. Any parallel plane is entircly equivalent to any other 

Three planes that are commonly considered in a cubic crystal are shown in Fig- 
ure 1.7. The plane in Figure I .7a is parallel to the b and i: axe5 s o  the intercepts are 
given as p = 1, q = m, and s = m. Taking the reciprocal, we obtain the Miller in- 
dices as ( I ,  0 ,  0), s o  the plane shown in Figure 1.7a is referred to as the (100) plane. 
Again, any plane parallel to  the one shown in Figure 1.7a and separated by an integral 



(hi 

Figurn 1.7 1 Three latt~ce planes: (a) (100) plane. (b) ( I  10) plane. ( c )  ( I l l )  plane. 

number of lattice constants is equivalent and is referred to as the (100) plane. One ad- 
vantage to taking the reciprocal of the intercepts lo obtain the Miller indices is that the 
use of infinity is avoided when describing a plane that is parallel to an axis. If we were 
to describe a plane passing through the origin of our system, we would obtain infin- 
ity as one or more of the Miller indices after taking the reciprocal of the intercepts. 
However, the location of the origin of our system is entirely arbitrary and so, by trans- 
lating the origin to another equivalent lattice point. we can avoid the use of infinity in 
the set of Miller indices. 

For the simple cubic structure, the body-centered cubic. and the face-centered 
cubic, there is a high degree of syrnmctry. The axes can be rotated by 90" in each of the 
three dimensions and each lattice point can again be described by Equation (1. I )  as 

Each face plane of the cubic structure shown in Figure 1.7a is entirely equivalent. 
These planes are grouped together and are referred to as the [ 100) set of planes. 

We may also consider the planes shown in Figures 1.7b and 1 . 7 ~ .  The intercepts 
of the plane shown in Figure 1.7b are p = 1, q = I ,  and s = cm. The Miller indices 
are found by taking the reciprocal of these intercepts and, as a result, this plane is 
referred to as the (I 10) plane. In a similar way, the plane shown in Figure 1 . 7 ~  is re- 
ferred to as the (I l I)  plane. 

One characteristic of a crystal that can be determined is the distance between 
nearest equivalent parallel planes. Another characteristic is the surface concentration 
of atoms, number per square centimeter (#/cml), that are cut by a particular plane. 
Again, a single-crystal semiconductor is not infinitely large and must terminate at 
some surface. The surface density of atoms may be important, for example, in deter- 
mining how another material, such as an insulator, will "fit" on the surface of a semi- 
conductor material. 
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EXAMPLE 1.3 1 Objective 

To calculate the surface density of atoms on a panicular plane in a crystal. 
Consider the body-centered cubic structure and the (110) plane shown in Figure 1.8a. 

Assume the atoms can be represented as hard spheres with the closest atoms touching rach 
other. Assume the lattice constant is a, = 5 A. Figure 1.8b shows how (he atoms are cut by the 
(110) plane. 

The atom at each corner is shared by four similar equivalent lattice planes. so each corner 
atom effectively contributes one-fourth of its area la this latticc plane as indicated in the fig- 
ure. The four corner atoms then effectively contrihute one atom to this lattice plane. The atom 
in the center is completely enclosed in the lattice plane. There is no other equivalent plane that 
cuts the center atom and the comer atoms, so the entire center atom is included in the nurnher 
of atoms in the crystal plane. The lattice plane in Figure 1.8b. then. contains two atoms. 

Figurn 1.8 1 (a) The (110) plane in a body-cenleredcubic and (b) the atoms cut by the 
(110) plane in a body-centered cubic. 

Solution 
We find the surface density by dividing the number of lattice atoms by the surface area, a r  in 
this case 

2 atoms - - 2 
Surface density = 

(al)(oI &) (5  x 10- ' )~(&) 

which is 

Comment 
The surface density o i  atoms is a function of the panicular crystal plane in the lattice and gen- 
erally varier from one crystal plane to another 



TEST YOUR UNDERSTANDING 

E1.3 Determine the distance between nearest (110) planes in a simple cubic lattice with a 
lattice constant of rro = 4.83 A.  (YZVE 'SUV) 

E1.4 The lattice constant of a face-centered-cubic structure is 4.75 A. Calculate the surface 
density of atoms for (a) a (100) plane and (b) a (1  10) plane. 
[z-"3 vlO1 X LZ.9 (9) ';-UIS +,Ol X 98'8 (n) 'SUVI 

Inaddition todescribingcrystal planes in a lattice, we may want todescribe npar- 
ticulardirection in the crystal. The direction can be expressed as a set of three integers 
which are the components of a vector i n  that direction. For cxample, the body diago- 
nal in a simple cubic lattice is composed of vector components I. 1 ,  I. Thc body diag- 
onal is then described as the [I I I ]direction. The brackets are used to designate direc- 
tion as distinct from the parentheses used for the crystal planes. The three basic 
directions and the associated crystal planes for the simple cubic structure are shown in 
Figure 1.9. Note that in the simple cubic lattices, the [hkll direction is perpendicular to 
the (hkl) plane. This perpendicularity may not be true in noncubic lattices. 

13.4 The Diamond Structure 

As already stated, silicon is the most common se~niconductor material. Silicon is re- 
ferred to as a group 1V element and has a diamond crystal structure. Germanium is 
also a group 1V element and has the same diamond structure. A unit cell of the. dia- 
mond structure, shown in Figure 1.10, is more complicated than the simple cubic 
structures that we have considered up to this point. 

We may begin to understand the diamond lattice by considering the tetrahedral 
structure shown in Figure I .  1 I. This structure is basically a body-centered cubic with 

Figure 1.9 1 Three lattice directions and planes: (a) (100) plane and 11001 directiun, (b) ( I  10) plane and [ I  101 directian. 
(c) ( I  11) plane and [I 1 1  I direction. 
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Figure 1.11 I The tetrahedral 
structure uf closest lieiehbors 

Figure 1.10 1 Thc diamond structure. in the diamond latticc. 

Figure 1.12 I Portions of the diamond lattice: (a) bottom half and (b) top half 

four of the comer atoms missing. Every atom in the tetrahedral structure has four 
nearest neighbors and it is this structure which is the basic building block of the dia- 
mond lattice. 

There are several ways to visualize the diamond structure. One way to gain a fur- 
ther understanding of the diamond lattice is by considering Figure l .  12. Figure l .  12a 
shows two body-centercd cubic, or tetrahedral, structures diagonally adjacent to each 
other. The shaded circles represent atoms in the lattice that are generated when the 
structure is translated to the right or left, one lattice constant, a. Figure 1.12b repre- 
sents the top half of the diamond structure. The top half again consists of two tetra- 
hedral structures joined diagonally, but which are at 90" with respect to the bottom- 
half diagonal. An important characteristic of the diamond lattice is that any atom 
within the diamond structure will have four nearest neighboring atoms. We will note 
this characteristic again in our discussion of atomic bonding in the next section. 
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Figure 1.14 1 The tetrahedral 
structure of closest neighbors in 

Figure 1.13 1 The zincblende (sphalerite) lattice of GdAs. the zincblende lattice 

The diamond structure refers to the particular lattice in which all atoms are of the 
same species, such as silicon or germanium. The rincblende (sphalerite) structure 
differs from the diamond structure only in that there are two different types of atoms 
in the lattice. Compound semiconductors, such as gallium arsenide, have the zinc- 
blende structure shown in Figure 1.13. The important feature of both the diamond 
and the zincblende structures is that the atoms are joined together to form a tetrahe- 
dron. Figure 1.14 shows the basic tetrahedral structure of GaAs in which each Ga 
atom has four nearest As neighbors and each As atom has four nearest Ga neighbors. 
This figure also begins to show the interpenetration of two sublattices that can be used 
to generate the diamond or zincblende lattice. 

TEST YOUR UNDERSTANDING 

E1.5 The lattice constant of silicon is 5.43 A. Calculate the volume density of silicon 
atoms. ((_U13 izO1 X S 'SUV) 

1.4 1 ATOMIC BONDING 
We have been considering various single-crystal structures. The question arises as to 
why one particular crystal structure is favored over another for a particular assembly 
of atoms. Afundamental law of nature is that the total energy of a system in thermal 
equilibrium tends to reach a minimum value. The interaction that occurs between 
atoms to form a solid and to reach the minimum total energy depends on the type of 
atom or atoms involved. The type of bond, or interaction, between atoms, then, de- 
pends on the particular atom or atoms in the crystal. If there is not a strong bond be- 
tween atoms, they will not "stick together" to create a solid. 
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The interaction between atoms can be described by quantum mechanics. Al- 
though an introduction to quantum mechanics is presented in the next chapter, the 
quantum-mechanical description of the atomic bonding interaction is still beyond the 
scope of this text. We can nevertheless obtain a qualitative understanding of how v a r ~  
ious atoms interact by considering the valence, or outermost, electrons of an atom. 

The atoms at the two extremes of the periodic table (excepting the inert ele- 
ments) tend to lose or gain valence electrons, thus forming ions. These ions then es- 
sentially have complete outer energy shells. The elements in group 1 of the periodic 
table tend to lose their one electron and become positively charged. while the ele- 
ments in group V11 tend to gain an electron and become negatively charged. These 
oppositely charged ions then experience a coulo~nb attraction and form a bond re- 
ferred to as an ionic bond Tf the ions were to get too close, a repulsive force would 
become dominant, so an equilibrium distance results between these two ions. In a 
crystal, negatively charged ions tend to be surrounded by positively charged ions and 
positively charged ions tend to he surrounded by negatively charged ions, so a peri- 
odic array of the atoms is formed to create the lattice. A classic example of ionic 
bonding is sodium chloride. 

The interaction of atoms tends to form closed valence shells such as we see in 
ionic bonding. Another atomic bond that tends to achieve closed-valence energy 
shells is covalent bonding, an example of which is found in the hydrogen molecule. 
A hydrogen atom has one electron and needs one more electron to complete the low- 
est energy shell. A schematic of two noninteracting hydrogen atoms, and the hydro- 
gen molecule with the covalent bonding, are shown in Figure 1.15. Covalent hond- 
ing results i n  electrons being shared between atoms, so that in effect the valence 
energy shell of each atom is full. 

Atoms in group 1V of the periodic table, such as silicon and germanium, also 
tend to form covalent bonds. Each of these elements has four valence electrons and 
needs four more electrons to complete the valence energy shell. If a silicon atom, for 
example, has four nearest neighbors, with each neighbor atom contributing one va- 
lence electron to be shared. then the center atom will in effect have eight eleclrons in 
its outer shell. Figure 1.16a schematically shows live noninteracting silicon atoms 
with the four valence electrons around each atom. A two-dimensional representation 

Figure 1.15 I Represcntation of 
(a) hydrogen valence electrons (a1 (b) 

and (b) covalent bonding in a Figure 1.16 1 Representation of (a) silicon valence 
hydrogen mnolecule. electrons and (b) covalent bonding in the silicon crystal. 
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of the covalent bonding in silicon is shown in Figure I.l6b. The center atom has 
eight shared valence electrons. 

A significant difference between the covalent bonding of hydrogen and of sili- 
con is that, when the hydrogen molecule is formed, it has no additional electrons to 
form additional covalent bonds, while the outer silicon atoms always have valence 
electrons available for additional covalent bonding. The silicon array may then be 
formed into an infinite crystal, with each silicon atom having four nearest neighbors 
and eight shared electrons. The four nearest neighbor5 in silicon forming the covalent 
bond correspond to the tetrahedral structure and the diamond lattice, which were 
shown in Figures 1 . I  1 and 1.10, respectively. Atomic bonding and crystal structure 
are obviously directly related. 

The third major atomic bonding scheme is referred to as metallic honding. 
Group I elements have one valence cleclron. If two sodium atoms ( Z  = 1 I), for ex- 
ample. are brought into close proximity, the valence electrons interact in a way sim- 
ilar to that in covalent bonding. When a third sodium atom is brought into close prox- 
imity with the first two, the valence electrons can also interact and continue to form 
a bond. Solid sodium has a body-centered cubic structure, so each atom has eight 
nearest neighbors with each atom sharing many valence electrons. We may think of 
the positive metallic ions as being surrounded by a sea of negative electrons, the solid 
being held together by the electrostatic forces. This description gives a qualitative 
picture of the metallic bond. 

A fourth type of ato~iiic bond. called the W I ~  der Waals bond, is the weakest of 
the chemical bonds. A hydrogen fluoride (HF) molecule, for example, is formed by 
an ionic bond. The effective center of the positive charge of the molecule is not the 
same as the effective center of the negative charge. This nonsymlnetry in the charge 
distribution results in a small electric dipole that can interact with the dipoles of other 
HF molecules. With these weak interactions, solids formed by the Van der Wcvals 
bonds have a relatively low melting temperature-in fact, most of these materials are 
in gaseous form at room temperature. 

*1.5 1 IMPERFECTIONS AND IMPURITIES 
IN SOLIDS 

Up to this point, we have been considering an ideal single-crystal structure. In a real 
crystal, the lattice is not perfect, hut contains imperfections or defects; that is, the per- 
fect geometric periodicity is disrupted in some manner. Imperfections tend to alter thc 
electrical properties of a material and, in some cases, electrical parameters can be 
dominated by these defects or impurities. 

1.5.1 Imperfections in Solids 

One type of imperfection that all crystals have in common is atomic thermal vihra- 
tion. Aperfect single crystal contains atoms at particular lattice sites, the atoms sep- 
arated from each other by a distance we have assumed to be constant. The atoms in a 

- 
*Indicates sections that can bc skipped without loss of continuity. 
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Figure 1.17 I Two-dimensional representation of a single-crystal lattice showing (a) a vacancy defect 
and (b) an inlentitial deiect. 

crystal, however, have a certain thermal energy, which is a function of temperature. 
The thermal enerev causes the atoms to vibrate in a random manner about an eaui- -, 
librium lattice point. This random thermal motion causes the distance between atoms 
to randomly fluctuate, slightly disrupting the perfect geometric arrangement of atoms. 

~ ~ 

This imperfection, called lattice vibrations, affects some ele~.trical parameters, as we 
will see later in our discussion of semiconductor material characteristics. 

Another type of defect is called apoint defect. There are several of this type that 
we need to consider. Agdin, in an ideal single-crystal lattice, the atoms are arranged 
in a perfect periodic arrangement. However, in a real crystal, an atom may be missing 
from a particular lattice site. This defect is referred to as a vacuncy; it is schematically 
shown in Figure 1.17a. In another situation, an atom may be located between lattice 
sites. This defect is referred to as an inter~titiul and is schematically shown in Fig- 
ure 1.17b. In the case of vacancy and interstitial defects, not only is the perfect geo- 
metric arrangement of atoms broken, but also the ideal chemical bonding between 
atoms is disrupted, which tends to change the electrical properties of the material. A 
vacancy and interstitial may be in close enough proximity lo exhibit an interaction 
between the two point defects. This vacancy-interstitial defect, also known as a 
Frenkel defect, produces different effects than the simple vacancy or interstitial. 

The point defects involve single atoms or single-atom locations. In forming 
single-crystal materials, more complex defects may occur. A line defect. for example, 
occurs when an entire row of atoms is missing from its no~mal lattice site. This de- 
fect is referred to as a line disiucation and is shown in Figure 1.18. As with a point 
defect, a line dislocation disrupts both the normal geometric periodicity of the lattice 
and the ideal atomic bonds in the crystal. This dislocation can also alter the electrical 
properties of the material, usually in a more unpredictable manner than the simple 
point defects. 

Other complex dislocations can also occur in it crystal lattice. However. this in- 
troductory discussion is intended only to present a few of the basic types of defect, 
and to show that a red  crystal is not necessarily a perfect lattice structure. The effect 
of these imperfections on the electrical properties of a semiconductor will be consid- 
ered in later chapters. 
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Figure 1.18 I A two- 
dimensional representation 
of a line di~location. 

Figurn 1.19 1 Two-dimensional representation of a single-crystal lattice ~howing (a) a substitutional impurity 
and (b) an intersitital impurity. 

1.5.2 Impurities in Solids 

Foreign atoms, or impurity atoms, may be present in a crystal lattice. Impurity atoms 
may be located at normal lattice sites, in which case they are called .sub,sritutionul im- 
purities. Impurity atoms may also be located between normal sites, in which case 
they are called interstitial impurities. Both these impurities are lattice defects and are 
schematically shown in Figure 1.19. Some impurities, such as oxygen in silicon, tend 
to he essentially inert; however, other impurities, such as gold or phosphorus in sili- 
con, can drastically alter the electrical properties of the material. 

In Chapter 4 we will see that, by adding controlled amounts of particular impu- 
rity atoms, the electrical characteristics of a semiconductor material can be favorably 
altered. The technique of adding impurity atoms to a semiconductor material in order 
to change its conductivity is called <loping. There are two general methods of doping: 
impurity diffusion and ion implantation. 

The actual diffusion process depends to some extent on the material but, in gen- 
eral, impurity diffusion occurs when a semiconductor crystal is placed in a high- 
temperature (= 1000°C) gaseous atmosphere containing the desired impurity atom. 
At this high temperature, many of the crystal atoms can randomly move in and out of 
their single-crystal lattice sites. Vacancies may be created by this random motion so 
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that impurity atoms can move through the lattice by hopping from one vacancy to an- 
other. Impurity diffusion is the process by which impurity particles move from a re- 
gion of high concentration near the surface, to a region of lower concentration within 
the crystal. When the temperature decreases, the impurity atoms become permanently 
frozen into the substitutional lattice sites. Diffusion of various impurities into selected 
regions of a semiconductor allows us to fabricate complex electronic circuits in a 
single semiconductor crystal. 

Ion implantation generally takes place at a lower temperature than diffusion. A 
beam of impurity ions is accelerated to kinetic energies in the range of 50 keV or 
greater and then directed to the surface of the semiconductor. The high-energy impu- 
rity ions enter the crystal and come to rest at some average depth from the surface. 
One advantage of ion implantation is that controlled nitmbers of impurity atoms can 
be introduced into specific regions of the crystal. A disadvantage of this technique is 
that the incident impurity atoms collide with the crystal atoms. causing lattice- 
displacement damage. However, most of the lattice damage can he removed by ther- 
mal annealing, in which the temperature of the crystal is raised for a short time. Ther- 
mal annealing is a required step after implantation. 

*1.6 1 GROWTH OF SEMICONDUCTOR 
MATERIALS 

The success in fabricating very large scale integrated (VLSI) circuits is a result, to a 
large extent, of the development of and improvement in the formation or growth of 
pure single-crystal semiconductor materials. Semiconductors are some of the purest 
materials. Silicon, for example, has concentrations of most impurities of less than 
1 part in 10 billion. The high purity requirement means that extreme care is necessary 
in the growth and the treatment of the material at each step of the fabrication process. 
The mechanics and kinetics of crystal growth are extremely complex and will be de- 
scribed in only very general t e r m  in this text. However, a general knowledge of the 
growth techniques and terminology is valuable. 

1.6.1 Growth from a Melt 

A common technique for growing single-crystal materials is called the Czochralski 
method. In this technique, a small piece of single-crystal material, known as a seed, 
is brought into contact with the surface of the same material in liquid phase, and then 
slowly pulled from the melt. As the seed is slowly pulled, solidification occurs along 
the pkane between the solid-liquid interface. Usually the crystal is also rot.dted slowly 
as it is being pulled, to provide a slight stirring action to the melt, resulting in a inore 
uniform temperature. Controlled amounts of specific impurity atoms, such as boron 
or phosphorus, may be added to the melt so that the grown semiconductor clystal is 
intentionally doped with the impurity atom. Figure 1.20 shows a schematic of the 
Czochralski growth process and a silicon ingot or boule grown by this process. 

*Indicates sections that can be skipped without loss of continuity 
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Figure 1.20 1 (a) Model of a cry~tal puller and (b) photograph of a silicon wafer with an 
may of integrated circuits. The circuits are tertcd on the wafer then sawed apan into chips 
that are mounted into packages. (Photo comtrsy of Intel Corporation.) 
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Some impurities may be present in the ingot that are undesirable. Zone refining 
is a common technique for purifying material. A high-temperature coil. or r-f induc- 
tion coil, is slowly passed along the length of the boule. The temperature induced by 
the coil is high enough so that a thin layer of liquid is formed. At the solid-liquid in- 
terface, there is a distrihution of impurities between the two phases. The parameter 
that describes this distrihution is called the segregation coeflcient: the ratio of the 
concentration of impurities in the solid to the concentration in the liquid. If the seg- 
regation coefficient is 0.1, for example, the concenlration of impurities in the liquid 
is a factor of 10 greater than that in the solid. As thc liquid zone moves through the 
material. the impurities are driven along with the liquid. After several passes of the 
r-f coil, most impurities are at the end of the bar, which can then be cut off. The mov- 
ing molten zone, or the zone-refining technique, can result i n  considerable purification. 

After the semiconductor is grown, the boule is mechanically trimmed to the 
proper diameter and a Rat is ground over the entire length of the boule to denote the 
crystal orientation. The Rat is perpendicular to the [ 1101 direction or indicates the (I 10) 
plane. (See Figure 1.20b.) This then allows the individual chips to be fabricated along 
given crystal planes so that thechips can he sawed apan more easily. The boule is then 
sliced into wafers. The wafer must he thick enough to mechanically support itself. A 
mechanical two-sided lapping operation produces a Rat wafer of uniform thickness. 
Since the lapping procedure can leave a surface damaged andcontaminated by the me- 
chanical operation, the surface must be removed by chemical etching. The final step is 
polishing. This provides a smooth surface on which devices may be fabricated or fur- 
ther growth processes may be carried out. This final semiconductor wafer is called the 
substrate material. 

1.6.2 Epitaxial Growth 

A common and versatile growth technique that is used extensively in device and in- 
tegrated circuit fabrication is epitaxial growth. Epitaxial growth is a process whereby 
a thin, single-crystal layer of material is grown on the surface of a single-crystal sub- 
strate. In the epitaxial process, the single-crystal substrate acts as the seed, although 
the process takes place far below the melting temperature. When an epitaxial layer is 
grown on a substrate of the same material, the process is termed homoepitaxy. Grow- 
ing silicon on a silicon substrate is one example of a homoepitaxy process. At pre- 
sent, a great deal of work is being done with heteroepitaxy. In a heteroepitaxy 
process, although the substrate and epitaxial materials are not the same, the two crys- 
tal structures should be very similar if single-crystal growth is to he obtained and if 
a large number of defects are to be avoided at the epitaxial-substrate interface. 
Growing epitaxial layers of the ternary alloy AlGaAs on a GaAs substrate is one ex- 
ample of a heteroepitaxy process. 

One epitaxial growth technique that has been used extensively is called chemi- 
cal vapor-phase deposition (CVD). Silicon epitaxial layers, for example, are grown 
on silicon substrates by the controlled deposition of silicon atoms onto the surface 
from a chemical vapor containing silicon. In one method, silicon tetrachloride reacts 
with hydrogen at the aurface of a hcated substrate. The silicon atoms are released in 



the reaction and can he deposited onto the substrate, while the other chemical reac- 
tant, HCI, is in gaseous form and is swept out of the reactor. A sharp demarcation be- 
tween the impurity doping in the suhstrate and in the epitaxial layer can be achieved 
using the CVD process. This technique allows great flexibility in the fabrication of 
semiconductor devices. 

Liquid-phase epitnry is another epitaxial growth technique. A compound of the 
semiconductor with another element may have a melting temperature lower than that 
of the semiconductor itself. The semiconductor substrate is held in the liquid com- 
pound and, since the temperature of the melt is lower than the melting temperature of 
the substrate, the substrate does not melt. As  the solution is slowly cooled, a single- 
clystal semiconductor layer grows on the seed crystal. This technique, which occurs 
at a lower temperature than the Czochralski method, is useful in growing group Ill-V 
compound semiconductors. 

A versatile technique for growing epitaxial layers is the molerular bean1 epitaxy 
(MBE) process. Asubstrate is held in vacuum at a temperature normally in the range 
of 400 to 800"C, a relatively low temperature compared with many semiconductor- 
processing steps. Semiconductor and dopant atoms are then evaporated onto the sur- 
face of the substrate. In this technique, the doping can he precisely controlled result- 
ing in vety complex doping profiles. Complex ternary compounds, such as AIGaAs, 
can be grown on substrates, such as GaAs, where abrupt changes in the crystal com- 
position are desired. Many layers of various types of epitaxial compositions can be 
grown on a substrate in this manner. These structures are extremely beneficial in op- 
tical devices such as laser diodes. 

1.7 1 SUMMARY 
A few of the most common semiconductor (materials were listed. Silicon is the most 
common semiconductor material. 
The properties of semiconductors and other materials are determined to a large extent 
by the single-crystal lattice structure. The unit cell is a small volume of the crystal that 
is used to reproduce the entire crystal. Three basic unit cells are the simple cuhic. hody- 
centered cubic. and face-centered cubic. 
Silicon has the diamond crystal structure. Atoms are formed in a tetrahedral contigura- 
tion with four nearest neighbor atoms. The binary semiconductors have a zincblrnde 
lattice, that is basically the came as the diamond lattice. 
Miller indices are used to describe planer in a crystal lattice. These planes (nay be used 
to describe the surface of a semicnnductor material. The Miller indices are also used to 
describe directions in a crystal. 
Imperfections do exist in semiconductor materials. A few of thcse imperfections are 
vacancies, substitutiunal impurities, and interstitial impurities. Slnall amounts of con- 
trolled substitutional impurities can favorably alter semiconductor properties as we will 
see in later chapters. 
Abrief description of semiconductor growth methods was given. Bulk growth produces 
the starting semiconductar material or suhctrate. Epitaxial growth can be used to control 
the surface properties of a semiconductor Most semiconductor devices are fabricated 
in the epitaxial layer. 
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GLOSSARY OF IMPORTANT TERMS 
binary semiconductor A lwo-element compound semiconductor, such as gallium arsenide 

(GaAs). 

covalent bonding The bonding between atoms in which valence electrons are shared. 

diamond lattice The atonlic crystal structure of silicon, for example, in which each atom 
has four nearest neighhors in a tetrahedral configuration. 

doping The process of adding specific types of atoms to a semiconductor to favorably alter 
the electrical characteristics. 

elemental semiconductor A semiconductor composed of a single species af atom, such as 
silicon or germanium. 

epitaxial layer A thin, single-crystal layer of material formed on the surface of a substrate. 

ion implantation One particular process of daping a semiconductor. 

lattice The periodic arrangement of atoms in a crystal. 

Miller indices The set of integers used to descrihc a crystal plane. 

primitive cell The smallest unit cell that can be repeated to form a lattice. 

substrate A semiconductor wafer or other material used as the starling material for further 
semiconductor processing. such as epitaxial growth or diffusion. 

ternary semiconductor A three-element compound semiconductor. such as aluminum gal- 
lium arsenide (AIGaAs). 

unit cell A small volurne o f a  crystal that can be used to reproduce the entire crystal. 

zincblende lattice A lattice structure identical to the diamond lattice except that there arc 
two types of atoms instead of one. 

CHECKPOINT 
After studying this chapter, the reader should hare the ability to: 

Determine the volume density of atoms for various lattice structures. 
Determinc the hlillzr indices of a crystal-lattice plane. 
Sketch a lattice plane riven the Miller indices. 
Determine the surface density of atoms on a given crystal-latlice plane. 
Understand and describe various defects in a single-crystal lattice. 

REVIEW QUESTIONS 
1. List two elemental semiconductor materials and two compound \emiconductor 

materials. 

2. Sketch three lattice structures: (0) simple cubic, (h)  body-centered cubic, and 
( c )  face-centered cuhic. 

3. Describe the procedure for finding the volumc density af atoms in a crystal. 

4. Describe the procedure for obtaining the Miller indices that describe a plane in a crystal. 

5. What is meant by a substitutional impurity in a crystal? What is meant by an intcrslilial 
impurity'? 



PROBLEMS 

Section 1.3 Space Lattices 

Determine the number of atoms per unit cell in a (ti) Iace-centcred cubic, 
(b) body-centered cubic, and (c) diamond lattice. 

(a) The lattice constant of GaAs is 5.65 A. Determine the number of Ga atoms 
and As atoms per cm3. (h)  Determine the vulume density of germanium atoms in a 
germanium semiconductor. The lattice constant of gcrmanium i, 5.65 A. 
Assume that each atom is a hard sphere with the surface of each atom in contact with 
the surface of its nearest neighbor. Dctcrminr the percentage of total unit cell volume 
that is occupied in ( a )  a simplc cubic lattice, (b) a face-centered cubic lattice, 
(c) a body-centered cubic lattice, and (d) a diamond lattice. 

A material, with a volume of I cm', is compu5ed of an fcc lattice with a lattice 
constant of 2.5 mm. The "atoms" in this material itre actually coffee beans. Assumc 
the coffee beans are hard spheres with each bean touching its nearest neighbor. 
Determine the volume of coffee after the coffee beans have been ground. (Assume 
100 percent packing density of the ground coffee.) 

If the lattice constant of silicon is 5.41 A, calculate (a) the distance from the center of 
one silicon atom to the center of its nearest neighbor, (h)  the number density of silicon 
atoms (#per cm'), and ( c )  the mass density (grams per cn1') of silicon. 

A crystal is composed of two elements, A and B. The basic crystal structure is a body- 
centered cubic with clements A at each of the corners and element B in thc center. The 
effective radius of element A is 1.02 A. Acsume the elements arc hard spheres with the 
surface of each A-type atom in contact with the surface of its nearest A-typc neighhor. 
Calculate (a) the maximum radius of the B-type atom that will fit into t h i ~  structure, 
and (b) the volume density (#/cm3) of both the A-type atoms and the B-type atoms. 

The crystal structure of sodium chloride (NaCI) is a simple cubic with the Na and CI 
atoms alternating positions. Each Na atom is then surrounded by \ix CI atoms and 
likewise each C1 atom is surrounded by six Na atoms. (a) Sketch the atoms in a (100) 
plane. (b) Assume the atoms arc hard spheres with nearest neighbors touching. The 
effective radius of Na is I .0 A and the effective radius of CI is 1.8 A. Determine the 
lattice constant. (c) Calculate the volume dencity of Na and C1 atoms. (d) Calculate 
the mass density of NaCl. 

(a)  A material is composed uf two typcs of alums. Atom A has an effective radius of 
2.2 Aand atom B has an effective radius of 1.8 A. The lattice is a hcc with atoms A at 
the comers and atom B in the center. Determine the latticc constant and thc vtllurne den- 
sitiesofAatoms and B atoms. (b) Repeat part (a) with atoms B at thecomers and atom 
Ain the center (c )  What comparison can be madc of the material5 in pans (a )  and (h)? 
Consider the materials described in P~ohlem 1.8 in pans (a)  and (b). For each case, 
calculate the surface density of A atoms and B atoms in the (1 10) plane. What corn 
parison can be made of the two materials? 

1.10 (a) The crystal structure of a panicular material consists of a single atom in the cmter 
of a cube. The lattice constant is a, and the diameter of the atom is no. Determine the 
volume density of atoms and the surface densily of atoms in the (1 10) plane. 
(b) Compare the results of part (a) to the results for the case of the simple cubic struc- 
ture shown in Figure 1.5a with the same lattice constant. 
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(a1 

Figure 1.21 1 Figure for Problem 1.12. 

1.11 Consider a three-dimensional cubic lattice with a lattice constant equal loo. (a) 
Sketch the following planes: ( i )  (LOO), (ii) (110) (iii) (310) and ( i v )  (230). (b) Sketch 
the following directions: (i) [loo], (ii) 11 101. (iii) 13101, and (iv) 12101. 

1.12 For a simple cubic lattice, determine the Miller indices for the planes shown in 
Figure 1.21. 

1.13 The lattice constant of a simple cubic cell is 5.63 A. Calculate the distance between 
the nearestparallel (a)  (loo), (h) (1101, and (c) (111) planes. 

1.14 The lauice constant of a single crystal is 4.50 A. Calculate the surface density of 
atoms (# per cm') on the following planes: (i) (100), (ii) ( 1  10). (iii) (1 11) for each of 
the following lattice structures: (a)  simple cubic, (h) body-centered cubic, and 
(c) face-centered cubic. 

1.15 Determine the surface density of atoms for ~ilicon on the (a) (100) plane, (h )  (1 10) 
plane, and ( c )  ( I  l I) plane. 

1.16 Consider a face-centered cubic lattice. Assume the atoms are hard spheres with the 
surfaces of the nearest neighbors touching. Assume the radius of the atom is 2.25 A. 
((I) Calculate thc volume density or atoms in the crystal. (h) Calculate the distance 
between nearest (1 10) planes. (c) Calculate the surface density of atoms on the 
(I 10) plane. 

Section 1.4 Atomic Bonding 

1.17 Calculate the density of valence electrons in silicon 

1.18 The structure of GaAs is the rincblende lattice. The lattice constant is 5.65 A. 
Calculate the density of valence electrons in GaAs. 



Section 1.5 Imperfections and Impurities in Solids 

1.19 (a) If 2 x 1016 boron atoms per cm' are added to silicon as a substitutional impurity, 
determine what percentage of the silicon atoms are displaced in the single crystal 
lattice. (b) Repeat pall (u) for 10" boron atoms per cm3. 

1.20 (a) Phosphorus atoms, at a concentration of 5 x loi6  cm-', are added to a pure 
sample of silicon. Assume the phosphorus atoms are distributed homogeneously 
throughout the silicon. What is the fraction by weight of phosphorus'? (h) If boron 
atoms, at a concentration of 1018 ~ m - ~ ,  are added to the material in part 
(a), determine the fraction by weight of boron. 

1.21 If 2 x 10'' gold atoms per cm3 are added to silicon as a substitutional impurity and 
are distributed uniformly throughout the semiconductor, determine the distance 
between gold atoms in terms of the silicon lattice constant. (Assume the gold atoms 
are distributed in a rectangular or cubic array.) 
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C H A P  

Introduction to Quantum 

P R E V I E W  

T he goal of this text is to help readers understand the operation and character- 
istics of semiconductor devices. Ideally, we would like to begin discussing 
these devices immediately. However, in order to understand the current- 

voltage characteristics, we need some knowledge of the electron behavior in a crys- 
tal when the electron is subjected to various potential functions. 

The motion of large objects, such as planets and satellites, can be predicted to a 
high degree of accuracy using classical theoretical physics based on Newton's laws 
of motion. But certain experimental results, involving electrons and high-frequency 
electromagnetic waves, appear to he inconsistent with classical physics. However, 
these experimental results can be predicted by the principles of quantum mechanics. 
The quantum mechanical wave theory is the basis for the theory of semiconductor 
physics. 

We are ultimately interested in semiconductor materials whose electrical prop- 
erties arc directly related to the behavior of electrons in the crystal lattice. The be- 
havior and characteristics of these electrons can be described by the formulation of 
quantum mechanics called wave mechanics. The essential elements of this wave me- 
chanics, using Schrodinger's wavc equation, are presented in this chapter. 

The goal of this chapter is to provide a brief introduction to quantum mechanics 
so that readers gain an understanding of and become comfortable with the analysis 
techniques. This introductory material forms the basis of semiconductor physics.. 



2.1 Principles of Quantum Mechanics 

2.1 1 PRINCIPLES OF QUANTUM MECHANICS 
Before we delve into the mathematics of quantum mechanics. there are three principles 
we need to consider: the principle of energy quanta, the wave-puticle duality princi- 
ple, and the uncertainty principle. 

2.1.1 Energy Quanta 

One experiment that demonstrates an inconsistency between experimental results 
and the classical theory of light is called the photoelectric effect. If monochromatic 
light is incident on a clean surface of a material, then under certain conditions, elec- 
trons (photoelectrons) are emitted from the surface. According to classical physics. 
if the intensity of the light is large enough, the work function of the material will be 
overcome and an electron will be emitted from the surface independent of the inci- 
dent frequency. This result is not observed. The observed effect is that, at a constant 
incident intensity, the maximum kinetic energy of the photoelectron varies linearly 
with frequency with a limiting frequency v = vil. below which no photoelectron is 
produced. This result is shown in Figure 2.1. If the incident intensity varies at a con- 
stant frequency, the rate of photoelectron emission changes, but the maximum ki- 
netic energy remains the same. 

Planck postulated in I900 that thermal radiation is emitted from a heated sur- 
face in discrete packets of energy called qunntu. The energy of these quanta is 
given by E = hv,  where v is the frequency of the radiation and h is a constant now 
known as Planck's constant ( h  = 6.625 x J-s). Then in 1905. Einstein inter- 
preted the photoelectric results by suggesting that the energy in a light wave is also 
contained in discrete packets or bundles. The particle-like packet of energy is 
called aphoton, whose energy is also given by E = hv. A photon with sufficient 
energy, then, can knock an electron from the sul-face of the material. The minimum 
energy required to remove an electron is called the work function of the material 

Incident Photoelectron 
monoehramatic kinrlic 

Incident 
monoehramatic 

, ;/ 
kinrlic 

light energy = T 

d .- 

E 
Material i "  , 

Frequency, u 
,' 
Vio Frequency, u 

## 

I 
(a) (b) 

Figurn 2.1 I (a) The photoelectric effect and ( b )  the maximum kinetic energy of 
the photoelectron as a function of incident frequency. 
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and any excess photon energy goes into the kinetic energy of the photoelectron. 
This result was confirmed experimentally as demonsttated in Figure 2.1. The pho- 
toelectric effect shows the discrete nature of the photon and demonstrates the 
particle-like behavior of the photon. 

The maximum kinetic energy of the photoelectron can be written as 

where hu is the incident photon energy and huo is the minimum energy, or work 
function, required to remove an electron from the surface. 

EXAMPLE 2.1 I Objective 

To calculate the photon energy corresponding to a particular wavelength. 
Consider an x-ray with a wavelength of A = 0.708 x lo-' cm. 

Solution 
The energy is 

This value of energy may be given in the more common unit of electron-volt (see Appendix F). 
We have 

Comment 
The reciprocal relation between photon energy and wavelength is demonstrated: A large m- 
ergy corresponds to a short wavelength. 

2.1.2 Wave-Particle Duality 

We have seen in the last section that light waves, in the photoelectric effect, behave 
as if they are particles. The particle-like behavior of electromagnetic waves was also 
instrumental in the explanation of the Compton effect. In this experiment. an x-ray 
beam was incident on a solid. A portion of the x-ray beam was deflected and the fre- 
quency of the deflected wave had shifted compared to the incident wave. The ob- 
served change in frequency and the deflected angle corresponded exactly to the ex- 
pected results of a "billiard ball" collision between an x-ray quanta, or photon, and 
an electron in which both energy and momentum are conserved. 

In 1924. de Broglie postulated the existence of matter waves. He suggested that 
since waves exhibit particle-like behavior, then panicles should he expected to 
show wave-like properties. The hypothesis of de Broglie was the existence of a 
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wave-parficle dualiiyprinciple. The momentum of a photon is given by 

where A is the wavelength of the light wave. Then, de Broglie hypothesized that the 
u,avelength of a particle can be expressed as 

wherep is the momentum of the particle and A is known as the de Broglie wuvelen~th 
of the matter wave. 

The wave nature of electrons has been tested in several ways. In one experiment 
by Davisson and Germer in 1927, electrons from a heated filament were accelerated 
at normal incidence onto a single clystal of nickel. A detector measured the scattered 
electrons as a function of angle. Figure 2.2 shows the experimental setup and 
Figure 2.3 shows the results. The existence of a peak in the density of scattered elec- 
trons can be explained as a constructive interference of waves scattered by the peri- 
odic atoms in the planes of the nickel crystal. The angular distribution is very similar 
to an interference pattern produced by light diffracted from a grating. 

In order to gain some appreciation of the frequencies and wavelengths involved 
in the wave-particle duality principle. Figure 2.4 shows the electromagnetic 
frequency specuum. We see that a wavelength of 72.7 A obtained in the next exam- 
ple is in the ultraviolet range. Typically, we will be considering wavelengths in the 

Azimuthal I I 
Electron beam - + I 

Sample 
n 

Scattered 
electrons / 

Figure 2.2 I Experimental arrangement of the Davisson- 
Germer experiment. 

Incident electron beam 

Figure 2.3 1 Scattered electron flux as a 
function of scattering angle for the 
Davisson-Germer experiment. 
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Figure 2.4 1 The electromagnetic frequency spectrum 

ultraviolet and visible range. These wavelengths are very short compared to the usual 
radio spectrum range. 

EXAMPLE 2.2 I Objective 

To calculate the de Broglie wavelength of a panicle. 
Concidcr an electron traveling at a velocity of l U 7  cmlsec = LOi m/s. 

Solution 
The momentum is given by 

Thcn. the dr Broglie wavelength is 

Comment 
This ci~lculatian shows the order of magnitude of the de Bruglie wavelength for a "typical" 
electron. 

In some cases electromagnetic wavcs behave as if they are particles (photons) 
and sometimes particles behave as if they are waves. This wave-particle duality 
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principle of quantum mechanics applies primarily to small particles such as electrons, 
but it has also been shown to apply to protons and neutrons. For very large particles, 
we can show that the relevant equations reduce to those ofclilssical mechanics. The 
wave-particle duality principle is the basis on which we will use wave theory to de- 
scribe the motion and behavior of electrons in a crystal. 

TEST YOUR UNDERSTANDING I 
E2.1 Determine the energy of a photon having wavelengths of (a) A = 10.000 A and (b) 

A = I O A .  L A J  ,OI x pz.1 10 I 01 x 6 6 1  (4)  : A ~ P Z I  101 n , - ~ ~  x 6 6 1  (0) s ~ v 1  
E2.2 (a) Find the momentum and energy uf a particle with mass of 5 x 1W3' kg and a 

de Broglie wavelength of 180 A. (b )  An electron has a kinetic energy of 20 meV. 
Determine the de Bmglie waaslmgth. 171.98 = Y ''/1u-a4 qi-O1 X P9.L = ('1) 

1-01 x 9 v 8  m I ,;-01 x SE'I = 3 ' s ~ u - Z y  ,, 0 1  x 8 9 ' ~  = d (14 ' S U V I  

2.1.3 The Uncertainty Principle 

The Heisenberg uncertainty principle, given in 1927, also applies primarily to very 
small particles, and states that we cannot describe with absolute accuracy the hchav- 
ior of these subatomic particles. The uncertainty principle descrihch a fundamental 
relationship between colljugate variables, including position and momentum and also 
energy and time. 

The first statement ot'the uncertainty principle is that it is ilnpossible to simulta- 
neously describe with absolute accuracy the position and momentum of a particle. If 
the uncertainty in the momentum is Ap and the uncertainty in the postion is A x ,  then 
the uncenainty principle is stated as' 

where 6 is defined as Ti = h / 2 n  = 1.054 x lo-" J-s and is called a modified 
Planck's constant. This statement may be generalized to include angular position and 
angular momentum. 

The second statement of the unccrtainty principle is that it is impossible to si- 
multaneously describe with absolute accuracy the energy of a particle and the instant 
oftime the particle has this energy. Again. if the unce~tainty in the energy is given by 
AE and the uncertainty in the time is given by Ar,  then the uncertainty principle is 
stated as 

One way to visualize the uncenainty principle is to consider the simultaneous 
measurement of position and m(~mentum, and the simultaneous measurement of en- 
ergy and time. The uncertainty principle implies that these simultaneous measurements 

'In borne texts, the uncenainty principle ir stated a, Ap Ax > l i l2 .  We are interested herc in the order of 
magnitude and will not be concerned with small differences. 
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are in error to a certain extent. However, the modified Planck's constant ti is very 
small; the uncertainty principle is only significant for subatomic particles. We must 
keep in mind nevertheless that the uncertainty principle is a fundamental statement and 
does not deal only with measurements. 

One consequence of the uncertainty principle is that we cannot. for example. de- 
termine the exact position of an electron. We will, instead, detcrmine the i~robrrbility 
of finding an electron at a particular position. In later chapters, we will develop a 
probubilirs density function that will allow us to determine the probability that an 
electron has a particular energy. So in describing electron behavior, we will he deal- 
ing with probability functions. 

I TEST YOUR UNDERSTANDING 

E2.3 The uncertainty i n  position ol an electron is 12 A. Determine the minimum 
uncertainty in momentum and also the corresponding uncertainly i n  kinetic energy. 
(ha SYZO'O = .?v 's~m-dy sz-O1 x 6 ~ 3  = dv 'SUV) 

E2.4 An electron's energy is measured with an uncertainty of 1.2 eV. What is the minimum 
uncertainty in time over which the energy is measured'? (' s,-OI X hP'S = 1V S U V )  

2.2 1 SCHRODINGER'S WAVE EQUATION 
The various experimental results involving electromagnetic waves and particles. 
which could not be explained by classical laws of physics, showed that a revised for- 
mulation of mechanics was required. Schrodinger, in 1926. provided a formulation 
called w m e   mechanic.^, which incorporated the principles of quanta introduced by 
Planck, and the wave-particle duality principle introduced by de Broglie. Based on the 
wave-particle duality principle. we will describe the motion of electrons in a crystd 
by wave theory. This wave theory is described by Schrodinger's wave equation. 

2.2.1 The Wave Equation 

The one-dimensional, nonrelativistic Schrodinger's wave equation is given by 

where W ( r  1 )  is the wave function, V ( x )  is the potential function assumed to he in- 
dependent of time, fn is the mass of the particle, and, is the imaginary constant f l .  
There are theoretical arguments that justify the form of Schrodinger's wave equation. 
hut the equation is a basic postulate of quantum mechanics. The wave function 
W ( x ,  f )  will be used to describe the behavior of the system and, mathematically, 
W i x .  f )  can be a complex quantity. 

We may determine the time-dependent portion of the wave function and the 
position-dependent, or time-independent, portion of the wave function by using the 
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technique of separation of variables. Assume that the wave function can he written in 
the form 

where @ ( x )  is a function of the position x only and @(t)  is a function of time t only. 
Substituting this form of the solution into Schrodinger's wave equation, we obtain 

If we divide by the total wave function. Equation (2.8) becomes 

Since the left side of Equation (2 .9 )  is a function of position x only and the right side 
of the equation is a function of time r only, each side of this equation must he equal 
to aconstant. We will denote this separation of variables constant by 7. 

The time-dependent portion of Equation (2.9) is then written as 

where again the parameter 7 is called a separation constant. The solution of Equa- 
tion (2.10) can be written in the form 

The form of this solution is the classical exponential form of a sinusoidal wave where 
q/h  is the radian frequency w. We have that E = h u  or E = hw/2n. Then 
w = l ] / f i  = E/R so that the separation constant is equal to the total energy E of the 
particle. 

The time-independent portion of Schrodinger's wave equation can now he writ- 
ten from Equation (2.9) as 

where the separation constant is the total energy E of the particle. Equdtion (2.12) 
may he written as 

where again m is the mass of the particle, V( i )  is the potential experienced by the par- 
ticle, and E is the total energy of the particle. This time-independent Schrodinger's 
wave equation can also be justitied on the basis of the classical wave equation as 
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shown in Appendix E. The pseudo-derivation in the appendix is a simple approach 
but shows the plausibility of the time-independent Schrodinger's equation. 

2.2.2 Physical Meaning of the Wave Function 

We are ultimately trying to use the wave function W(x, I) to describe the behavior of 
an electron in a crystal. The function '?(% t )  is a wave function. so it is reasonable to 
ask what the relation is between the function and the electron. The total wave func- 
tion is the product of the position-dependent, or time-independent, function and the 
time-dependent function. We have from Equation (2.7) that 

Since the total wave function W(x, I) is a complex function. it cannot by itself repre- 
sent a real physical quantity. 

Max Born postulated in 1926 that the function (Y(.x, t)('dx is the probability of 
finding the particle between .x and x + dx at a given time, or that l*(x. t)12 is a prob- 
ability density function. We have that 

where W*(x, I) is the complex conjugate function. Therefore 

* * ( .x ,  ,) = **(.X) . p + . l ( E l ' ~ l ~  

Then the product of the total wave function and its complex conjugate is given by 

Therefore, we have that 

IW(X, r)12 = $(x)$*(x) = l$(.x)12 (2.17) 

is the probability density function and is independent of time. One major difference 
between classical and quantum mechanics i s  that in classical mechanics, the posi- 
tion of a particle or body can be determined precisely, whereas in quantum mechan- 
ics, tlie position of aparticlr is found in terms o f a  probability. We will determine the 
probability density function for several examples, and, since this property is inde- 
pendent of time. we will, in general, only be concerned with the time-independent 
wave function. 

2.2.3 Boundary Conditions 

Since the function lW(x. t)12 represents the probability density function, then for a 
single particle. we must have that 
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The probability of finding the particle somewhere is certain. Equation (2.18) allows 
us to normalize the wave function and is one boundary condition that is used to de- 
termine some wave function coefficients. 

The remaining boundary conditions imposed on the wave function and its deriva- 
tive are postulates. However. we may state the bounda~y conditions and present argu- 
ments that justify why they must be imposed. The wave function and its first derivative 
must have the following properties if the total energy Eand the potential V(x) are finite 
everywhere. 

Condition 1. +(I) must be finite, ~ingle-valued, and continuous. 

Condition 2. a+(x)/ax must be finite, single-valued, and continuous. 

Since $(x)12 is a probability density, then +(x) must be finite and single-valued. 
If the probability density were to become infinite at some point in space, then the 
probability of finding the particle at this position would be certain and the uncer- 
tainty principle would be violated. If the total energy E and the potential V(x) are 
finite everywhere, then from Equation (2.13), the second derivative must be finite, 
which implies that the first derivative muht be continuous. The first derivative is 
related to the particle momentum, which must be finite and single-valued. Finally, a 
finite first derivative implies that the funclion itself must he continuous. In some of 
the specific examples that we will consider, the potential function will become infi- 
nite in particular regions of space. For these cases. the first derivative will not nec- 
essarily be continuous, but the remaining boundary conditions will still hold. 

2.3 I APPLICATIONS OF SCHRODINGER'S WAVE 
EQUATION 

We will now apply Schrodinger's wave equation in several examples using various 
potential functions. These examples will demonstrate the techniques used in the so- 
lution of Schrodinger's differential equation and the results of these examples will 
provide an indication of the electron behavior under these various potentials. We will 
utilize the resulting concepts later in the discussion of semiconductor properties. 

2.3.1 Electron in Free Space 

As a first example of applying the Schrodinger's wave equation, consider the motion 
of an electron in free space. If there is no force acting on the particle, then the poten- 
tial function V(x) will be constant and we must have E > V(x). Assume, for sim- 
plicity, that the potential function V(x) = 0 for all x .  Then, the time-independent 
wave equation can he written from Equation (2.13) as 

The solution to this differential equation can be written in the form 
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Recall that the time-dependent portion of the solution is 

q,(t~ = e - ~ l E l f i l ~  (2.21) 

Then the total solution for the wave function is given by 

E t )  (2.22) I 
This wave function solution is a traveling wave, which means that a particle moving 
in free space is represented by a traveling wave. The first term, with the coefficient A .  
is a wave traveling in the +I direction, while the second term, with the coefticient B. 
is a wave traveling in the x direction. The value of these coefficients will he deter- 
mined from boundary conditions. We will again see the traveling-wave solution for 
an electron in a crystal or semiconductor material. 

Assume, for a moment, that we have a particle traveling in the +x direction. 
which will be described by the +x traveling wave. The coefficient B = 0. We can 
write the traveling-wave solution in the form 

where k is a wave number and is 

The parameter A is the wavelength and, comparing Equation (2.23) with Equa- 
tion (2.22), the wavelength is given by 

From de Broglie's wave-particle duality principle, the wavelength is also given by 

A free particle with a well-defined energy will also have a well-defined wavelength 
and momentum. 

The probability density function is Y(x,  t)Y*(x, t )  = AA*,  which is aconstanr 
independent of position. A free particle with a well-defined momentum can be found 
anywhere with equal probahility. This result is in agreement with the Heisenberg un- 
certainty principle in that a precise momentum implies an undefined position. 

A localized free particle is defined by a wave packet, formed by a superposition 
of wave functions with different momentum or k values. We will not consider the 
wave packet here. 

2.3.2 The Infinite Potential Well 

The problem of a particle in the infinite potential well is a classic example of a bound 
particle. The potential V ( x )  as a function of position for this problem is shown in 
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Bigure2.5 1 Potential function of the infinite 
potential well. 

Figure 2.5. The particle is assumed to exist in region I1 so the particle is contained 
within a finite region of space. The time-independent Schrodinger's wave equation is 
again given by Equation (2.13) as 

where E is the total energy of the particle. If E is finite, the wave function must be 
zero, or *(+) = 0, in both regions I and 111. A particle cannot penetrate these in- 
finite potential barriers, so the probability of finding the particle in regions I and 
111 is zero. 

The time-independent Schrodinger's wave equation in region 11, where V = 0. 
becomes 

A particular form of solution to this equation is given by 

$ ( x )  = A , c o s K x + A ? s i n K x  (2.28) 

where 

One boundary condition is that the wave function $(x) must be continuous so 
that 
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Applying the houndary condition at .r = 0, we must have that A ,  = 0. At x = a, we 
have 

$(x = a )  = O =  A ~ s i n K a  (2.31) 

This equation is valid if K a  = n n .  where the parameter n is a positive integer, or 
n = 1 , 2 , 3 .  . . . . The parameter n is referred to as a quantum number. We can write 

Negative values of n simply introduce a negative sign in the wave function and yield 
redundant solutions for the probability density function. Wc cannot physically dis- 
tinguish any difference between +n and -n solutions. Becausc of this redundancy, 
negative values of n are not considered. 

The coefficient A2 can be found from the normalization boundary condition that 
was given by Equation (2.1 8) as Jz $(x)$r*(x) d.x = I .  If we assume that the wave 
function solution $(x) is a real function, then $(x) = $r*(x). Substituting the wave 
function into Equation (2.18), we have 

Evaluating this integral gives2 

Finally. the time-independent wave solution is given by 

This solution represents the electron in the intinite potential well and is a stand- 
ing wave solution. The free electron was represented hy a traveling wave. and now 
the bound particle is represented by a standing wave. 

The parameter K in the wave solution was defined by Equations (2.29) and 
(2.32). Equating these two expressions for K. we obtain 

'A morc thorough analysis shows lhat 1A1' = 2 / 0 .  so solutions lor the coefficient A2 include +m, 
-a, +jm, -jm. or any complex number whose magnitude is m. Since the wave 
function itself has no physical meaning, the choice of which coefficient to usc is immaterial: They all 
produce the same prohahllity density iunclion. 



2.3 Applications of Schrodinger's Wave Equatlon 

The total energy can then be written as 

R2n2rr2 wheren = 1 , 2 , 3 ,  ... (2.37) 

For the particle in the infinite potential well. the wave function is now given by 

where the constant K must have discrete values, implying that the total energy of the 
particle can only have discrete values. This result meuns that the energy of the parti- 
cle is  quantized. That is, the enerfl ofthe particle can only have particular discrete 
vulues. The quantization of the particle energy is contrary to results from classical 
physics, which would allow the particle to have continuous energy values. The dis- 
crete energies lead to quantum states that will be considered in more detail in this 
and later chapters. The quantization of the energy of a bound particle is an extremely 
important result. 

Objective I EXAMPLE 2.3 

Tocalculate the first three energy levels of an electron in an infinite potential well 
Consider an electron in an infinite potential well of width 5 A. 

I Solution 
From Equation (2.37) we have 

Then. 

I Comment 
This calculation shows the order of magnitude of the energy levels of a bound electron. 

Figure 2.6a shows the first four allowed energies for the particle in the infinite 
potential well, and Figures 2.6b and 2 . 6 ~  show the corresponding wave functions and 
probability functions. We may note that as the energy increases, the probability of 
finding the particle at any given value of x becomes more uniform. 
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Figure 2.6 I Panicle in an infinite potential well: (a) Four lowest discrete energy levels. 
(b) Corresponding wave functions. (c) Corresponding probability functions. 
(From Pierret 191) 

TEST YOUR UNDERSTANDING 

E2.5 The width of the infinite potential well in Example 2.3 is doubled to 10 A. Calculate 
the first three energy levels i n  terms of electron vults for an electron. 
(i\a 8t.c 'i\a u s 1  'i\a  LEO 'SUV) 

E2.6 The lowest energy of a particle in an infinite potential well with a width of 100 A is 
0.025 eV What is the mass of the panicle? (22 , L - O ~  x L E ' I  'Sub') 

2.3.3 The Step Potential Function 

Consider now a step potential function as shown in Figure 2.7. In the previous section. 
we considered a particle being confined between two potential barriers. In this exam- 
ple, we will assume that a flux of particles is incident on the potential barrier. We will 
assume that the particles are traveling in the +x direction and that they originated at 
x = -m. A particularly interesting result is obtained for the case when the total 
energy of the particle is less than the barrier height, or E < Vo. 

We again need to consider the time-independent wave equation in each of the two 
regions. This general equation was given in Equation (2.13) as a2$(r ) /8x2 + 
2m/e2(E - V(x))$(x) = 0. The wave equation in region I, in which V = 0, is 



2.3 Applications of Schrodnger3 Wave Equation 

Incident parriclrs - v"f 
Region I I Region 11 

I 
x = 0 

Figure 2.7 1 The step potential function. 

The general solution to this equation can be written in the form 

$ , ( X )  = AleiK1'  + ~ l e - ~ ~ l ~  (x 5 0) (2.40) 

where the constant K I  is 

The first term in Equation (2.40) is a traveling wave in the +x direction that repre- 
sents the incident wave, and the second term is a traveling wave in the -i direction 
that represents a reflected wave. As in the case of a free particle, the incident and 
reflected particles are represented by traveling waves. 

For the incident wave, A ,  - A; is the probability density function of the incident 
panicles. If we multiply this probability density function by the incident velocity, 
then ui . A ,  . A ;  is the flux of incident particles in units of #lcm2-s. Likewise, the 
quantity v, . B1 . B; is the Hux of the reflected particles, where u, i s  the velocity of 
the reflected wave. (The parameters v, and u, in these terms are actually the magni- 
tudes of the velocity only.) 

In region 11, the potential is V = Vu. If we assume that E < Vo, then the differ- 
ential equation describing the wave function in region 11 can be written as 

The general solution may then be written in the form 

@>(XI = A2e-Ki% B2efK?' (X > 0) (2.43) 

where 

One boundary condition is that the wave function $z(x) must remain finite, 
which means that the coefficient B2 = 0. The wave function is now given by 
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The wave function at x = O must be continuous so that 

$1(0) = $?(O) (2.46) 

Then from Equations (2.401, (2.451, and (2.46), we obtain 

Since the potential function is everywhere finite, the first derivative of the wa\,e 
function must also be continuous so that 

Using Equations (2.40), (2.43, and (2.481, we obtain 

We can solve Equations (2.47) and (2.49) to determine the coefficients B I  and 
Az in terms of the incident wave coefficient A l .  The results are 

and 

The reflected probability density function is given by 

We can define a reflection coefficient, K ,  as the ratio of the reflected flux to the 
incident flux, which is written as 

where vi and u, are the incident and reflected velocities. respectively. of the particles. 
In region I, V = O so that E = T, where T is the kinetic energy of the particle. The 
kinetic energy is eiven by 

so that the constant Kl, from Equation (2.41), may be written as 



2.3 Appcat~ons of Schrodnger's Wave Equatlon 

The incident velocity can then be written as 

Since the reflected particle also exists in region I, the reflected velocity (magnitude) 
is given by 

The incident and reflected velocities (magnitudes) are equal. The reflection coeffi- 
cient is then 

Substituting the expression from Equation (2.5 1) into Equation (2.57), we obtain 

The result of R = I implies that all of the particles incident on the potential bar- 
rier for E < V ,  are eventually reflected. Particles are not absorbed or transmitted 
through the potential barrier. This result is entirely consistent with classical physics 
and one might ask why we should consider this problem in terms of quantum me- 
chanics. The interesting result is in terms of what happens in region 11. 

The wave solution in region 11 was given by Equation (2.45) as $,(x-) = AzecK!". 
The coefficient A? from Equation (2.47) is A? = AI + BI , which we derived from 
the boundary conditions. For the case of E < Vu, the coefficient A2 is not zero. If A? 
is not zero, then the probability density function $2(x) . $;(x) of the particle being 
found in region I1 is not equal to zero. This result implies that there is afinite pro- 
bability that the incident particle will penetrate the polential barrier and exist in 
region 11. The prububil i~ r?f a particle penetrating the potentiul burrier is ar~other 
difference between classical and quanrtrm mechanics: The quuntum mechanicalpen- 
etrution is classically not allowed. Although there is a finite probability that the par- 
ticle may penetrate the barrier, since the reflection coefficient in region I is unity, the 
particle in region I1 must eventually turn around and move back into region 1. 

Objective I EXAMPLE 2.4 

To calculate the penetration dcpth of a panicle impinging on a potential barricr. 

Consider an incident electron that is traveling at a velacity uf I x loi m/s  in region I. 

Solution 
With V ( x )  = 0, the total energy is also equal tu the kinetic energy so that 
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Now, assume that the potential barrier at x = 0 is twice as large as the total energy of the inci- 
dent particle, or that Vo = 2 E .  The wave function solution in region 11 is $?(I) = A 2 C K ? . ' .  
where the constant K z  is given by K ,  = J z , ~ ( v ~  - E)/1t2. 

In this example, we want to determine the distance x = d at which the wave function 
magnitude has decayed toe- '  of its value at I = 0. Then, for this case, we have K z d  = 1 or 

The distance is then given by 

Comment 
This penetration distance corresponds to approximately two lattice constants of silicon. The 
numbers used in this example are rather arbitrary. We used a distance at which the wave func- 
tion decayed to e ' of its initial value. We could hiwe arbitrarily used c'. for example, but 
the results give an indication of the magnitude of penetration depth. 

The case when the total energy of a particle, which is incident on the potential 
barrier, is greater than the barrier height, or E > V", is left as an exercise at the end 
of the chapter. 

I TEST YOUR UNDERSTANDING 

E2.7 The probability of finding a panicle at a distanced in region 11 compared to that at 
r = 0 is given by exp ( - 2 K , d ) .  Consider an electron traveling in region I a1 a \'eloc- 
ity of 10' mis incident on a potential barrier whose height is 3 times the kinetic 
energy of the electron. Find the probability of finding the electron at a distance r l  

compared to x = 0 where d i s  (a)  10 A and (b)  100 A into the potential barrier. 
[lua~iad 6.01 x ES'Z (4) 'lua2iad Z L ' ~  ( 0 )  'SUVI 

2.3.4 The Potential Barrier 1 
We now want to consider the potential banier function, which is shown in Figure 2.8. 
The more interesting problem, again, is in the case when the total energy of an incident 
particle is E c Vo. Again assume that w e  have a flux of incident particles originating 
on the negative x axis traveling in the +x direction. As  before, we need to solve 
Schrodinger's time-independent wave equation in each of the three regions. The 
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where 

and 

. c = 0  r = u  

Figure 2.8 1 The potential barrier function. 

solutions of the wave equation in regions I, 11, and 111 are given, respectively, as 

+,(XI = A I ~ ~ ~ ~  + ~ 1 e - I ~ ~ '  (2.59a) 

+ , (x )  = ,42eKU + B?e-K2r (2.59b) 

Ijr;(x) = ~ ; e ~ ~ ~ '  + ~ 3 e - j ~ ~ ~  (2 .59~)  

The coefficient Bi in Equation (2 .59~)  represents a negative traveling wave in 
region 111. However, once a particle gets into region 111, there are no potential changes 
to cause a reflection; therefore, the coefficient B3 must be zero. We must keep both 
exponential terms in Equation (2.59b) since the potential barrier width is finite; that 
is, neither term will become unbounded. We have four boundaly relations for the 
boundaries at x = 0 and x = a corresponding to the wave function and its first deriv- 
ative being continuous. We can solve for the four coefficients B I ,  A:, Bz. and A? in 
terms of A , .  The wave solutions in the three regions are shown in Figure 2.9. 

One particular parameter of interest is the transmission coefficient, in this case 
defined as the ratio of the transmitted flux in region 111 to the incident flux in region I. 
Then the transmission coefficient T is 
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1 I 
x = O  x = a  

Figure 2.9 1 The wave functions through the potential barrier. 

where u, and ~ ' i  are the velocities of the transmitted and incident particles, respec- 
tively. Since the potential V = 0 in both regions I and 111, the incident and transmit- 
ted velocities are equal. The transmission coefficient may be determined by solving 
the boundary condition equations. For the special case when E << Lf,, we find that 

Equation (2.62)  implies that there is a j n i t e  probability thar a particle in~ping- 
 in^ a potential barrier will penetrate the barrier and will upperrr in region 111. This 
phenomenon is called tunneling and it, roo, contradicts classical mechanics. We will 
see later how this quantum mechanical tunneling phenomenon can be applied to 
semiconductor device characteristics, such as in the tunnel diode. 

EXAMPLE 2.5 1 Objective 

To calculate the probability of an electron tunneling through a potential harrier. 
Consider an electron with energy of 2 cV impinging on a potential banier with Vcj = 

20 eV and a width of3 A. 

w Solution 
Equation (2.62) is the tunnelingprohability. The fdctor K2 is 

Then 

T = l h (O . l ) ( l  -0I)expr-2(2.17 x 101")(3 x 1 0 ' ~ ) l  

and finally 

T = 3.17 x 
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I Comment 
The tunneling probability may appear to be a small value, but the \,slue is nut zero If a 
large number of particlcr impinge on a potential barrier, a significant number can penetrate 
the barrier. 

TEST YOUR UNDERSTANDING I 
E2.8 Estimate the tunneling probability of an electron tunneling through a rectangular 

barrier with a barrier height of V, = 1 eV and a barrier width of 15 A. The elcctron 
energy is 0.20 eV (9-01 x 9L'Z = L 'rub') 

E2.9 For a rectangular potential barrier with a height of V,, = 2 cV and an elcclrun with 
an energy of 0.25 eV, plot the tunneling probability versus barricr width over the 
range 2 5 rr 5 20A. Usc a log rcale for the tunneling probability. 

E2.10 Acenain semiconductor device requires a tunneling probability uf T = 10-' fnr an 
electron tunneling through a rectangular barrier with a barrier height of Vo = 0.4 cV, 

The electron energy is 0.04 eV Determine the tnaxi~num barricr width. 
(y E'61 = n 'suv) 

Additional applications of Schrodinger's wave cquation with vlmous one- 
dimensional potential functions are found in problems at the end of thc chapter. Sev- 
eral of these potential functions represent quantum well structures that are found in 
modern semiconductor devices. 

*2.4 1 EXTENSIONS OF THE WAVE THEORY 
TO ATOMS 

So far in this chapter. we have considered several one-dimensional potential energy 
functions and solved Schrodinger's tirne-independent wave equation to obtain the 
probability function of finding a particle at various positions. Consider now the one- 
electron, or hydrogen, atom potential function. We will only briefly consider the math- 
ematical details and wavc function solutions, but the results are extremely interesting 
and important. 

2.4.1 The One-Electron Atom 

The nucleus is a heavy, positively charged proton and the electron is a light. nega- 
tively charged particle that, in the classical Bohr theory, is revolving around the nu- 
cleus. The potential function is due to the coulomb attraction between the proton and 
electron and is given by 

where e is the magnitude of thc electronic charge and to is the permittivity of free 
space. This potential function, although spherically symmetric, leads to a three- 
dimensional problem in spherical coordinates. 
- 
*Indicates sections that ciln be skipped without loss olcontinuity, 
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We may generalize the time-independent Schrodinger's wave equation to three 
dimensions by writing 

where V2 is the Laplaciau operator and must be written in spherical coordinates for 
this case. The parameter rno is the rest mass of the electron.' In spherical coordinates, 
Schrodinger's wave equation may be written os 

I a2$ I " s i n 0 . g )  

r 2  sin? 0 842 + ' r-smH . p 88 
(2.65) 

2mo + -(E - V(r))$r = 0 
li- 

The solution to Equation (2.65) can be determined by the separation-of-variables 
technique. We will assume that the solution to the time-independent wave equation 
can be written in the form 

where R .  0, and a, are functions only of r. H, and @, respectively. Substituting this 
form of solution inlo Equation (2.65), we will obtain 

We may note that the second term in Equation (2.67) is a function of @ only, 
while all the other terms are functions of either r or 0. We may then write that 

where m is a separation of variables constant? The soluLion to Equation (2.68) is of 
the form 

@ = eJm@ (2.69) 

Since the wave function must be single-valued. we impose the condition that m is an 
integer, or 

m = 0 , 1 1 , 1 2 . 1 3 ,  . . .  (2.70) 

'The mass should be the rest mass of the two-panicle systeni, hut since the proton mass is much greater 
than the electron mass, the equivalent mass reduces to that uf the electron. 

'Where m means the separation~ol-viaiables constant developed historically. That meaning will be 
retained here even though there may be some confusion with the electron masq In general, the mass 
parameter will be used in conjuncrion with a subscript. 



2.4 Extens$ons of the WaveTheorv to Atoms 

Incorporating the separation-of-variables constant we can further separate the 
variables Band r and generate two additional separation-of-variables constants 1 and n.  
The separation-of-variables constants 11.1. and m are known as quorrtum numbers and 
are related by 

Each set of quantum numben corresponds to a quantum state which the electron may 
occupy. 

The electron energy may be written in the form 

where n is the principal quantum number. The negative energy indicates that thc elec- 
tron is bound to the nucleus and we again see that the energy of the bound electron is 
quantized. If the energy were to become positive, then the electron would no longer he 
a bound panicle and the total energy would no longer be quantized. Since the parame- 
tern in Equation (2.72) is an integer, the total energy of the electron can take on only 
discrete values. The quantized energy is again a result of the particle being bound in a 
finite region of space. 

TEST YOUR UNDERSTANDING 1 
EZ.11 Calculate the lowest energy (in electron volts) of an electron in a hydrogen aturn 

(ha qtl- = '3 'mv) 

The solution of the wave equation may be designated by where n ,  I ,  and 
mare again the various quantum numbers. For the lowest energy state, n = I .  1 = 0, 
andm = 0, and the wave function is given by 

This function is spherically symmetric, and the parameter ao is given by 

and is equal to the Bohr radius. 
The radial probability density function, or the probability of finding the electron 

at a particular distance from the nucleus, is proportional to the product $lcn,. $;ao 
and also to the differential volume of the shell around the nucleus. The probability 
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Figure 2.10 I The radial probability dcnsity function for the one-electron atom in the 
(a) lowest energy state and (h) next-higher energy slate. 
(From E i i b e r ~  aridRrstick 141.1 

density function for the lowest energy state is plotted in Figure 2.10a. The most prob- 
able distance from the nucleus is at r = ao, which is the same as the Bohr thcory. 
Considering this spherically symmctric probability function, we may now bcgin to 
conceive the concept of an electron cloud, or cnergy shell, surrounding the nucleus 
rather than a discrete particle orbiting around the nucleus. 

The radial probability density function for the next higher, spherically symmet- 
ric wave function, corresponding to n = 2, I = 0. and m = 0, is shown in Fig- 
ure 2.10b. This figure shows the idea of the next-higher energy shell of the electron. 
The second energy shell is at a greater radius from the nucleus than the first enersy 
shell. As indicated in the tigure, though, there is still a small probability that the 
electron will exist at the smaller radius. For the case of n -- 2 and I = I. thcre are 
three possible states corresponding to the three allowed values of the quantum num- 
berm. Thehe wave functions are no longer spherically symmetric. 

Although we have not gone into a great deal of mathematical detail for the one- 
electron atom, three rcsults are important for the further analysis of semiconductor me- 
terials. The first is the solution of Schrodinger's wave equation, which again yields 
electron probability functions, as it did for the simpler potential functions. In develop- 
ing the physics of semiconductor materials in later chapters, we will also be consider- 
ing electron probability functions. The second result is the quantization of allowed en- 
ergy levels for the hound electron. The third is the concept of quantum numbers and 
quantum states, which evolved from the separation-of-variables technique. We will 
consider this concept again in the next section and in later chapters when we deal with 
the semiconductor material physics. 

2.4.2 The Periodic Table 

The initial portion of the periodic table of elements may he determined by using the 
results of the one-electron atom plus two additional concepts. The tirst concept 
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2.5 1 SUMMARY 
H We considered home of the basic concepts of quantum mechanics, which can be used to 

describe the behavior of electrons under various pulential functions. The understanding 
of electron behavior is crucial in understanding semiconductor physics. 

H The wave-particle duality principle is an impartant element in quantum mechanics. 
Particlcs can have wave-like behavior and waves can have particle-like behavior. 

H Schrodinger's wave equation forms the basis for describing and predicting the behavior 
of electrons. 

H Man Born postulated that )$(*)I' is a probability density function. 
I 

H A result of applying Schrodinger's wave equation to a hound panicle is that the energy 
of the bound particle is yunnrized. 

H A result of applying Schrodinger's wave equation tu an electron incident on a potential 
barrier is that there is a tinite probability of ruroir/i,rfi. 1 

H The basic structure of the periodic table is predicted by applying Schrodinger's wave 
cquatian to the one-elecuon atom. 

GLOSSARY OF IMPORTANT TERMS 
de Bruglie wavelength The wavelength of a particle given as the ratio of Planck's constant 

to momentum. 
Heisenberg uncertainty principle The principle that states that we cannot describe with 

absolute accuracy the relationship between sets of conjugate variables that describe the br- 
havior of particles, such as momentum and position. 

Pauli exclusion principle The principle that states that no two electrons can occupy the 
same quantum state. 

photon The particle-like packet of electrurnagnetic energy. 
quanta The particle-like packet of thermal radiation. 
quantized energies The allowed discrete energy levels that bound panicles may occupy. 

quantum numbers A set of numbers that describes the quantum state of a particle, such as 
an electron in an atom. 

quantum state A particular state of an electron that may he described, for example, by a set 
of quantum numbers. 

tunneling The quantum mechanical phenomenon by which a particle may penetrate through 
a thin potential banier 

wave-particle duality The characteristic by which electromagnetic waves sometimes ex- 
hibit pinticle-like behavior and particles sometimes exhibit wave-like behavior. 

CHECKPOINT 
After studying this chapter, the reader should have the ability to: 

H Discuss the principle of energy quanta, the wavr-particle duality principle, and the 
uncertainty principle. 

H Apply Schrodinger's wave equation and boundary conditions to problems with various 
potential functions. 

H Determine quantized energy levels of bound particles. 
Determine the approximate tunneling probability of a particle incident on a potential 
barrier. 



REVIEW QUESTIONS 
I. State the wave-particle duality principle and state the relationship between momcntum 

and wavelength. 

2. What is the physical meaning of Schrodinger's wave function? 

3. What is meant by a probability density function? 

4. List the boundary crlnditions for solutions to Schrodinger's wave equation. 

5. What is meant by quantized energy levels? 

6. Describe the concept of tunneling. 

7. Lid the quantumnumbers of the one-electron atom and discuss how they were developed 

PROBLEMS 
2.1 The classical wave equation for a two-wire transmission line is given by - -- - {Qg a2V(x, t)/ax2 = L C .  a2V(x. t ) / a t2 .  One pussible salution is given hy V ( x ,  1 )  = . - 

(sin K r )  . (sinot) where K = n r l o  and o = K / m .  Sketch, on the same graph. 
the function V(s,  t )  as a function of x for 0 5 x 5 n and 11 = 1 when (i) wr = 0, 
( i i )  wr = 1112. (iii) wr = rr, (iv) wr = 3x12, and (i.) wt = 2 n .  

2.2 The function V(x. r )  = cos (217 r / h  - o ~ t )  is also a solution to the classical wave 3 - - 

equation. Sketch on the same graph the function V(x, 1 )  as afunction o i x f o r  {OJ - 
0 5 x 5 3A when: (i) wl = 0, (ii) wt = 0 . 2 5 ~ .  (iii) wi = 0 . 5 ~ .  (iv) wt = 0 . 7 5 ~ .  and 
(v)UJt = i l. 

2.3 RepeatProhlem 2.2 for thc function V(x, r )  = cos (2nx lh  + wt). -- ?3= 

2.4 Determine the phase velocities of the traveling waves described in Problems 2.2 
Qg 
- 
/ 

and 2.3. -- 

Section 2.1 Principles of Quantum Mechanics 

2.5 The work function of a material rcfers to the mininluln energy required to remove an 
electron from the material. Assume that the work function of gold ir 4.90 eV and that 
of cesium is 1.90 eV Calculate the rnani~nunl wavelength of light for the photoelectric 
emission of electrons ior gold and ccsium. 

2.6 Calculate the de Broglie wavelength, A = h l p .  for: (a)An electron with kinetic en- 
ergy of (i)  1.0 eV, and (ii) 100 eV. (h) A proton with kinetic energy o i  1.0 eV. ( c )  A 
singly ionized tungsten atom with kinetic encrgy of I .0 cV. I d )  A 2000-kg tmck trav- 
eling at 20 m/s. 

2.7 According to classical physics, the average energy af an electron in an electron gas at 
thermal equilibrium is 3kT12. Determine, for T = 300 K, the average electron energy 
(in eV), average electron momentum, and the de Broglie wavelength. 

$2.8 An electron and a photan have the same energy. At what value of energy (in eV) will 
the wavelength of the photon he 10 rimes that of the electron? 

2.9 (a) An electron is moving with a velocity of 2 x lo6 cmls. Determine the electron en- 
ergy (in eV), momentum, and de Broglie wavelength (in A). (6) The dc Broglic wave- 
length of an electron is 125 A. Determine the electron energy (in eV), momentum, 
and velocity. 

2.10 It is desired to produce x-ray radiation with a wavelength of I A. ( a )  Through what 
potential voltagedifference must the electrun be accelerated in vacuum so that it can, 
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upon colliding with a target. generate such a photon'! (Assume that all of the 
electron's energy is transferred to the photon.) (h) What is the de Broglie wavelength 
of the electron in part ( a )  just before it hits the target'! 

2.11 When the uncertainty principle is considered, it is not possible to locate a photon in 
space more precisely than about one wavelength. Consider a photon with wavelength 
A = 1 p.m. What is the uncertainty in thc photon's ( a )  momentum and (h) energy? 

2.12 The uncertainty in position is 12 .& for a particle of mass 5 x 10-" kg. Determine the 
minimum uncertainty in (a) the momentum ofthe panicle and (b )  the kinetic energy 
of the particle. 

2.13 Repeat Problem 2.12 for a particle o l  mass 5 x 10-'" kg. 

2.14 An automubile has a mass of 1500 kg. What is thc uncertainty in the velocity (in 
miles per hour) when its center of mass is located with an uncertainty no greater than 
I cm'! 

2.15 ( u )  The uncertainty in the position of an electron is no greater than I A. Determine the 
minimum uncertainty in  its momentum. (b)  The electron's energy is measured with an 
uncertainty no greater than 1 eV Determine the minimum uncertainty in the time aver  
which the measurement is made. 

Section 2.2 Schrodinger's Wave Equation 

2.16 Assume that IU, (x, 1) and IU,(r t )  are solutions of the one-dimensional time- 
dependent Schrodinger's wave equation. (n)  Show that IU, + *> is a solution. (b) Is 
W, - *? a solution of the Schrodingcr's equation in general'! Why or why not? 

2.17 Considerthe wave function q (x ,  t )  = A(sin n ~ ) e - ~ " "  for -1 5 x 5 + I .  
Determine A so that J:, W ( r  /)I' dx = 1 

2.18 Consider the wave function *(x. I )  = A(sin nn.r)e-'"' for 0 5 x 5 I. Determine 
A so that 1;: W(x, 1)l'd.r = I 

2.19 The solution to Schrodinger's wave equation for aparticular situation is given by 
$(x) = e """ Determine the probability of finding the particle between the 
follawing limits: ( a )  0 .r 5 no/4, (b) a0/4 5 x 5 un/2. and ( c )  0 < s 5 a,,. 

Section 2.3 Applications of Schrodinger's Wave Equation 

2.20 An electron in free space is described by a plane wave given by W(x. I)  = ~ e ~ ' " - " " '  
where k = 1.5 x lo9 m-' and w = 1.5 x 10'' rad/s. (0) Determine the phasc 
velocity of the plane wave. (b) Calculate the wavelength, momentum, and kinetic 
energy (in eV) of the electron. 

2.21 An electron is traveling in the negative.r direction with a kinetic energy ol0.015 eV. 
Write the equation of a plane wave that describes thic particle. 

2.22 An electron is hound in a one-dimensional infinite potential well with a width of 
100 A. Determine the electron energy levels for n = 1. 2. 3. 

2.23 Aune-dimensional infinite potential well with a width of 12 A contains an electron. 
(a) Calculate the first two energy levels that the electron may occupy. (b) If an 
electron drops from the second energy level to the first, what is the wavelength of 21 

photon that might be emitted" 

2.24 Consider a panicle with mass of I0  mg in an infinite potential well 1.0 cm wide. (a)  If 
the energy of the particle is 10 mJ. calculate the value of n for that state. (b) What is 



Incident panicles 

. r = o  +I- 

Figure 2.11 I Potential function Figure 2.12 1 Potential 
for Problem 2.26. function for Problem 2.30 

the kinetic energy of the ( n  + I ) state? (c )  Would quantum effects be observable for 
this particle? 

2.25 Calculate the lowest energy le\,el for a neutron in a nucleus, by treating it as if i t  were 
in an inlinite potential wcll of width equal to lo-'". Compare this with the lowest 
energy level for an clectron in the same infinite potential well. 

2.26 Consider the particle in the infinite potential well as shown in Figure 2. L I .  Derive and 
sketch the wave functions corresponding to the four lowest energy levels. (Du not 
normalize the wave functions.) 

*2.21 Consider a three-dimensional infinite potential well. The potential function is given 
by V(x) = 0 for 0 < x < a. 0 < J J  < o. 0 < z < n.  and V(x) = oj elsewhere. Start 
with Schrodinger's wave equation, use the separation of variables technique, and 
show that the energy is quantized and is given by 

wheren,=1,2,3  , . . . ,  n , = l , 2 , 3  , . . . ,  n : = 1 , 2 , 3  , . . . .  
'2.28 Consider a free electron bound within a two-dimensional infinite potential well 

defined by V = 0 fur 0 c x < 25 A, 0 < y < 50 A, and V = oo elsewhere. 
Determine the expression for the allowed electron energies. 

Describe any similarities and any differences to the results of the one-dimensional 
infinite potential well. 

2.29 Consider a proton in a one-dimensional inhnite potential well shown in Figure 2.5. 
(a) Derive the expression for the allowed energy states of the proton. (b) Calculate the 
energy difference (in units of eV) between the lowest possible energy and the next 
higher energy state fur (i) u = 4 A, and (it) a = 0.5 cm. 

2.30 For the step potential function shown in Figure 2.1 2, assume that E > V(, and that 
particles are incident from the +x direction traveling in the -x direction. (0) Write 
the wave solutions for each region. (b)  Derive expressions for the transmission and 
reflection coefficients. 

2.31 Consider the penetration of a step potential function uf height 2.4 eV by an electron 
whose energy is 2.1 eV. Determine the relative probability of finding the electron at 
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the distance (a)  12 A beyond the barrier, and (h)  48 A beyond the banier, compared to 
the probability of finding the incidenl panicle at the barrier edge. 

2.32 Evaluate the transmission coefficient for an electron of energy 2.2 eV impinging on a 
potential barrier of height 6.0 eV and thickness 10-"' m. Repeat the calculation for a 
barrier thickness of lo-' m. Assume that Equation (2.62) is valid. 

2.33 ( u )  Estimate the tunneling probability of a particle with an effective mass of 0.067 mo 
(an electron in gallium arsenide), where rno is the mass of an electron, tunneling 
through a rectangular potential barrier of height V, = 0.8 eV and width 15 A. The 
panicle kinetic energy is 0.20 eV. (b)  Repeat pan ( a )  if the effective mass of the 
panicle is 1 .08mii (an electron in silicon). 

2.34 A proton attempts to penetrate a rectangular potential barrier of height 10 MeV and 
thickness 10 '' m. The panicle has a total energy of 3 MeV. Calculate the probability 
that the particle will penetrate the potential barrier. Assume that Equation (2.62) is 
valid. 

*2.35 An electron with energy E is incident on n rectangular potential barrier as shown in 
Figure 2.8. The potential harrier is of width a and height Vo >> E. ( a )  Write the form 
of the wave function in each of the three regions. (b) For this geometry, determine 
what coefficient in the wave function solutions is zero. (r) Derive the expression for 
the transmission coefficient for the electron (tunneling probability). (d) Sketch the 
wave function for the electron in each region. 

*2.36 A potential function is shown in Figure 2.13 with incident particles coming from -m 
with a total energy E > V 2  The constants k are defined as 

Assume a special case for which kza = 2nn, n = 1, 2. 3,  . . . . Derive the expres- 
sion, in terms of the conslants, k , ,  k l .  and k 3 ,  for the transmission coefficient. The 
transmission coefficient is defined as the ratio of the flux of particles in region 111 to 
the incident Hun in region 1. 

*2.37 Consider the one-dimensional potential function shown in Figure 2.14. Assume the 
total energy of an electron is E < V,,. (a) Write the wave solutions that apply in each 

Figure 2.13 1 Potential function for Figure 2.14 1 Potential function for 
Problem 2.36. Problem 2.37. 



region. (b)  Write the set of equations that result from applying the boundary conditions. 
(c) Show explicitly why, or why not. the energy levels of theelectron are quantized. 

Section 2.4 Extensions of the Wave Theory to Atoms 

2.38 Calculate the energy of the electron in the hydrogen atom (in units of eV) for the first 
four allowed energy levels. 

2.39 Show that the most probable value of the radius r for the is  electron in a hydrogen 
atom is equal to the Bohr radius a,. 

2.40 Show that the wave function for $,,, given by Equation (2.73) is a solution to the 
differential equation given by Equation (2.64). 

2.41 What property do H. Li, Na, and K have in common? 
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Introduction to the Quantum 
Theory of Solids 

P R E V I E W  

I n the last chapter, use applied quantum mechanics and Schrodinger's wave equa- 
tion to determine the behavior of electrons in the presence of various potential 
functions. We found that one important characteristic of an electron bound to an 

atom or bound within a finite space is that the electron can take on only discrete val- 
ues of energy; that is, the energies are quantized. We also discussed the Pauli exclu- 
sion principle, which stated that only one electron is allowed to occupy any given 
quantum state. In this chapter, we will generalize these concepts to the electron in a 
crystal lattice. 

One of our goals is to determine the electrical properties of a semiconductor ma- 
terial, which we will then use to develop the cunent-voltage characteristics of semi- 
conductor devices. Toward this end, we have two tasks in this chapter: to determine 
the properties of electrons in a crystal lattice, and to determine the statistical charac- 
teristics of the very large number of electrons in a crystal. 

To start, we will expand the concept of discrete allowed electron energies that 
occur in a single atom to a band of allowed electron energies in a single-crystal solid. 
First we will qualitatively discuss the feasibility of the allowed energy bands in a 
crygal and then we will developa more rigorous mathematical derivation of this the- 
ory using Schrodinger's wave equation. This energy band theory is a basic principle 
of semiconductor material physics and can also be used to explain differences in 
electrical characteristics between metals, insulators, and semiconductors. 

Since current in a solid is due to the net flow of charge, it is important to deter- 
mine the response of an electron in the crystal to an applied external force, such as an 
electric field. The movement of an electron in a lattice is different than that of an elec- 
tron in free space. We will develop a concept allowing us to relate the quantum me- 
chanical behavior of electrons in a crystal to classical Newtonian mechanics. This 
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analysis leads to a parameter called the electron effective mass. As part of this devel- 
opment, we will find that we can define a new particle in a semiconductor called a 
la~le. The motion of both electrons and holes gives rise to currents in a semiconductor. 

Because the number of electrons in a semiconductor is very large, it is impossi- 
ble lo follow the motion of each individual particle. We will develop the spatistical 
behaviur of electrons in a crystal, noting that the Pauli exclusion principle is an im- 
portant factor in determining the statistical law the electrons must follow. The result- 
ing probability function will determine the distribution of electrons among the avail- 
able energy states. The energy band theory and the probability function will be used 
extensively in the next chapter, when we develop the theory of the semiconductor in 
equilibrium. 

3.1 1 ALLOWED AND FORBIDDEN ENERGY BANDS 
In the last chapter, we treated the one-electron, or hydrogen, atom. That analysis 
showed that the energy of the bound electron is quantized: Only discrete values of 
electron energy are allowed. The radial probability density for the electron was also 
determined. This function gives the probability of finding the electron at a particular 
distance from the nucleus and shows that the electron is not localized at a given 
radius. We can extrapolate these single-atom results to a crystal and qualitatively de- 
rive the concepts of allowed and forbidden energy bands. We can then apply quan- 
tum mechanics and Schrodinger's wave equation to the problem of an electron in a 
single crystal. We find that the electronic energy states occur in hands of allowed 
Elates that are separated by forbidden energy bands. 

3.1.1 Formation of Energy Bands 

Figure 3.la shows the radial probability density function for the lowest electron 
energy state of the single, noninteracting hydrogen atom, and Figure 3 . lb  shows the 
same probability curves for two atoms that are in close proximity to each other. The 
wave functions of the two atom electrons overlap, which means that the two electrons 

Figurn 3.1 1 (a) Probability density function of an isolated hydrogen atom. (b) Overlapping probability density 
functions of two adjacent hydrogen atoms. (c) The splitting of the n = I state. 
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will interact. This interaction or perturbation results in the discrete quantized energy 
level splitting into two discrete energy levels, schematically shown in Figure 3 .1~ .  
The splitting of the discrete state into two states is consistent with the Pauli exclusion 
principle. 

A simple analogy of the splitting of energy levels by interacting particles is the 
following. Two identical race cars and drivers are far apart on a race track. There is 
no interaction between the cars, so they both must provide the same power to 
achieve a given speed. However, if one car pulls up close behind the other car, there 
is an interaction called draft. The second car will be pulled to an extent by the lead 
car. The lead car will therefore require more power to achieve the same speed, since 
it is pulling the second car and the second car will require less power since it is 
being pulled by the lead car. So there is a "splitting" of power (energy) of the two 
interacting race cars. (Keep in mind not to take analogies too literally.) 

Now, if we somehow start with a regular periodic arrangement of hydrogen- 
type atoms that are initially very far apart, and begin pushing the atoms together, the 
initial quantized energy level will split into a band of discrete energy levels. This ef- 
fect is shown sche~natically in Figure 3.2, where the parameter ro represents the 
equilibrium interatomic distance in the crystal. At the equilibrium interatomic dis- 
tance, there is a band of allowed energies, but within the allowed band, the energies 
are at discrete levels. The Pauli exclusion principle states that the joining of atoms 
to form a system (clystal) does not alter the total number of quantum states regard- 
less of size. However, since no two electrons can have the same quantum number. 
the discrete energy must split into a band of energies in order that each electron can 
occupy a distinct quantum state. 

We have seen previously that, at any energy level, the number of allowed quan- 
tum states is relatively small. In order to accommodate all of the electrons in a crys- 
tal, then, we must have many energy levels within the allowed band. As an example, 
suppose that we have a system with 10" one-electron atoms and also suppose that, 
at the equilibrium interatomic distance, the width of the allowed energy band is I eV. 
For simplicity, we assume that each electron in the system occupies a different en- 
ergy level and, if the discrete energy states are equidistant, then the energy levels ate 
separated by lo-" eV. This energy ditference is extremely small, so that for all prac- 
tical purposes, we have a quasi-continuous energy distribution through the allowed 

5 I 
ro Interatomic distance --C 

Figure 3.2 I The splitting of an energy 
State into a band of allowed energies. 
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energy band. The fact that 10-'%V is a very small difference between two energy 
states can be seen from the following example. 

Objective I EXAMPLE 3.1 

To calculate the change in kinetic energy of an electron when the velocity changes by a small 
value. 

Consider an electron traveling at a velocity of 10' cmls Assume the velocity increases by 
avalueof 1 c d s .  The increase i n  kinetic energy is given by 

Let u? = u, + Au. Then 

u; = ( v ,  + A")' = u; + 2 u ,  Au + (Au)' 

But A u  << u , ,  so we have that 

I Solution 
Substituting the number into this equation, we obtain 

AE = (9.11 x 10~')(10')(0.01) = 9.11 x 1 

which may be converted to units of elcctron volts as 

I Comment 
A change in velocity of I c d s  compared with Il l7 c d s  results in a change in energy of 
5.7 x eV, which is orders of magnitude larger than the change in energy of 1 0 "  eV be- 
tween energy states in the allawed energy hand. This example serves to demonstrate that a dif- 
ference in adjacent energy states of 1 0 1 9  eV is indeed very small, XI that the discrete energies 
within an allowed band mav be treated as a quasi-continuous distribution. 

Consider again a regular periodic arrangement of atoms, in which cach atom 
now contains more then one electron. Suppose the atom in this imaginary crystal 
contains electrons up through the n = 3 energy level. If the atoms are initially very 
far apart, the electrons in adjacent atoms will not interact and will occupy the discrete 
energy levels. If these atoms are brought closer together, the outermost electrons in 
the ri = 3 energy shell will begin to interact initially, s o  that this discrete energy level 
will split into a band of allowed energies. If the atoms continue to move closer to- 
gether, the electrons in the n = 2 shell may begin to interact and will also split into a 
band of allowed energies. Finally, if the atoms become sufficiently close together, the 
innermost electrons in then = I level may interact. so that this energy level may also 
split into a band of allowed energies. The splitting of these discrete energy levels is 
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I 
'0 Interatomic distance --+ 

Figure 3.3 I Schematic showing the splitting of three energy states 
into allowed bands of energies. 

. .. - . . .. - \ Six allowed levels 
at same energy 

Two allowed levels 
at Lame energy 

n =  I S P 
2 electrons n = 3 

(a) 

4N states 

6Nsrates 

4Nstates 
2N states 
2Nelectronr 

Figure 3.4 1 (a) Schematic of an isolated silicon atom. (h) The splitting ofthe 3s and 3p states uf silicon into the 
allowed and furbidden energy bands. 
iFr<~tn Shockicy j5l.j 

qualitatively shown in Figure 3.3. If the equilibrium interatomic distance is ro. then 
we have bands of allowed energies that the electrons may occupy separated by bands 
of forbidden energies. This energy-band splitting and the formation of allowed and 
forbidden bands is the energy-band theory of cingle-crystal materials. 

The actual hand splitting in a crystal is much more complicated than indicated 
in Figure 3.3. A schematic representation of an isolated silicon atom is shown in Fig- 
ure 3.4a. Ten of the fourteen silicon atom electrons occupy deep-lying energy levels 
close to the nucleus. The four remaining valence electrons are relatively weakly bound 
and are the electrons involved in chemical reactions. Figure 3.4b shows the hand split- 
ting of silicon. We need only consider the n = 3 level for the valence electrons, since 
the first two energy shells are completely full and are tightly bound to the nucleus. The 
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3s state corresponds to n = 3 and I = 0 and contains two quantum states per atom. 
This state will contain two electrons at T = 0 K. The 3p state corresponds to n = 3 
and I = 1 and contains six quantum states per atom. This state will contain the re- 
maining two electrons in the individual silicon atom. 

As the interatomic distance decreases, the 3s and 3p states interact and overlap. 
At the equilibrium interatomic distance, the bands have again split. hut now four 
quantum states per atom are in the lower band and four quantum state5 per atom are in 
the upper band. At absolute zero degrees, electrons are in the lowest energy state, so 
that all states in the lower band (the valence band) will he full and all states in the 
upper band (the conduction band) will be empty. The bandgap energy E, between the 
top of the valence band and the bottom of the conduction hand is the width of the for- 
bidden energy band. 

We havediscussed qualitatively how and why bands of allowed and forbidden en- 
ergies are formed in a crystal. The formation of these energy bands is directly related 
to the electrical characteristics of the crystal, as we will see later in our discussion. 

*3.1.2 The Kronig-Penney Model 

In the previous section, we discuhsed qualitatively the spitting of allowed electron 
energies as atoms are hrought together to form a crystal. The concept of allowed and 
forbidden energy bands can bc developed nrore rigorously by considering quantum 
mechanics and Schrodinger's wave equation. It may be easy for the reader to "get 
lost" in the following derivation, but the result forms the basis for the energy-band 
theory of semiconductors. 

The potential function of a hingle, noninteracting, one-electron atom is shown in 
Figure 3.5a. Also indicated on the figure are the discrete energy levels allowed for 
theelectron. Figure 3.5b shows the same type of potential function for the case when 
ieveral atoms are in close proximity arranged in a one-dimensional array. The po- 
tential functions of adjacent atoms overlap, and the net potential function for this 
case is shown in Figure 3 . 5 ~ .  It is this potential function we would need to use in 
Schrodinger's wave equation to model a one-dimensional single-crystal material. 

The solution to Schrodinger's wave equation, for this one-dimensional single- 
crystal lattice, is ~tiade more tractable by considering a simples potential function. 
Figure 3.6 is the one-dimensional Kronig-Penncy model of the periodic potential 
function, which is used to represent a one-dimensional single-crystal lattice. We need 
to solve Schrodinger's wave equation in each region. As with previous quantum me- 
chanical problems, the more interesting solution occurs for the case when E < Vo, 
which corresponds to a particle being bound within the crystal. The electrons are 
contained in the potential wells, but we have the possibility of tunneling between 
wells. The Kronig-Penney model is an idealized periodic potential representing a 
one-dimensional single crystal. but the results will illustrate many of the important 
features of the quantum behavior of electrons in ;r periodic lattice. 

To obtain the solution to Schrodinger's wave equation, we make use of a math- 
ematical theorem by Bloch. The theorem states that all one-electron wave functions, 

'Indicales sections that can he skipped without lobs of coi~tinitity 
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Figure 3.5 1 id) Potential function of a single isolated 
atom. (b) Overlapping potential functions of adjacent 
atoms. (c) Net potential function of a one-dimensional 
single crystal. 

Figure 3.6 1 The one-dimensional periodic potential 
function of the Kronig-Penney model. 
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for problems involving periodically varying potential energy functions, must be of 
the form 

*(XI = 1~(x)ejk* (3.1) 

The parameter k is called a constant of motion and will be considered in Inore dc- 
tail as we develop the theory. The function u(x) is a periodic function with period 
(a  t b). 

We stated in Chapter 2 that the total solution to the wave equation is the product 
of the time-independent solution and the time-dependent solution, or 

which may be written as 

I V ( ~ ,  t )  = u(.x)ej(kx-(E/h)lj (3.3) 

This traveling-wave solution represents the motion of an electron in a single-crystal 
material. The amplitude of the traveling wave is a periodic function and the parame- 
ter k is also refemed to as a wave number. 

We can now begin to determine a relation between the parameter k, the total en- 
ergy E, and the potential Vo. If we consider region I in Figure 3.6 (0 < x -c a )  in 
which V ( x )  = 0, take the second derivative of Equation (3.1), and substitute this re- 
sult into the time-independent Schrodinger's wave equation given by Equation (2.13). 
we obtain the relation 

d2uI(.r) dut (x)  
dx2 ---- +2jk- - -  - (k' - a 2 ) u l ( x )  = o 

d x  

The function u,(x) is the amplitude of the wave function in region I and the parame- 
ter a is defined as 

Considernow a specific region 11, -b < r < 0, in which V(x) = &I. and apply 
Schrodinger's wave equation. We obtain the relation 

where u ~ ( x )  is the amplitude of the wave function in region 11. We may define 

so that Equation (3.6) may be written as 

Note that from Equation (3.7). if E > Vo, the parameter ,fi is real, whereas if E < Vo, 
then +8 is imaginary. 
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The solution to Equation (3.4), forregion 1, is of the form 

u l ( . r )  = A ~ " ~ - ~ ) I  + Be-i'*+"'\ for ( 0  < x < r r )  (3.9) 

and the solution to Equation (3.81, for region 11, is of the form 

~ r z ( x )  = ~ e ~ ! @ - ~ ' . '  + De-Jtfl+"' for (- b < r < 0 )  (3.10) 

Since the potential function V ( x  j is everywhere finite, both the wave function $ ( I )  

and its first derivative a@(.r)/ax must be continuous. This continuity condition im- 
plies that the wave amplitude function u ( x )  and its first derivative &&)/ax must 
also he continuous. 

If we consider the boundary at x = 0 and apply the continuity condition to the 
wave amplitude, we have 

ul(O1 = uz(OJ (3.11) 

Substituting Equations (3.9) and (3.10) into Equation (3.11), we obtaln 

A + B - C - D = O  (3.12) 

Now applying the condition tkdt 

we obtain 

(01 - k ) A  - ( u + k j B  - (B  - k ) C  + (B + k1D = O (3.14) 

We have considered region I as O < x c u and region 11 as b < .I- < 0. The 
periodicity and the continuity condition mean that the function i l l .  as a i r r .  is 
equal to the function uz ,  as x -t -b. This condition may be written as 

u l ( u )  = u?(-b)  (3.15) 

Applying the solutions for u l ( x )  and l r2(x) to the boundary condition in Equa- 
tion (3.15) yields 

~ ~ i l e - k r < ~  + ~ ~ - j c m + k ) o  ce- j !p -k ih  - ~ ~ j ( P + k ) h  = (3.16) 

The la\t boundary condition is 

which gives 

- k ) ~ ~ J ( " - h ' "  - + k ) ~ ~ - / ( * + k J o  - ( p  - k)ce-!(B-k)b 

+ ( B  + ~ ) D ~ J ' " + ~  = o (3.18) 

We now have four homogeneous equations, Equations (3.12). (3.141, (3.16). and 
(3.181, with four unknowns as a result of applying the four boundary conditions. In a 
set of simultaneous, linear, homogeneous equations, there is a nontrivial solution if, 
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and only if, the determinant of the coefficients is zero. In our case, the coefficients in 
question are the coefficients of the parameters A,  B, C, and D. 

The evaluation of this determinant is extremely laborious and will not he con- 
sidered in detail. The result is 

Equation (3.19)relates the parameter k to the total energy E (through the parameter a )  
and the potential function Vo (through the parameter 8).  

As we mentioned, the more interesting solutions occur for E c Vo, which ap- 
plies lo theelectron bound within the crystal. From Equation (3.7), the parameter f l  
is then an imaginary quantity. We may define 

~ = J Y  (3.20) 

where y is areal quantity. Equation (3.19) can he written in terms of y as 

Equation (3.21) does not lend itself to an analytical solution, but must be solved 
using numerical or graphical techniques to obtain the relation between k,  E. and V,. 
The solution of Schrodinger's wave equation for a single bound particle resulted in 
discrete allowed energies. The solution of Equation (3.21) will result in a band of 
allowed energies. 

To obtain an equation that is more susceptible to a graphical solution and thus 
will illustrate the nature of the results, let the potential barrier width b i 0 and the 
barrier height Vo + oo, but such that the product bVo remains finite. Equation (3.21) 
then reduces to 

+ cosau = cos ka 

We may define a parameter P' as 

Then, finally, we have the relation 

,sin a o  
P- + cosan = cos ku (3.24) 

a n  

Equation (3.24) aguir~ gives the relation beween the pamrneter k, total energy E 
(rhrough the parameter a ) ,  and the potential barrier bVo. We may note that Equa- 
tion (3.24) is not a .solution ofSchrodinger 's ~vave equation but fiirses the conditio??.r 
for which Schrodinger's wave equation will have a solution. If we assume the crystal 
is infinitely large, then k in Equation (3.24) can assume a continuum of values and 
must be real. 
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3.1.3 The k-Space Diagram 

To begin to understand the nature of the solution, initially consider the special case 
for which K, = 0. In this case P' = 0. which corresponds to a free particle since 
there are no potential barriers. From Equation (3.24). we have that 1 

cosaa  = cos ka 

a = k  

Since the potential is equal to zero, the total energy E is equal to the kinetic energy,] 
so that, from Equation ( 3 . 3 ,  Equation (3.26) may be written as 

h 

where p is the particle momentum. The constant of the motion parameter k is related ( 
to the particle momentum for the free electron. The parameter k is also referred to as 
a wave number. 

We can also relate the energy and momentum as 

Figure 3.7 shows the p;trabolic relation of Equation (3.28) between the energy E and 
momentum p for the free particle. Since the momentum and wave number are lin- 1 
early related, Figure 3.7 is also the E versus k curve for the free panicle. 

We now want to consider the relation between E and k from Equation (3.24) for 
the particle in the single-crystal lattice. As the parameter P' increases, the particle 
becomes more tightly bound to the potential well or atom. We may define the left side 
of Equation (3.24) to be a function f (ao).  so that 

,sin a u  
f (aa )  = P - + cos a a  (3.29) 

a a  

Figure 3.7 I The pnraholic E versus k 
curve for the free electron. 
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Figurn 3.8 1 A plot of (a) the first term in Equation (3.29). (h) the second term in Equation 
(3.29). and (c) the entire f (aa )  function. The shaded areas show the allowed values of 
(uo) corresponding to real values oi k .  

Figure 3.8a is a plot of the first term of Equation (3.29) versus a u .  Figure 3.8h shows 
a plot of the cos a u  term and Figure 3 . 8 ~  is the sum of the two terms, or f (au) .  

Now from Equation (3.24). we also have that 

.f ( a a )  = cos ka (3.30) 

For Equation (3.30) to be valid, the allowed values of the f ( a a )  function must be 
bounded between + I  and - 1. Figure 3 . 8 ~  shows the allowed values o f f  ( aa )  and 
the allowed values of aa in the shaded areas. Also shown on the figure are the values 
of ka from the right side of Equation (3.30) which correspond to the allowed values 
off  (cra). 

The parameter a is related to the kital energy E of the particle through Equa- 
tion (3.5). which is a' = 21n E / h 2 .  Aplot of the energy E of the particle as a function 
of the wave number k can be generated from Figure 3 . 8 ~ .  Figure 3.9 shows this plot 
and shows the concept of allowed energy bands for the particle propagating in the 
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Figure 3.9 1 The E versus k diagram generated from 
Figure 3.8. The allowed energy bands and forbidden 
energy bandgaps are indicated. 

crystal lattice. Since the energy E has discontinuities, we also have the concept of 
forbidden energies for the particles in the crystal. 

EXAMPLE 3.2 ( Objective 

To determine the lowest allowed energy bandwidth. 
Assume that the coefficient P' = 10 and that the potential width u = 5 A 

8 Solution 
To find the lowest allowed energy handwidth. we need to find the difference in uu values as 
ka changes from 0 to n (see Figure 3 .8~) .  For ku = 0. Equation (3.29) becomes 

sin u a  
1 = 10- + cosua 

'Yo 

By trial and error, we find uo = 2.628 rad. We see that for ka = n. un = n. 
For u a  = n. we have 

For uic = 2.628. we find that E l  = 1.68 x lo-'' J = 1.053 eV. The allowed energy bdnd- 
width is thrn 

AE = EI - E, = 1.50 - 1.053 = 0447eV 



3.1 Allowed and Forbfdden Energy Bands 

m Comment 
We see from Figure 1 . 8 ~  that. as the energy increases, the widths of the allowed bands increase 
from this Ktonig-Penney model. 

TEST YOUR UNDERSTANDING 

E3.1 Using the parameters given in Example 3.2, determine the width ( in  eV) of the 
forbidden energy band that exists at ko = n (see Figure 3.8~).  (Aa 6 1 2  = 3 V  'suv) 

Consider again the right side of Equation (3.24), which is the function cos ka. 
The cosine function is periodic so that 

cos ka = cos (ku + 2nn)  = cos (ka - 2nn)  (3.31) 

where n is a positive integer. We may consider Figure 3.9 and displace portions of the 
curve by 2n. Mathematically, Equation (3.24) is still satisfied. Figure 3.10 shows 
how various segments of the curve can be displaced by the 2 n  factor. Figure 3. I 1  
shows the case in which the entire E versus k plot is contained within -n/a < 
k < n/a. This plot is referred to as a reduced k-space diagram, or a reduced-zero 
representation. 

We noted in Equation (3.27) that for a free electron, the particle momentum and 
the wave number k are related by p = hk. Given the similarity between the free 

Figure 3.101 Tne E versus k diagram showing 2 n  
displacements of several sections of allowed energy 
bands. 

Figure 3.11 1 The E versus k diagram 
in the reduced-7one reoresentation. 
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electron solution and the results of the single crystel shown in Figure 3.9, the para- 
meter hk in a single crystal is referred to as the c i y ra l  rnornentrrm. This parameter is 
not the actual momentum of the electron in the crystal, but is a constant of the mo- 
tion that includes the crystal interaction. 

We have been con.siderin,q the Kronig-Penney model, which is a one- 
dimensional periodic potential function used to model a s ingle-c~yta l  lattice. The 
principle result of this analysis, sofa,: is that electrons in the cy s ta l  occupy certain 
allowed energy bands and are exr.luded,from the forbidden energy bundr. For real 
three-dimensional single-crystal materials, a similar energy-band theory exists. We 
will obtain additional electron properties from the Kronig-Penney model in the next 
sections. 

3.2 1 ELECTRICAL CONDUCTION IN SOLIDS 
Again, we are eventually interested in determining the current-voltage characteris- 
tics of semiconductor devices. We will need to consider electrical conduction in 
solids as it relates to the band theory we have just developed. Let us begin by con- 
sidering the motion of electrons in the various allowed energy hands. 

3.2.1 The Energy Band and the Bond Model 

In Chapter 1, we discussed the covalent bonding of silicon. Figure 3.12 shows a two- 
dimensional representation of the covalent bonding in a single-crystal silicon lattice. 
This figure represents silicon at T = 0 Kin which each silicon atom is surrounded by 
eight valence electrons that are in their lowest energy state and are directly involved 
in the covalent bonding. Figure 3.4b represented the splitting of the discrete silicon 
energy states into bands of allowed energies as the silicon crystal is formed. At 
T = 0 K, the 4N states in the lower band, the valence band, are tilled with the va- 
lence electrons. All of the valence electrons schen~atically shown in Figure 3.12 are 
in the valence band. The upper energy band, the conduction band, is completely 
empty at T = 0 K. 

Figure 3.12 1 Two-dimensional 
representation of the covalent bonding 
in a semiconductor at T = 0 K .  
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As the temperature increases above 0 K, a few valence band electrons may gain 
enough thermal energy to break the covalent bond and jump into the conduction 
band. Figure 3.13a shows a two-dimensional representation of this bond-breaking 
effect and Figure 3.13b. a simple line representation of the energy-band model, 
shows the same effect. 

The semiconductor is neutrally charged. This means that, as the negatively 
charged electron breaks away from its covalent bonding position, a positively 
charged "empty state" is created in the original covalent bonding position in the va- 
lence band. As the temperature further increases, more covalent bonds are broken, 
more electrons jump to the conduction hand, and more positive "empty states" are 
created in the valence band. 

We can also relate this hond breaking to the E versus k energy bands. 
Figure 3.14a shows the E versus k diagram of the conduction and valence bands at 

Conducttun 
e- 

band - 
t \ 

i / 
Valence +/ 

band 

Figure 3.13 1 (a) Two-dimensional representation of the bredlung of a covalent bond. 
(b) Corresponding line representation of the energy band and the generation of a 
negative and positive charge with the breaking of a covalent bond. 

Figure 3.14 I The E versus k diagram of the conduclion and valence bands of a 
semiconductor at (a) T = 0 K and (b) T > 0 K. 
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T = 0 K. The energy states in the valence band are completely full and the states in 
the conduction band are empty. Figure 3.14b shows these same bands for T > 0 K, 
in which some electrons have gained enough energy to jump to the conduction band 
and have left empty states in the valence hand. We are assuming at this point that no 
external forces are applied so the electron and "empty state" distributions are sym- 
metrical with k. 

J 

3.2.2 Drift Current 

Current is due to the net flow of charge. If we had a collection of positively charged 
ions with a volume density N (cm-') and an average drift velc,city L"; ( c d s ) ,  then the 
drift current density would be 

J = qNu,i ~ / c m ~  (3.32) / 
If, instead of considering the average drift velocity, we considered the individual ion 
velocities, then we could write the drift current density as 

where ui is the velocity of the ith ion. The summation in Equation (3.33) is taken over 
a unit volume so that the current density J is still in units of ~ / c m ~ .  

Since electrons are charged particles, a net drift of electrons in the conduction 
band will give rise to a current. The electron distribution in the conduction band, as 
shown in Figure 3.14b. is an even function of k when no external force is applied. Re- 
call that k for a free electron is related to momentum so that, since there are as many 
electrons with a + I !  value as there are with a -Ikl value, the net drift current den- / 
sity due to these electrons is zero. This result is certainly expected since there is no 
externally applied force. 

If aforce is applied to a particle and the particle moves, it must gain energy. 'Ibis1 
effect is expressed as 

d E  = F d x =  F u d t  (3.34) 1 
where F  is the applied force, dx is the differential distance the particle moves, v is the I 
velocity, and d E  is the increase in energy. I f  an external force is applied to the elec- 
trons in the conduction band, there are empty energy states into which the electrons 
can move: therefore, because of the external force, electrons can gain energy and a net 
momentum. The electron distribution in the conduction band may look like that 
shown i n  Figure 3.15, which implies that the electrons have gained a net momentum. 

We may write the drift current density due to the motion of electrons as 

where e is the magnitude of the electronic charge and n is the number of electrons 
per unit volume in the conduction hand. Again, the summation is taken over a unit 
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Figure 3.15 1 The asymmetric distribution 
of elecmns in the E versus k diagram 
when an external force is applied. 

volume so the current density is AIcm2. We may note from Equation (3.35) that the 
current is directly related to the electron velocity; that is, the current is related to ho& 
well the electron can move in the crystal. 

3.2.3 Electron Effective Mass 

The movement of an electron in a lattice will, in general, be different from that of an 
electron in free space. In addition to an externally applied force, there are internal 
forces in the crystal due to positively charged ions or protons and negatively charged 
electrons, which will influence the motion of electrons in the lattice. We can write 

where F,,,I, F,,,. and Fin, are the total force, the externally applied force, and the in- 
ternal forces, respectively, acting on a particle in a crystal. The parameter a is the 
acceleration and m is the rest mass of the particle. 

Since itis difficult to take into account all of the internal forces, we will write the 
equation 

F,,, = m*a (1.37) 

where the acceleration a is now directly related to the external force. The parameter 
m*.  called the effective mass, takes into account the panicle mass and also takes into 
account the effect of the internal forces. 

To use an analogy for the effective mass concept, consider the difference in mo- 
tion between a glass marble in a container filled with water and in a container filled 
with oil. In general, the marble will drop through the water at a faster rate than through 
the oil. The external force in this example is the gravitational force and the internal 
forces are related to the viscosity of the liquids. Because of the difference in motion 
of the marble in these two cases, the mass of the marble would appear to be different 
in water than in oil. (As with any analogy, we must be careful not to be too literal.) 

We can also relate the effective mass of an electron in a crystal to the E versus k 
curves, such as was shown in Figure 3.1 1. In a semiconductor material, we will be 
dealing with allowed energy bands that are almost empty of electrons and other 
energy bands that are almost full of electrons. 
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To begin, consider the case of a free electron whose E versus k curve was sho 

in Figure 3.7. Recalling Equation (1.28). the energy and momentum are related 
E = p2/2m = fi2k'/2m, where m is the mass of the electron. The momentum an 
wave number k are related by p = Rk. If we take the derivative of Equation (3.28 
with respect to k, we obtain 

Relating momentum to velocity, Equation (3.38) can be written as 

I d E  p - -- - - = u  
h dk m 

where v  is the velocity of the particle. The first derivative of E with respect to k is 
lated to the velocity of the panicle. 

If we now take the second derivative of E with respect to k, we have 

We may rewrite Equation (3.40) as - 
The second derivative of E with respect to k is inversely proportional to the mass of 
the particle. For the case of a free electron, the mass is a constant (nonrelativistic 
effect), so the second derivative function is a constant. We may also note from Fig- 
ure 3.7 that d 2 E / d k Z  is a positive quantity, which implies that the mass of the elec- 
tron is also a positive quantily. 

If we apply an electric field to the free electron and use Newton's classical equa- 
tion of motion, we can write 

where a is the acceleration, E 1s the applied electric field, and c ih thc 
the electronic charge. Solving for the acceleration, we have 

-eE 
a = -  

m 

The motion of the free electron is in the opposite direction to the applied electric field 
because of the negative charge. 

We may now apply the results to the electron in the bottom of an allowed ener 
band. Consider the allowed energy band in Figure 3.16% The energy near the bottom o 
this energy band may be approximated by a parabola, just as that of a free particle. We 
may write 4 

E - E, = ~ j ( k ) '  
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k = 0 k +  

Figurn 3.16 1 (a) The conduction band in reduced k space, and the parabolic 
approximation. (b) The valence band in reduced k space, and the parabolic 
approximation. 

I 
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Theenergy E, is the energy at the bottom of the band. Since E > E,, the parameter 
C ,  is a positive quantity. 

Taking the second derivative of E with respect to k from Equation (3.44), we 
obtain 

Parabolic I 

approximation 
I 

We may put Equation (3.45) in the form 

k = 0 k +  

I d 2E 2C1 
- 

iiZ dk2 h2 (3.46) 

Comparing Equation (3.46) with Equation (3.41). we may equate h2/2C, to the mass 
of the particle. However, the curvature of the curve in Figure 3.16a will not, in gen- 
eral, be the same as the curvaturc of the free-particle curve. We may write 

wherem* is called the effective mass. Since CI > 0, we have that m* > 0 also. 
The effective mass is a parameter that relates the quantum mechanical results to 

the classical force equations. In most instences, the electron in the bottom of the con- 
duction band can be thought of as a classical particle whose motion can be modeled 
by Newtonian mechanics, provided that the internal forces and quantum mechanical 
properties are taken into account through the effective mass. If we apply an electric 
field to the electron in the bottom of the allowed energy band, we may write the 
acceleration as 

where m,' is the effective mass of the electron. The effective mass m: of the electron 
near the bottom of the conduction band is a constant. 
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3.2.4 Concept of the Hole 

In considering the two-dimensional representation of the covalent bonding shown in 
Figure 3.13a, a positively charged "empty state" was created when a valence electron 
was elevdted into the conduction band. For T > 0 K, all valence electrons may gain 
thermal energy; if a valence electron gains a small amount of thermal energy, it may hop 
into the empty state. The movement of a valence electron into the empty state is equiv- 
alent to the movement of the positively charged empty state itself. Figure 3.17 shows the 
movement of valence electrons in the crystal alternately filling one empty state and cre 
ating a new empty state, a motion equivalent to a positive charge moving in the valence 
band. The crystal now has a second equally important charge carrier that can give rise to 
a current. This charge carrier is called a hole and, as we will see, can also be thought of 
as a classical particle whose motion can be modeled using Newtonian mechanics. 

The drift current density due to electrons in the valence band, such as shown in 
Figure 3.14b, can be written as 

where the summation extends over all filled states. This summation is inconvenient 
since it extends over a nearly full valence band and takes into account a very large 
number of states. We may rewrite Equation (3.49) in the form 

If we consider a band that is totally full, all available states are occupied by elec- 
trons. The individual electrons can be thought of as moving with a velocity as given 
by Equation (3.39): 

The band is symmetric ink and each state is occupied so thal, for every electron with 
a velocity v l ,  there is acorrespondingelectron with avelocity -1u.  Since the bandis 
full, the distribution of electrons wilh respect to k cannot he changed with an 
externally applied force. The net drift current density generated from a completely full 

F i g u ~  3.17 1 Visualization of the movement of a hule in a semiconductor. 



band, then, is zero, or 

We can now write the drift current density from Equation (3.50) for an almost 
full band as 

J = +e u, 
'(Cmp,, 1 

where the u, in the surnmdtlon is the 

associated with the empty state. Equation (3.52) is entirely equivalent to placing a 
positively charged particle in the empty states and assuming all other states in the hand 
are empty, or neutrally charged. This concept is shown in Figure 3.18. Figure 3.18a 
shows the valence band with the conventional electron-filled states and empty states, 
while Figure 3.18b shows the new concept of positive charges occupying the original 
empty states. This concept is consistent with the discussion of the positively charged 
"empty state" in the valcnce band as shown in Figure 3.17. 

The ui in the summation of Equation (3.52) is related to how well this positively 
charged panicle moves in the semiconductor. Now consider an electron near the top of 
the allowedenergy band shown in Figure 3.16b. The energy near the top of the allowed 
energy hand may again he approximated by a parabola so that we may write 

( E  - E,) = -C2(k)? (3.53) 

The energy E,, is the energy at the top of thc energy hand. Since E i E,, for electrons 
in this band, then the parameter C? must be a positive quantity. 

Taking the second derivative of E with respect to k from Equation (3.53). we 
obtain 

We may rearrange this equation so that 

Figure 3.18 1 (a) Valence band with conventional electron-filled states and cmpty 
states. (b) Concept of positive charges occupying thc original cmply states. 
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Comparing Equatlon (3.55) with Equation (3.41), we may write 

I d 2E  -2C2 1 
- - 

f i2 dk 2 h2 m* 
(3.56) 1 

where m* is again an effective mass. We have argued that C2 is a positive quantity, 
which now implies that ~ n *  is a negative quantity. An electron moving near the topo 
an allowed energy hand behaves as if it has a negative mass. 

We must keep in mind that the effective mass parameter is used to relate quan- 
tum mechanics and classical mechanics. The attempt to relate these two theories 
leads to this strange result of a negative effective mass. However, we must recall that 
solutions to Schrodinger's wave equation also led to results that contradicted classi- 
cal mechanics. The negative effective mass is another such example. 

In  discussing the concept of effective mass in the last section, we used an analogy 
of marbles moving through two liquids. Now consider placing an ice cube in the cen- 
ter of a container filled with water: the ice cube will move upward toward the surface 
in a direction opposite to the gravitational force. The ice cube appears to have a nega- 
tive effective mass since its acceleration is opposite to the external force. The effec- 
tive mass parameter takes into account all internal forces acting on the particle. 

If we again consider an electron near the top of an allowed energy band and use 
Newton's force equation for an applied electric field, we will have 

However, m' is now a negative quantity, so we may write 

An electron moving near the top of an allowed energy band moves in the same di- 
rection as the applied electric field. 

The net motion of electrons in a nearly full hand can he described by consider- 
ing just the empty states, provided that a positive electronic charge is associated with 
each state and that the negative of m* from Equation (3.56) is associated with each 
state. We now can model this band as having particles with a positive electronic 
charge and a positive effective mass. The density of these panicles in the valence 
band is the same as the density of empty electronic energy states. This new panicle 
is the hole. The hole, then, has a positive effective mass denoted by mg and a posi- 
tive electronic charge, so it will move in the same direction as an applied field. 

3.2.5 Metals, Insulators, and Semiconductors I 



3.2 Electncal Conduction n Solids 

some basic differences in electrical characteristics caused by variations in band 
structure by considering some simplified energy bands. 

There are several possible energy-band conditions to consider. Figure 3.19a 
shows an allowed energy band that is completely empty of electrons. If an electric 
field isapplied, there are no particles to move, so there will be no current. Figure 3.19b 
shows another allowed energy band whose energy states are completely full of elec- 
uons. We argued in the previous section that a completely full energy band will also 
not give rise to a current. Amaterial that has energy bands either completely empty or 
completely full is an insulator. The resistivity of an insulator is very large or, con- 
versely, the conductivity of an insulator is very small. There are essentially no charged 
panicles that can contribute to a drift current. Figure 3 . 1 9 ~  shows a simplified energy- 
band diagram of an insulator. The bandgap energy E,  of an insulator is usually on the 
orderof3.5 to6eVor larger, so that at room temperaturc, there areessentially no elec- 
trons in the conduction band and the valence band remains completely full. There are 
very few thermally generated electrons and holes in an insulator. 

Figure 3.20a shows an energy band with relatively few electrons near the bottom 
of the band. Now, if an electric field is applied, the electrons can gain energy, move to 

Allowed 
Allowed energy 
energy band 
band (almost 
(empty) empty) 

- - Allowed - - Allowed - energy - - energy band - - - band - (almost - - (full) full) 

Conduction 
Conduction hand 
band (almost 
(empty) 

/i 
Valence 
b;,nd 
(full) 

I c J  ( C I  

Figure 3.19 1 Allowed energy bands Figure 3.20 1 Allowed energy bands 
showing (a) an empty band, lb) a showing (a) an almost cmpty band. (b) an 
completely full band. and (c) the bandgap almost full band, and (c) the bandgap 
energy between the two allowed bands. energy between the two allowed bands. 
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Full 

Figure 3.21 1 Two possible energy bands of a metal showing (a) a partially filled band 
and (b) overlapping allowed energy bands. 

higher energy states, and move through the crystal. The net flow of charge is a current. 
Figure 3.20b shows an allowed energy band that is almost full of electrons. which 
means that we can consider the holes in this band. If an electric field is applied, the 
holes can move and give rise to a current. Figure 3 . 2 0 ~  shows the simplified energy- 
band diagram for this case. The bandgap energy may be on the order of I eV. This 
energy-band diagram represents a semiconductor for T > 0 K. The resistivity of a 
semiconductor, as we will see in the next chapter, can be controlled and varied over 
many orders of magnitude. 

The characteristics of a metal include a very low resistivity. The energy-band di- 
agram for a metal may be in one of two forms. Figure 3.2la shows the case of a par- 
tially full band in which there are many electrons available for conduction, so that the 
material can exhibit a large electrical conductivity. Figure 3.21b shows another pos- 
sible energy-band diagram of a metal. The band splitting into allowed and forbidden 
energy bands is a complex phenomenon and Figure 3.21b shows a case in which the 
conduction and valence bands overlap at the equilibrium interatomic distance. As in 
the case shown in Figure 3.21a, there are large numbers of electrons as well as large 
numbers of empty energy states into which the electrons can move, so this material 
can also exhibit a very high electrical conductivity. 

3.3 1 EXTENSION TO THREE DIMENSIONS 
The basic concept of allowed and forbidden energy bands and the basic concept of 
effective mass have been developed in the last sections. In this section, we will ex- 
tend these concepts to three dimensions and to real crystals. We will qualitatively 
consider particular characteristics of the three-dimensional crystal in terms of the E 
versus k plots, bandgap energy, and effective mass. We must emphasize that we will 
only briefly touch on the basic three-dimensional concepts; therefore, many details 
will not be considered. 

One problem encountered in extending the potential function to a three- 
dimensional crystal is that the distance between atoms varies as the direction through 
the crystal changes. Figure 3.22 shows a face-centered cubic structure with the [I001 
and [I 101 directions indicated. Electrons traveling in different directions encounter 
different potential patterns and therefore different k-space boundaries. The E versus 
k diagrams are in general a function of the k-space direction in a crystal. 
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t IIlOl 
direction 

Figure 3.22 1 The (100) plane ofa 
face-centered cubic crystal showing 
the [I001 and [ I  101 directions. 

3.3.1 The k-Space Diagrams of Si and GaAs 

Figure 3.23 shows an E versus k diagram of gallium arsenide and of silicon. These 
simplilied diagrams show the basic properties considered in this text, but do not 
show many of the details more appropriate for advanced-level courses. 

Note that in place of the usual positivc and negative k axes, we now show two 
different crystal directions. The E versus k diagram for the one-dimensional model 
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Figure 3.23 I Energy band structures of (a) GaAs and (b) Si 
(Fmm Sze /111.J 
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was symmetric ink so that no new information is obtained by displaying the negative 
axis. It is normal practice to plot the 11001 direction along the normal +k axis and to 
plot the I I I I] portion of the diagram so the +k points to the left. In the case of dia- 
mond or zincblende lattices, the maxima in the valence band energy and minima in 
the conduction band energy occur at k = 0 or along one of these two direction*. 

Figure 3.23a shows the E versus k diagram for GaAs. The valence band maxi- 
mum and the conduction hand minimum both occur at k = 0. The electrons in the 
conduction band tend to settle at the minimum conduction band energy which is at 
k = 0. Similarly, holes in the valence band tend to congregate at the uppermost 
valence band energy. In GaAs, the minimum conduction band energy and maximum 
valence band energy occur at the same k value. A semiconductor with this property is 
said to be a d~rec t  bandgap semiconductor; transitions between the two allowed bands 
can take place with no change in crystal momentum. This direct nature has significant 
effect on the optical properties of the material. GaAs and other direct bandgap mate- 
rials are ideally suited for use in semiconductor lasers and other optical devices. 

Thc E versus k diagram for silicon is shown in Figure 3.23b. The maximum in 
the valence band energy occurs at k = 0 as before. The minimum in the conduction 
band energy occurs not at k = 0,  hut along the [I001 direction. The difference be- 
tween the minimum conduction band energy and the maximum valence band energy 
is still defined as the bandgap energy Ex.  A semiconductor whose maximum valence 
band energy and minimum conduction band energy do not occur at the same k value 
is called an irldirect bandgap semiconductor. When electrons make a transition be- 
tween the conduction and valence bands, we must invoke the law of conservation of 
momentum. A transition in an indirect bandgap material must necessarily include an 
interaction with the crystal so that crystal momentum is conserved. 

Germanium is also an indirect bandgap material, whose valence band maximum 
occurs at k = 0 and whose conduction band minimum occurs along the [ 11 11 direc- 
tion. GaAs is a direct bandgap semiconductor, but other compound  semiconductor^,^ 
such as Gap and AIAs, have indirect bandgaps. 

3.3.2 Additional Effective Mass Concepts 

The curvature of the E versus k diagrams near the minimum of the conduction ban 
energy is related to the effective mass of the electron. We may note from Figure 3. 
that the curvature of the conduction band at its minimum value for GaAs is larg 
than that of silicon, so the effective mass of an electron in the conduction hand o 
GaAs will be smaller than that in silicon. 1 

For the one-dimensional E versus k diagram, the eftective mass was defined by 
Equation (3.41) as l /m'  = 1/fiZ . d 2 ~ / d k 2 .  A complication occurs in the effectiv 
mass concept in a real crystal. A three-dimensional crystal can be described by t 
k vectors. The curvature of the E versus kdiagram at the conduction band minimum ma 
not be the same in the three k directions. We will not consider the details of the vario 

device calculations. 

1 
effective mass parameters here. In later sections and chapters, the effective mass pmamJ 
eters used in calculations will be a land of statistical average that is adequate for most 
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3.4 1 DENSITY OF STATES FUNCTION 
As we have stated. we eventually wish to describe the current-voltage charactcris- 
tics of semiconductor devices. Since current is due to the flow of charge. an im- 
portant step in the process is to determine the number of electrons and holes in the 
semiconductor that will he available for conduction. The nuliiber of carriers that 
can contribute to the conduction process is a function of the number of available 
energy or quantum states since, by the Pauli exclusion principle, only one electron 
can occupy a given quantum state. When we discussed the splitting of energy lev- 
els into bands of allowed and forbidden energies, we indicated that the band of al- 
lowed energies was actually tilade up of discrete energy levels. We must determine 
the density of these allowcd energy states as a function of energy in order to calcu- 
late the electron and hole concentrations. 

3.4.1 Mathematical Derivation 

To determine the density of allowed quantum states as a function of energy, we need 
to consider an appropriate mathematical model. Electrons are allowed to move rela- 
tively freely in the conduction band of a semiconductor, but are confined to the crys- 
tal. As a first step, we will consider a free electron confined to a three-dimensional 
infinite potential well, where the potential well represents the crystal. The potential 
of the infinite potential well is defined as 

o < z < r r  

V ( x ,  y ,  L) = rn elsewhere 

where the crystal is assumed to be a cube with length a .  Schrodinger's wave equation 
in three dimensions can be solved using the separation of variables technique. 
Extrapolating the results from the one-dimensional infinite potential well, we can 
show (see Problem 3.21) that 

where n,, n ! ,  and n; we positivc integers. (Negative values of n,, nI, and n; yield 
the same wave function, except for the sign, as the positive integer values, resulting 
in the same probability function and energy, so the negative integers do not represent 
a different quantum state.) 

We can schematically plot the allowed quantum states in k space. Figure 3.24a 
shows a two-dimensional plot as a function of k, and k , .  Each point represents an 
allowed quantum state corresponding to various integral values o fn ,  and n ) .  Positive 
and negative values of k,, k , ,  or k, have thc same energy and represent the same 
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Figure 3.24 1 (a) A twa-dirnencional arrey ol allowed quantum stales in 
k space. (b) The positive one-eighth of the sphrrical k space. 

energy state. Since negative values of k,,  k , ,  or k: do not represent additional quan- 
tum states, the density of quantum states will be determined by considering only the 
positive one-eighth of the spherical k space as shown in Figure 3.24b. 

The distance between two quantum states in the k ,  direction, for example, is 
given by 

Generalizing this result to three dimensions, the volume Vk of a single quantum stateis 

We can now determine the density of quantum states in k space. A differential vol- 
ume in k space is shown in Figure 3.24b and is given hy 4 n k 2  dk, so the differential 
density of quantum states in k space can he written as I 

The first factor, 2, takes into account the two spin states allowed for each quantu 
stale; the next factor, $, takes into account that we are considering only the quantu 
states for positive values of k , ,  k , ,  and k,. The factor 4 n k 2  dl,  is again the 
tial volume and the factor ( n l a )  is the volume of one quantum state. 
may be simplified to 



3.4 Dens~ty of States Functlon 

Equation (3.64) gives the density of quantum states as a function of momentum, 
through the parameter k. We can now determine the density of quantum states as a 
function of energy E. For a free electron, the parameters E and k are related by 

The differential dk is 

Then, substituting the expressions for k2 and dk into Equation (3.64). the number of 
energy states between E and E + d E  is given by 

Since h = h/2n, Equation (3.67) becomes 

Equation (3.68) gives the total number of quantum states between the energy E and 
E t d E  in the crystal space volume of u3.  If we divide by the volume a 3,  then we will 
obtain the density of quantum states per unit volume of the crystal. Equation (3.68) 
then becomes 

The densicy of quantum states is a function of energy E. As the energy of this free 
electron becomes small, the number of available quantum states decreases. This den- 
sity function is really a double density, in that the units are given in terms of states 
per unit energy per unit volume. 

Objective I EXAMPLE 3.3 

To calculate the density of ytates per unit volume o x r  a particular energy range. 
Consider the density of states for a free electron given by Equation (3.69). Calculate the 

density of states per unit volume with energies between 0 and I eV. 
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Solution 
The volume density of quantum states, from Equation (3.69). is 

I r~ 4x(2m)' i2 , 1'" f i d E  . =l , ( E , d E  = 
h3 I 

The density of states is now I 

Comment 
The density of quantum states is typically a large number An effective density of states i n  a 
semiconductor, as we will see in the following sections and in the next chapter, is also a l a r ~ e  
number, but is usually less than the dcnsity of atoms in the semiconductor crystal. 

3.4.2 Extension to Semiconductors 

In the last section, we derived a general expression for the density of allowed eled 
tron quantum states using the model of a free electron with mass rn bounded in a 
three-dimensional infinite potential well. We can extend this same general model to 
a semiconductor to determine the density of quantum states in the conduction band 
and the density of quantum states in the valence band. Electrons and holes are con- 
fined within the semiconductor crystal so we will again use the basic model of the in-  
finite potential well. 

The parabolic relationship between energy and momentum of a free electron 
was given in Equation (3.28) as E = p2/2rn = k'k2/2rn. Figure 3.16a showed l l le  
conduction energy band in the reduced k space. The E versus k curve near k = O a t  .. 
the bottom of the conduction band can be approximated as a parabola, so 
write 

fi2k2 
E = E , + -  

2m; 

where E, is the bottom edge of the conduction hand and rn; is the electron effecti 
mass. Equation (3.70) may be rewritten to give 

p k 2  
E - E , = -  

2m; 



3.4 Density of States Function 

The general form of theE versus k relation for an electron in the bottom of a con- 
duction band is the same as the free electron, except the mass is replaced by the effec- 
tivemass. We can then think of the electron in the bottom of the conduction band as 
being a "free" electron with its own particular mass. The right side of Equation (3.7 1) 
is of the same form a the right side of Equation (3.28), which was used in the deriva- 
tion of the density of states function. Because of this similarity, which yields the 
"free" conduction electron model, we may generalize the free electron results of 
Equation (3.69) and write the density of allowed electronic energy states in the con- 
duction hand as 

Equation (3.72) is valid for E , E, . As the energy of the electron in the conduction 
band decreases, the number of available quantum states also decreases. 

The density of quantum states in the valence band can be obtained by using the 
same infinite potential well model, since the hole is also confined in the semicon- 
ductor crystal and can he treated as a "free" particle. The effective mass of the hole 
is m;. Figure 3.16b showed the valence energy band in the reduced k space. We 
may also approximate the E versus k curve near k = 0 by a parabola for a "free" 
hole, so that 

fi2k2 
E = E,. - - 

2m; 

Equation (3.73) may he rewritten to give 

Again, the right side of Equation (3.74) is of the same form used in the general 
derivation of the density of states function. We may then generalize the density of 
states function from Equation (3.69) to apply to the valence band, so that 

Equation (3.75) is valid for E 5 E,.. 
We have argued that quantum states do not exist within the forbidden energy 

band, so g ( E )  = 0 for E,  c E c E,. Figure 3.25 shows the plot of the density of 
quantum states as a function of energy. If the electron and hole effective masses were 
equal, then the functions g,(E) and g , , (E )  would be symmetrical about the energy 
midway between E, and E,., or  the midgilp energy. Emidgap. 
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Figure 3.25 I The density of energy 
states in the conduction band and the 
density of energy states in the valence 
band as a function of energy. 

i 
I TEST YOUR UNDERSTANDING 

E3.2 Determine the total numher of energy states in silicon between E, and E, + kT at 
T = 300 K. (,-"J hlOl X Z l ' Z  

E3.3 Determine the total number of energy states in silicon between E ,  and E, - kT at 
T = 300 K. (,-"a xlOl X Z6'L 'sub') 

3.5 1 STATISTICAL MECHANICS 
In dealing with large numbers of particles, we are interested only in the statistical be- 
havior of the group as a whole rather than in the behavior of each individual particle. 
For example, gas within a container will exert an average pressure on the walls of the 
vessel. The pressure is actually due to the collisions of the individual gas molecules 
with the walls, but we do not follow each individual molecule as it collides with the 
wall. Likewise in a crystal, the electrical characteristics will be determined hy the 
statistical behavior of a large number of electrons. 

3.5.1 Statistical Laws I 
In determining the statistical behavior of particles, we must consider the laws that the 
particles obey. There are three distribution laws determining the distribution of par- 
ticles among available energy states. 

1 



One distribution law is the Maxwell-Boltzmann pn~hability function. In this case, 
the panicles are considered to be distinguishable by being numbered, for example, from 
I to N. with no limit to the number of particles allowed in each energy state. The 
behavior of gas molecules in a container at Fairly low pressure is an example of this 
distribution. 

Asecond distribution law is the Bose-Einstein function. The panicles in this case 
are indistinguishable and, again, there is no limit to the number of particles permitted 
in each quantum state. The behavior of photons, or black body radiation, is an exam- 
ple of this law. 

The third distribution law is the Fermi-Dirac probability function. In this case, 
the particles are again indistinguishable, but now only one particle is permitted in 
each quantum state. Electrons in a crystal obey this law. In each case, the particles are 
assumed to be noninteracting. 

3.5.2 The Fermi-Dirac Probability Function 

Figure 3.26 shows the ith energy level with g; quantum states. A maximum of one 
particle is allowed in each quantum state by the Pauli exclusion principle. There are 
g, ways of choosing where to place the first panicle, (g i  - 1 )  ways of choosing 
where to place the second particle, (g;  - 2) ways of choosing where to place the 
third particle, and so on. Then the total number of ways of arranging N; particles in 
the ith energy level (where N, _i ~r,) is 

This expression includes all permutations of the N, particles among themselves. 
However, since the particles are indistinguishable, the N, ! number of permuta- 

tions that the particles have among themselves in any given arrangement do not 
count as separate arrangements. The interchange of any two electrons. for example, 
does not produce a new arrangement. Therefore, the actual number of independent 
ways of realizing a distribution of Ni particles in the ith level is 

w ; =  &"! (3.77) 
N ; ! ( x ;  - N, ) !  

Figure 3.261 The ith energy level wrth g, 
quantum rtate?. 

ith energy 
level 

Quantum states 

1 2 3 . . . . . . rn 
8,  
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EXAMPLE 3.4 I Objective 

To determine the possible number of ways of realizing a particular distribution. 
Let y, = N, = 10. Then (g, - N,)! = 1. 

W Solution 
Equation (3.77) becomes 

gi ! lo! = - =  1 
N ; ! ,  - N !  lo! 

Comment I 
If we have I0 particles to be arranged in 10 quantum states, there is only one possible arrange- 
m a t .  Each quantum state contains one particle. 1 

EXAMPLE 3.5 ( Objective 

To again determine the possible number of ways of realizing a particular distribution. 
Let y, = 10 and N, = 9. In this case R, - N, = 1 so that (g,  - N,)! = 1 .  

W Solution 
Equation (3.77) becomes 

w Comment 
In this case, if we have 10 quantum states and 9 particles. there is one empty quantum stale. 
There are 10 possible arrangements, or positions, for the one empty state. 

Equation (3.77) gives the number of independent ways of realizing a distribution 
of N, particles in the ith level. The total number of ways of arranging (N,, N2, N,, . . . , 
N,) indistinguishable particles among n energy levels is the product of all distribu- 
tions, or 

The parameter W is the total number of ways in which Nelectrons can be arranged in 
this system, where N = x:=, N, is the total number of electrons in the system. We 
want to find the most probable distribution, which means that we want to find the 
maximum W. The maximum W is found by varying Ni among the Ei levels, which 
vanes the distribution, but at the same time, we will keep the total number of parti- 
cles and total energy constant. 



3.5 Statistlca Mechanics 

We may write the most probable distribution function as 

where EF  is called the Fermi energy. The number density N(E)  is the number of 
particles per unit volume per unit energy and the function g(E)  is the number of 
quantum states per unit volume per unit energy. The function , ~ F ( E )  is called the 
Fenni-Dirac distribution or probability function and gives the probability that a 
quantum state at the energy E will be occupied by an electron. Another interpretation 
of the distribution function is that fF (E)  is the ratio of filled to total quantum states 
at any energy E. 

3.5.3 The Distribution Function and the Fermi Energy 

To begin to understand the meaning of the distribution function and the Fermi 
energy, we can plot the distribution function versus energy. Initially, let T = 0 K and 
consider the case when E < EF. The exponential term in Equation (1.79) becomes 
exp[(E - EF)/kTI -t exp (-a') = 0. The resulting distribution function is 
fF(E < EF) = I .  Again let T = 0 K and consider the case when E > E F .  The 
exponential term in the distribution function becomes exp[(E - EF) /kT)  + 
exp (+a) + +a'. The resulting Fermi-Dirac distribution function now becomes 
fF(E > EF) = 0. 

The Fermi-Dirac distribution function for T = 0 K is plotted in Figure 3.27. This 
result shows that, for T = 0 K, the electrons are in their lowest possible energy states. 
The probability of a quantum state being occupied is unity for E c EF and the proba- 
bility of a state being occupied is zero for E > EF. All electrons have energies below 
the Femi energy at T = 0 K. 

Figure 3.28 shows discrete energy levels of a particular system as well as tlie 
number of available quantum states at each energy. If we assume, for this case, that 

0 f ,  
E -  Ei 

Figure 3.28 1 Discrete energy states 
Figure 3.27 1 The Fermi probability and quantum states for a particular 
function Venus energy for T = 0 K. system at T = 0 K. 
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the system contains 13 electrons. then Figure 3.28 shows how these electrons are dis- 
tributed among the various quantum states at T = 0 K. The electrons will he in the 
lowest possible energy state, so the probability of a quantum state being occupied in 
energy levels El  through Eq is unity, and the probability of a quantum state being oc- 
cupied in energy level E5 is zero. The Fermi energy, for this case, must be above El 

but less than E s .  The Fermi energy determines the statistical distribution of electrons 
and does not have to correspond to an allowed energy level. 

Now consider a case in which the density of quantum states g ( E )  is a continu- 
ous function of energy as shown in Figure 3.29. If we have No electrons in this sys- 
tem, then the distribution of these electrons among the quantum states at T = 0 K is 
shown by the dashed line. The electrons are in the lowest possible energy state so that 
all states below E F  are tilled and all states above E F  are empty. If g ( E )  and No are 
known for this particular system, then the Fermi energy E F  can be determined. 

Consider the situation when the temperature increases above T = O K. Elec- 
trons gain a certain amount of thermal energy so that some electrons can jump to 
higher energy levels, which means that the distribution of electrons among the avail- 
able energy states will change. Figure 3.30 shows the same discrete energy levels and 
quantum states as in Figure 3.28. The distribution of electrons among the quantum 
states has changed from the T = O K case. Two electrons from the E4 level have 
gained enough energy to jump to E5, and one electron from Ei  has jumped to El .  As 
the temperature changes, the distribution of electrons versus energy changes. 

The change in the electron distribution among energy levels for T > O K can be 
seen by plotting the Fermi-Dirac distribution function. If we let E = E F  and T > OK, 
then Equation (3.79) becomes 

The probability of a state being occupied at E = E F  is f . Figure 3.31 shows the 
Fermi-Dirac distribution function plotted for several temperatures, assuming the 
Fermi energy is independent of temperature. 

Figure 3.29 I Density of quantum states and electrons in a 
continuous energy system at T = 0 K.  

V V U W U W V V V  Es 

t !  
W W V  W W W  

A €1 

Figure 3.30 1 Discrete energy states and 
quantum states for the same system 
shown in Figure 3.28 fur T > 0 K. 
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T =  T, 
- 

Figure 3.31 1 The Fermi probability function versus energy 
for different temperatures. 

We can see that for temperatures above absolute zero, there is a nonzero proba- 
bility that some energy states above EF will be  occupied by electrons and some 
energy states below EF will be empty. This result again means that some electrons 
have jumped to higher energy levels with increasing thermal energy. 

Objective 1 E X A M P L E  3.6 

To calculate the probability that an enersy state above E F  is uccupied by an electron. 
Let T = 300 K. Determine the probability that an energy level 3kT above the Ferlni m. 

ergy is occupied by an electron. 

W Solution 
From Equatian (3.79). we can write 

I - - 1 
, f ~ ( E i  = 

I + exp (9) 1 + exp (s) 
which becomes 

I Comment 
At energies above E,. , the probability of a state being occupied by an electron can become sig- 
nificantly less than unity. or the ratio of electrons to available quantum states can he quite 
small. 

TEST YOUR UNDERSTANDING 1 
E3.4 Assume the Fermi energy level is 0.30 eV below the conduction band energy. 

(a )  Determine the probability of a sfdte being occupied by an elcctron at E,. 
(h )  Repeat part (a)  for an energy state at E, + k T .  Assume T = 300 K. 
Lp-0[ X E V E  (4)  i s  01 X ZE'6 (D) 'SUV] 
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E3.5 Assume the Fermi energy level is 0.35 eV above the valence band energy. 

(0) Determine the probability of a state being empty of an electron at E,. (b)  
pan ( a )  for an energy state at E ,  - k 7 .  Assumc 7 = 300 K .  
[L-O1 X 86P ( 9 )  ' v .  01 X SE'I ("1 'SUVI 

We can see from Figure 3.31 that the probability of an energy above El- 
occupied increase5 as the temperature increases and the probability of a state belo 
EF being empty increases as the temperature increases. 

EXAMPLE 3.7 I Objective 

Tr, determine (he temperature at which there is a 1 percent probability that an energy stated 
empty. 

Assume that thc Fermi energy level for a particular material is 6.25 eV 
Irons in this material follow the Fermi-Dirac distribution function. Calculate the trmperatu 
at which there is a I percent probability that a slate 0.30 eV below the Fermi 
not contain an electron. 

Solution 
The probability that a statc is empty is 

Then 

Solving for k T .  we find k 7  = 0.06529 eV, so that thc temperature is 7 = 756 K 

Comment 
The Fermi probability function is a strong function of temperature 

TEST YOUR UNDERSTANDING 

E3.6 Repeat Exercise E3.4 for 7'= 400 K. [ s-O1 x 0Z.9 (9 )  '?-01 X 69'1 (0) 'SUVI 

E3.7 Repeat Exercise E3.5 for T =  400 K. [ ~ - 0 1  x YP1 (Y) '1-01 X Y6E (") "Vl 

We may note that the probability of a state a distance dE above El- 
occupied is the same a s  the probability of a srate a distance d E  below EF 
empty. The function f r  ( E )  is symmetrical with the function I - f l - ( E )  about t 
F e r ~ n i  energy, E F .  This symmetry effect is shown in Figure 3.32 and will be us 
in the next chapter. 



Figure 3.32 1 The probahility of a slate hcing occupied. 
/,(El, and the probability of a state heing empty, I - i ;(El 

! 

Figure 3.33 1 The Femi-Dirac probability function and the 
Maxwell-Boltrmann approximation. 

Consider the case when E - E F  >> k T .  where the exponential term in the de- 
nominator of Equation (3.79) is much greater than unity. We may neglect the I in the 
denominator, so the Femi-Dirac dihtribution function becomes 

I I 

Equation (3.80) is known as the Maxwell-Bolumann approximation, or simply the 
Boltzmann approximation. to theFern~i-Dirac distribution function. Figtlre 1.33 shows 
the Femi-Dirac probability function and the Boltzmann approximation. This figure 
gives an indication of the range of energies over which the approximation is valid. 

Objective I EXAMPLE 3.8 

To determine the energy at which the Bolt7mann approximation may be considered valid. 
Calculate the energy, in terms of k T  and E F .  at which the difference between the 

Boltzmann approximation and the Fermi-Dirac function is 5 percent of the Fermi function. 
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W Solution 
We can write 

exp [-'EL; " '1 - I 

I + m p  (9) 
1 = 0.05 

E - E F  
1 + exP 

If we multiply both numerator and denominator by the 1 + exp ( ) function, we have 

exp "'1 { I  + exp [%I} - 1 = 0.05 

which becomes 

H Comment 
As seen in this example and in Figure 3.33. the E - E ,  >> kT nutation is sumewhat mislead- 
ing. The Maxwell-Boltrmann and Fermi-Dirac functions are within 5 percent of each mithcr 
when E - EF  = 3 k T .  

The actual Boltzniann approximation is valid when e x p [ ( E  - E * ) / k T ]  w l 
However, it is still common practice to use the E - E r  >> kT nott~tion when apply- 
ing the Boltzmann approximation. We will use this Boltzmann approxilnation in our 
discussion of  semiconductors in the next chapter. 

3.6 1 SUMMARY 
Discrete allowed electron energies split into a band of allowed energies as atoms are 
brought together to form a crystal. 
The concept of allowed and forbidden energy bands was developed more rigorously 
by considering quantu~n mechanics and Schrodinger's wave equation using the 
Kronig-Penney model representing the potential function of a single crystal material. 
This result forms the basis of the energy band theory of semiconductors. 

H The concept of effective mass was developed. Effective mass relates the motion of a 
particle in a crystal to an externally applied force and takes into account the effect o l  the 
c~ystal lattice on the motion of the particlc. 

H Two charged particles exist in a semiconductor An electron is a negatively charged 
panicle with a positive effective mass existing at the bottom of an allowed energy band. 
A hole is a positivcly charged particle with a positive effective mass existing at the cop 
of an al1r)wed energy band. 



I The Eversus kdiagram of silicon and gallium arsenide were given and the concept of 
direct and indirect bandgap semiconductors was discussed. 
Energies within an allowed energy band are actually at discrete levels and each contains 
a finite number of quantum states. The density per unit energy of quantum states was 
determined by using the three-dimensional infinite potential well as a model. 
In dealing with large numbers of electrons and holes, we must consider the statistical 
behavior of these particles. The Fermi-Dirac probability function was developed. which 
gives the probability of a quantum state at an energy E af being occupied by an electron. 
The Fermi energy was defined. 

GLOSSARY OF IMPORTANT TERMS 
allowed energy band A band or range of energy levels that an electron in a crystal is al- 

lowed to occupy baied on quantum mechanics. 

density of states function The density of available quantum states as a functiun o l  energy, 
given in units of number per unit energy per unit volume. 

electron effective mass The parameter that relates the acceleration of an electron in the con- 
duction band of a crystal 11) an external force: a parameter that takes into account the effect 
of internal forces in the crystal. 

Fermi-Dirae probability function The function describing the statistical distribution of 
electrons among available energy states and the probability that an allowed energy state is 
occupied by an electron. 

f emi  energy In the simplest definition, the energy below which all states are filled with 
electrons and above which all states are empty at T = 0 K. 

forbidden energy band A hand o r  range of energy levcls that an electron in a crystal is not 
allowed to occupy based on quantum mechanics. 

hole The positively charged "particle" associated with an empty state in the top of the va- 
lence band. 

hole effective mass The parameter that relates the acceleration of a hole in the valence band 
of a crystal to an applied external force (a positive quantity); a parameter that takes into ac- 
count the effect of internal forces in a crystal. 

k-spacediagram The plot of electron energy in a crystal versus k, where k is the momentum- 
related constant of the motion that incorporates the crystal interaction. 

Kmnig-penney model The mathematical model of a periodic potential function reprrsenl- 
ing a one-dimensional single-crystill lattice by a series of periodic step functions. 

~ ~ ~ ~ ~ l l - ~ ~ [ t ~ ~ ~ ~ ~  approximation The condition in which the energy is several kT 
above the Fermi energy or several kT below the Fermi energy so that the Fermi-Dirac 
probability function can be approximated by a simple exponential function. 

Pauli exclusion principle The principle which states that no two electrons can occupy the 
same quantum state. 

CHECKPOINT 
After studying this chapter, the reader should have the ability to: 

Discuss the concept of allowed and forbidden energy bands in a single crystal both 
qualitatively and more rigorously from the results of using the Kronig-Penney model 
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Discuss the splitting of energy bands in silicon. 
State the definition of effective mass from the E versus k diagram and discuss its 
meaning in terms of the movement of a particle in a crystal. 
Discuss the concept of a hole. 
Qualitatively, in terms of energy hands, discuss the difference between a metal, 
insulator, and semiconductor 
Discuss the effective density of states function. 
Understand the meaning of the Femi-Dirac distribution function and the Fenni energy. 

REVIEW QUESTIONS 
1. What is the Kronig-Penney model'? 

2. State two results of using the Kronig-Prnney model with Schrodinger's wave equation. 

3. What is effective mass? 

4. What is a direct bandgap semiconduca,r? What is an indirect bandgap semiconductor? 

5. What is the meaning of the density of states function'! 

6. What was the mathematical model used in deriving the density of states function? 

7. In general, what is the relation between density of states and energy? 

8. What is the meaning of the Fermi-Dirac probability function? 

9. What is the Fermi energy? 

PROBLEMS 

Section 3.1 Allowed and Forbidden Energy Bands 

3.1 Consider Figure 3.4b. which shows the energy-band splitting of silicon. If the 
equilibrium lattice spacing were to change by a small amount. discuss how you would 
expect the electrical properties of silicon to change. Determine at what point the 
material would behave like an insulator or like a metal. 

3.2 Show that Equations (3.4) and (3.6) are derived from Schrodinger's wave equation. 
using the font1 of solution given by Equation (3.3). 

3.3 Show that Equations (3.9) and (3.10) are solutions of the differential equations given 
by Equations (3.4) and (3.8). respectively. 

3.4 Show that Equations (3.12) (3.14), (3.16). and (3.18) rcsult from the boundary condiL 
tions in the Kronig-Penney model. 

- 
-- 3.5 Plot the function f (ma) = 9 s i n a a i a a  + cosaa for 0 5 a a  5 6n. Also, gixren the fi function f ( a a )  = cosku, indicate the allowed values of rrrr which will satisfy this 
s. equation 

-- fi 3.6 Repeat Problcm 3.5 h r  the function += f(w.a) = 6 s i n u a i a a  + cusaa = coska 

3.7 Using Equation (3.24), show that dE/dk = 0 at k = nniu .  where n = 0, 1, 2. . . . . 
3.8 Using the parameters in Problem 3.5 and letting o = 5 A, determine the width (in eV) 

of the forbidden energy bands that exist at ( a )  ka = n. (b )  ka = 2n, ( c )  ka = 3n. and 
(d) ka = 4n. Refer to Figure 3 . 8 ~ .  



3.9 Using the parameters in Prohlern 3.5 and letting u = 5 A. determine the width (in eV) 
of the allowed energy bands that exist for ( a )  0 < ka < n, (h) n < ku < 2n, 
(c) 2n < k o  < 3x. and (d l  371 < ku < 417. 

3.10 Repeat Problem 3.8 using the parameters in Problem 3.6. 

3.11 Repeat Problem 3.9 using the parameters in Problem 3.6. 

3.12 The bandgap energy in a semiconductor is usually a slight function af temperature 
In some cases. the handgap energy versus temperature can be modeled by 

where E, (0) is the value of the bandgap energy at T = 0 K. For silicon. the parameter 
values are E,(O) = 1.170 eV. u = 4.73 x eV/K and f l  = 636 K. Plot E, versus 
Tover the range 0 5 T 5 600 K. In particular, note the value at T = 300 K. 

Section 3.2 Electrical Conduction in Solids 

3.13 Two possible conduction bands are shown in the E  versus k diagram given in 
Figure 3.34. State which hand will result in the heavier electron effective mass; 
state why. 

3.14 Two possible valence bands are shown in the E  versus k diagram given in Figure 3.35. 
State which band will result in the heavier hole effective mass; state why. 

3.15 The E versus k diagram for a panicular allowed energy band is shown in Figure 3.36. 
Determine ( a )  the sign of the effective mass and (h) the dircction of velocity for a 
particle at each of the four positions shown. 

3.16 Figure 3.37 shows the parabolic E  versus k  relationship in the conduction band for 
an electron in two particular semiconductor materials. Determine the effective mass 
(in units of the free electron mass) of the two electrons. 

3.17 Figure 3.38 shows the parabolic E verrus k relationship in the valence band for a hole 
in two particular semiconduut,~r materials. Determine thc effective mass (in units of 
the free electron mass) of the two holes. 

3.18 The forbidden energy band of GaAs is 1.42 eV. ( a )  Determine the minimum frequency 
of an incident photon that can interact with a valence electron and elevate the elrctnln 
to the conduction band. (b) What is the curespunding wavelength? 

3.19 The E  versus k diagrams for a free electron (curve A) and for an eleclron in a 
semiconductor (curve B) are shown in Figure 3.39. Sketch (a) d E / d k  versus k and 

Figure 3.34 I Conduction Figure 3.35 1 Valence bands 
bands for Problem 3.13. for Problem 3.14. 
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k +  

Figum 336 1 Figure for Problem 3.15 

k (A- ' )  

Figure 337 1 Figure for Prohlem 3.16. 

Figure 3.38 I Figure for Problem 3.17. Figure 3.39 I Figure for Problem 3.19. 

(h)  d 'E /dk2  versus k for each curve. (c) What conclusion can you make concerning a 
comparison in effective masses for the two cases? 

Section 3.3 Extension to Three Dimensions 

3.20 The energy band diagram for silicon is shown in Figure 3.2% The minimum energy 
in the conduction band i~ in the [I001 direction. The energy in this one-dimensional 
direction near thc minimum value can bc approximated by 

E = E,, - El cosol(k - kc,)  

where k,, is the value of k  at the minimum energy. Dctermine the effective mass of the 
particle at k = ku in terms af  the equation parameters. 

Section 3.4 Density of States Function 

3.21 Starting with the three-dimensional infinite potential well function given by Equa- 
tion (3.59) and using the separation of variables technique, derive Equation (3.60). 

3.22 Show that Equation (3.69) can be derived from Equation (3.64). 

3.23 Determine the total number nf energy states in GaAs between E,  and E,  + kT at 
T = 300 K. 



3.24 Determine the total number of energy states in GaAs between E,  and E,  - kT at 
T = 300 K. 

3.25 (a) Plot the density of states in the conduction band for silicon over the range 
E, 5 E 5 E, + 0.2 eV. (6) Repeat pan (a) for the density of states in the valence 
band over the range E ,  - 0 2 e V  5 E 5 E,. 

3.26 Find the ratio of the effective density of states in the conduction band at E,. + k T  to 
theeffective density of states in the valence band at E,  - kT. 

Section 3.5 Statistical Mechanics 

3.27 Plot the Femi-Dirac probability function, given by Equation (3.79). over the range -- - 

-0.2 5 ( E  - E , )  I 0.2 eV for (a) T = 200 K (6) T = 300 K, and (c) T = 400 K. [~ - < 
3.28 Repeat Example 3.4 for the case when g, = 10 and N, = 8. - 
3.29 (a) If E F  = E, , find the probability of a state being occupied at E = E, + kT. (6) If 

E F  = E , .  find the probability of a state being empty at E = E,  - kT. 

3.30 Determine the probability that an energy level is occupied by an electron if the state is 
above the Fermi level by ( a )  kT. (6) SkT, and ( c )  10kT. 

3.31 Determine the probability that an energy level is empty of an electron if the state is 
below the Fermi level by ( a )  kT, (b) 5kT. and (c) l0kT. 

3.32 TheFermi energy in silicon is 0.25 eV below the conduction band energy E,. (0) Plot 
the probability of a state being occupied by an electron over the range 
E, I E 5 E, + 2 k T  Assume T = 300 K. (6) Repeat part (a) for T = 400 K. 

333 Four electrons exist in a one-dimensional infinite potential well of width a = I0  A. 
Assuming the free electron mass, what is the Fermi energy at T = 0 K. 

334 (a) Five electrons exist in a three-dimensional infinite potential well with all three 
widths equal to u = 10 A. Assuming the free electron mass. what is the Fermi mergy 
at T = 0 K. ( b )  Repeat pan ( a )  for 13 electrons. 

3.35 Show that the probability of an energy state being occupied A E  above the Fermi 
energy is the same as the probability of a state being empty A E  below the F e m i  level. 

3.36 (a) Determine for what energy above E,. (in terms of kT)  the Fermi-Dirac probabil- 
ity function is within I percent of the Boltzmann approximation. (h) Give the value of 
the probability function at this energy. 

3.37 The Fermi energy le\,el for a particular material at T = 300 K is 6.25 eV. The elec- 
trons in this material follow the Fermi-Dirac distribution function. ( a )  Find the 
probability of an energy level at 6.50 eV being occupied by an electron. (6) Repeat 
pan (a) if the temperature is increased to T = 950 K. (Assume that E F  is a constant.) 
(c) Calculate the temperature at which there is a 1 percent probability that a state 
0.30 eV below the Fermi level will be empty of an electron. 

338 The Fermi energy for copper at T = 300 K is 7.0 eV. The electrons in copper follow 
the Femi-Dirac distribution function. (a) Find the probability of an energy level at 
7.15 eV being occupied by an electron. (6) Repeat part (u) for T = 1000 K. (Assume 
that EF is a constant.) (c) Repcat part ( a )  for E = 6.85 eV and T = 300 K. (d )  De- 
termine the probability of the energy state at E = E F  being occupied at T = 300 K 
and at T = 1000 K. 

3.39 Consider the energy levels shown in Figure 3.40. Let T = 300 K. (0) If El - E F  = 
0.30 eV, determine the probability that an mergy state at E = £ 1  is occupied by an 
electron and the probability that an energy state at E = E2 is empty. (b) Repeat pan 
(a) if E ,  - El = 0.40 eV. 
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Figure 3.40 1 Energy levels for 
Pmblem 3.39. 

3.40 Repeat problem 3.39 for the case when El - Ei = 1.42 eV. 

3.41 Determine the derivative with respect to energy of the Fermi-Dirac distribution 
I 

function. Plot the derivative with respect to energy for (0) T = OK, (h)  T = 300 K, 
and ( c )  T = 500 K. 

3.42 Assume the Fermi energy level is exactly in the center of the bandgap energy of a 
semiconductor at T = 300 K. ( a )  Calculate the probability that an energy state in the 
bottom of the conduction band is occupied by an electron for Si, Ge. and GaAs. 
(b) Calculate the probability that an energy state in the top of the valence hand is 
empty for Si. Ge, and GaAs. 

3.43 Calculate the temperature at which there is a 10-"robability that an energy state 
0.55 eV above the Fermi energy level is occupied by an electron. 

3.44 Calculate the energy range (in eV) between f )  ( E )  = 0.95 and f ,  ( E )  = 0.05 for 
E F  = 7.0 cV and for ( a )  T = 300 K and (b) T = 500 K. 
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The Semiconductor 
in Equilibrium 

P R E V I E W  

S o far, we have been considering a general crystal and applying to it the con- 
cepts of quantum mechanics in order to determine a few of the characteristics 
ofelectrons in a single-crystal lattice. In this chapter, we will apply these con- 

cepts specifically to a semiconductor material. In particular, we will use the density 
of quantum states in the conduction band and the density of quantum states in the va- 
lence band along with the Fermi-Dirac probability function to determine the con- 
centration of electrons and holes in the conduction and valence bands, respectively. 
We will also apply the concept of the Fermi energy to the semiconductor material. 

This chapter deals with the semiconductor in equilibrium. Equilibrium, or ther- 
mal equilibrium, implies that no external forces such as voltages, electric fields. mag- 
netic fields, or temperature gradients are actingon the semiconductor. All properties 
of the semiconductor will be independent of time in this case. Equilibrium is our 
starting point for developing the physics of the semiconductor. We will then be able 
to determine the characteristics that result when deviations from equilibrium occur, 
such as when a voltage is applied to a semiconductor device. 

We will initially consider the properties of an intrinsic semiconductor, that is, a 
pure crystal with no impurity atoms or defects. We will see that the electrical proper- 
ties of a semiconductor can be altered in desirable ways by adding controlled amounts 
of specific impurity atoms. called dopant atoms, to the crystal. Depending upon the 
type of dopant atom added, the dominant charge carrier in the semiconductor will be 
either electrons in the conduction band or holes in the valence band. Adding dopant 
atoms changes the distribution of electrons among the available energy states, so the 
Fermi energy becomes a function of the type and concentration of impurity atoms. 

Finally, as part of this discussion, we will attempt to add more insight into the 
significance of the Fermi energy. m 
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i 4.1 1 CHARGE CARRIERS IN SEMICONDUCTORS . 

Current is the rate at which charge flows. In a semiconductor. two types of charge 
carrier, the electron and the hole, can contribute to a current. Since the current in a 
semiconductor is determined largely by the number of electrons in the conduction 
band and the number of holes in the valence hand, an important characteristic of the 
semiconductor is the density of these charge carriers. The density of electrons and 
holes is related to the density of states function and the Fermi distribution function, 
both of which we have considered. Aqualitative discussion of these relationships will : 

be followed by a more rigorous mathemeticel derivation of the thermal-equilibrium 
concentration of electrons and holes. 

4.1.1 Equilibrium Distribution of Electrons and Holes 

The distribution (with respect to energy) of electrons in the conduction band is given I 
by the density of allowed quantum states times the probability that a state is occupied 
by an electrnn. This statement is written in equation form as 

1 
where f,(E) is the Fermi-Dirac probability function and g J E )  is the density of quan- ! 
turn states in the conduction band. The total electron concentration per unit volume 
in the conduction band is then found by integrating Equation (4.1) over the entire 
conduction-band energy. 

Similarly, the distribution (with respect to energy) of holes in the valence bend 
is the density of allowed quantum states in the valence hand multiplied by the prob- 
ability that a state is nor occupied by an electron. We may express this as 

The total hole concentration per unit volume is found by integrating this function 
over the entire valcncc-band energy. 

To find the thermal-equilibrium electron and hole concentrations, we need to 
determine the position of the Fermi energy E, with respect to the bottom of the 
conduction-band energy E, and the top of the valence-band energy E,..To address 
this question, we will initially consider an intrinsic semiconductor. An ideal intrinsic 
semiconductor is a pure semiconductor with no impurity atoms and no lattice defects 
in the crystal (e.g., pure silicon). We have argued i n  the previous chapter that, for an 
intrinsic semiconductor at T = 0 K, all energy states in the valence band are filled 
with electrons and all energy states in the conduction band are empty of electrons. 
The Fermi energy must, therefore, be somewhere between E, and E,.. (The Fermi 
energy does not need to correspond to an allowed energy.) 

As the temperature begins to increase above 0 K, the valence electrons will gain 
thermal energy. A few electrons in the valence band may gain sufficient energy to 
jump to the conduction band. As an electron jumps from the valence band to the con- 
duction band, an empty state, or hole, is created in the valence band. In an intrinsic 
semiconductor, then, electrons and holes are created in pairs by the thermal energy so 
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R,(EI/F(EI = n(EI 

E, Area = n, = 
electron 
concentration 

hole concentration 

Figure 4.1 1 (a) Density of states functions, Fermi-Dirac probability function, and areas representing electron and hole 
concentrations for the case when E ,  is near the midgap energy; (b) expanded view near the cunduction band energy; 
and (c) expanded view near the valence band energy. 

that the number of electrons in the conduction band is equal to the number of holes 
in the valence band. 

Figure 4.la shows a plot of the density of states function in the conduction band 
g,(E), the density of states function in the valence band y , . (E ) ,  and the Fermi-Dirdc 
probability function for T > 0 K when E r  is approximately halfway between E, and 
E,. If we assume, for the moment, that the electron and hole effective masses are 
equal, then g,(E) and g , ( E )  are symmetr~cal functions about the midgap energy (the 
energy midway between E, and E,). We noted previously that the function , f ,r(E) 
for E > E f  is symmetrical to the function 1 - f r ( E )  for E c E r  about the energy 
E = E F .  This also means that the function f f ( E )  for E = EF + d E  is equal to the 
function 1 - ~ F ( E )  for E = E,r - d E .  
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Figure 4. I b is an expanded view of the plot in Figure 4 . la  showing fi-(E) and 

g , ( E )  above the conduction band energy E, . The product of g,(E) and fF (E)  is the 
distribution of electrons n(E) in the conduction band given by Equation (4.1). This 
product is plotted in Figure 4.la. Figure 4. lc is an expanded view of the plot in Fig' 
ure 4. la showing [ I  - f ~ ( E ) l  and g,.(E) below the valence band energy E,. Th 
product of g,(E) and [ l  - f ~ ( E ) 1  is the distribution of holes p (E)  in the vale d 
band given by Equation (4.2). This product is also plotted in Figure 4. la. The area 
under these curves are then the total density of electrons in the conduction band and 
the total density of holes in the valence band. From this we see that if g,(E) and 
g,(E) are symmetrical, the Fermi energy must be at the midgap energy in order ta 
obtain equal electron and hole concentrations. If the effective masses of the electroo 
and hole are not exactly equal, then the effective density of states functions g c ( E )  
and g,(E) will not be exactly symmetrical about the midgap energy. The Fermi level 
for the intrinsic semiconductor will then shift slightly from the midgap energy in 
order to obtain equal electron and hole concentrations. 

4.1.2 The no andpo Equations 1 
We have argued that the Fermi energy for an intrinsic semiconductor is near midgap 
In deriving the equations for the thermal-equilibrium concentration of electrons nc 
and the thermal-equilibrium concentration of holes pu. we will not be quite so re. 
strictive. We will see later that, in particular situations, the Fermi energy can deviati 
from this midgap euergy. We will assume initially, however, that the Fermi leve 
remains within the bandgap energy. 

The equation for the thermal-equilibrium concentration of electrons may bt 
found by integrating Equation (4.1) over the conduction band energy, or 

The lower limit of integration is E, and the upper limit of integration should be t h ~  
top of the allowed conduction band energy. However, since the Fermi probabilit! 
function rapidly approaches zero with increasing energy as indicated in Figure 4.la 
we can take the upper limit of integration to be infinity. 

We are assuming that the Fermi energy is within the forhidden-energy bandgap 
For electrons in the conduction hand, we have E > E, .  If (E, - EF)  >> k Z ,  the1 
( E  - EF) >> k T ,  so that the Fermi probability function reduces to the Boltzman~ 
approximation,' which is I 

'The Maxwell-Boltrrnann and Fercni-Dirac distribution functions are within 5 percent of each other 
when E - El % 3kT (see Figure 3.33). The >> nnuration is then somewhat misleading to indicate when 
the Boltrmann approximation is valid, although it is commonly used. 
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4.1 Charge Carrlers in Semiconductors 

Applying the Boltzmann approximation to Equation (4.3), the thermal-equilibrium 
density of electrons in the conduction band is found from 

[ - tEk ;Er ) ]  d E  
E - E, exp (4.5) 

The integral of Equation (4.5) may be solved more easily by making a change of 
variable. If we let 

then Equation (4.5) becomes 

The integral is the gamma function, with a vdlue of 

Then Equation (4.7) becomes 

We may define a parameter N ,  as 

so that the thermal-equilibrium electron concentration in the conduction band can be 
written as 

The parameter N, is called the effective densin r$ stutes function in the conduc- 
tion band. If we were to assume that in,* = mo,  then the value of the effective density 
of states function at T = 300 K is N ,  = 2.5 x 10" cm-', which is the order of 
magnitude of N, for most semiconductors. If the effective mass of the electron is 
larger or smaller than mo, then the value of the effective density of states function 
changes accordingly, but is still of the same order of magnitude. 

Objective I EXAMPLE 4.1 

Calculate the probability that a state in the conduction band is occupied by an electron and cal- 
culate the thermal equilibrium electron concentration in  silictln at T =  100 K. 

Assume the Fermi energy is 0.25 eV below the conduction band. The value of N, for sil- 
icon at T = 100 K is N, = 2.8 x I0lY cm-'. 
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Solution 
The probability that an energy state at E = E, is occupied by an electron is given by 

I 
f.r(E,) = 

I +.xP ( ) I 
or I 

(i:29) = 6.43 x lo-' frIE,)  =rxp - 

The electron concentration is given by 

nu = N, exp r E i ;  I = (2.8 x 10") exp - ( Z )  
or 

no = 1.8 x 10" cm-' 

Comment 
The probability of a state being occupied can be quite small, but the fact that there are a l a r s  
number of states means that the electron concentration is a reasonable value. 

The thermal-equilibrium concentration of holes in the valence band is found bj 
integrating Equation (4.2) over the valencc band energy, or 

Po = g,(E)[I - f f ( E ) 1  ' f E  s (4.12; 

We may note that 

1 
I - fF(E)  = 

For energy states in the valence band, E c E,. If (EF - E u )  >> kT (the Fermi func~ 
tion is still assumed to be within the bandgap), then we have a slightly different for~n 
of the Boltzmann approximation. Equation (4.13aj may be written as 

Applying the Boltzmann approximation of Equation (4.13b) to Equation (4.12) iii. 
find the thermal-equilibrium concentration of holes in the valence band is 
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where the lower limit of integration is taken as minus infinity instead of the bottom 
of the valence band. The exponential term decays fast enough so that this approxi- 
mation is valid. 

Equation (4.14) may be solved more easily by again making a change of vari- 
able. If we let 

then Equation (4.14) becomes 

where the negative sign comes from the differential d E  = k T d q ' .  Note that the 
lower limit of q'becomes +m when E = -m. If we change the order of integration, 
we introduce another minus sign. From Equation (4.8). Equation (4.16) becomes 

We may define a parameter Nu as 

which is called the eflecrive density of states ,function in the valence hand. The 
thermal-equ~librium concentration of holes in the valence band may now be written as 

The magnitude of N ,  is also on thc order of lOI9 cm-' at T = 300 K for most semi- 
conductors. 

Objective I EXAMPLE 4.2 

Calculate the thermal equilibrium hole concentration in silicon at T = 400 K. 
Assume that the Fermi energy is 0.27 eV above the valence hand energy. The value of Nu 

lorsilicon at T = 300 K is Nu = 1.04 x 10" cm-'. 

l Solution 
The parameter values at T = 400 K are found as: 
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The hole concentration is then 

I po = N ,  exp = (1.60 x 1 0 ' ~ ) e x ~  

or 

,I,, = 6.43 x 10" cm-3 

I 
Comment 

The parameter values at any temperature can easily he found hy using the 300 K values and' 
the temperature dependence. 

The effective density of states functions, N, and N,., are constant for a given- 
semiconductor material at a fixed temperature. Table 4.1 gives the values of the den'. ;e sity of states function and of the effective masses for silicon, gallium amenide, and 
germanium. Note that the value of N, for gallium arsenide is smaller than the typical 
lOI9 cm-' value. This difference is due to the small electron effective mass in gallium~ 
arsenide. 

The thermal equilibrium concentrations of electrons in the conduction band 4 
of holes in the valence band are directly related to the effective density of states con- 
stants and to the Fermi energy level, 

I TEST YOUR UNDERSTANDING 

E4.1 Calculate the thermal equilibrium electron and hole concentration in silicon at 
T = 300 K for the case when the Fermi energy level is 0.22 eV below the conduction 
hand energy E, . The value of E, is given in Appendix B.4. 
(<-W3 iOI X EP8 = "d 'i-U3 i ,O[  X ELS = "u 'SUV) 

E4.2 Determine the thermal equilibrium electron and hole concentration in GaAs at i 

T = 300 K for the case when the Fcrmi energy level is 0.30 eV above the valence 
band energy E,, .  The value of E, is given in Appendix 8.4. 
( t - ~ 3  ((01 x ts.9 = Ud ic-m3 6 ~ ~ 0 . 0  = Ou . s u ~ )  

4.1.3 The Intrinsic Carrier Concentration 

For an intrinsic semiconductor, the concentration of electrons in the conduction b 
is equal to the concentration of holes in the valence band. We may denote n, 

Table 4.1 1 Effective density of states function and effective mass values 

Ne ( c d )  N, (ern-') m:/mo m,'/mo 

Silicon 2.8 x 10'' 1.04 x 10'' 1.08 0.56 
Gelliucn arsenids 4.7 x 10" 7.0 x 10" 0.067 0.48 
Gerrnaniutn 1.04 x 1019 6.0 x 101".55 0.37 
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as the electron and hole concentrations, respectively, in the intrinsic semiconductor. 
These parameters are usually referred to as the intrinsic electron concentration and 
intrinsic hole concentration. However, ni = p i ,  so normally we simply use the para- 
meter ni as the intrinsic carrier concentration, which refers to either the intrinsic elec- 
tron or hole concentration. 

The Fermi energy level for the intrinsic semiconductor is called the intrinsic 
Fermi energy, or Ef = EF, . If we apply Equations (4.11) and (4.19) to the intrinsic 
semiconductor, then we can write 

If we take the product of Equation.; (4.20) and (4.21). we obtain 

n> NN, N ,  exp 

where E, is the bandgap energy. For a given semiconductor material at a constant 
temperature, the value of n ,  is a constant, and independent of the Fermi energy. 

The intrinsic carrier concentration for silicon at T = 300 K may be calculated 
by using the effective density of states function values from Table 4.1. The value of 
n, calculated from Equation (4.23) for E, = 1.12 eV is ni = 6.95 x 10' cm-'. The 
commonly accepted value' of n, for silicon at T = 300 K is approximately 
1.5 x loLo cm-'. This discrepancy may arise from several sources. First, the values 
of the effective masses are determined at a low temperature where the cyclotron res- 
onance experiments are performed. Since the effective mass is an experimentally 
determined parameter, and since the effective mass is a measure of how well a parti- 
cle moves in a crystal, this parameter may be a slight function of temperature. Next, 
the density of states function for a semiconductor was obtained by generalizing the 
model of an electron in a three-dimensional infinite potential well. This theoretical 
funcfion may also not agree exactly with experiment. However, the difference be- 
tween the theoretical value and the experimental value of n ,  is approximately a factor 

- 
'Vuious references may list slightly different vitlues of the intrinsic qilicon concentration at room 
!emperamre. Ingeneral. they are all between I x 10" and 1.5 x l0"'cm-'. This difference i,. in most 
carer, not significant. 
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Table 4.2 I Commonly accepted values of ,,, 
atT=300K 

Silicon ,I, = 1.5 x 10"' cm-3 
Gallium arsenide n,  = 1.8 x loh cm-3 
Gcrmanium n ,  = 2.4 x 10" cm-l 

of 2, which, in many cases, is not significant. Table 4.2 lists the commonly accepted 
values of n, for silicon, gallium arsenide, and germanium at 7 = 300 K. 

The intrinsic carrier concentration is a very strong function ot temperature. 

EXAMPLE 4.3 1 Objective 

To calculate the intrinsic carrier concentralion in ~allium arsenide at T = 300 K and at 
T = 450 K. 

The values of N, and N, at 300 K for gallium arsenide are 4.7 x 10" cm ' and 
7.0 x 1018 cm-', respectively. Both N, and N ,  vary as 7';'. Assume the bandgap enerz! of 
gallium arsenide is 1.42 eV and does not vary with temperature (aver this range. The \.alui. oi 
kT at 450 K is 

Solution 

Using Equation (4.23). we find for T = 300 K 

so that 

/ /  
ni = 3.85 x 10" cm-' 

Comment  
We may note from this example that the intrinsic carrier concmtratian increased by over 4or- 
ders of magnitude as the temperature increased by 150°C. 

Figure 4.2 is a plot of ni from Equation (4.23) for silicon, gallium arsenide, and 
germanium as a function of temperature. As seen in the figure, the value of n,  fa 
these semiconductors may easily vary over several orders of magnitude as the tem- 
perature changes over a reasonable range. 
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Figure 4.2 I The intrinsic carrier 
concentration of Ce, Si, and GaAs as a 
function of temperature. 
(From S x  //3/.1 

TEST YOUR UNDERSTANDING I 
E4.3 Find the intrinsic carrier concentration in silicon at (0) T = 200 K and (b)  7 = 400 K. 

IE-m3 ,,0l x 8E.Z (9) ' S - ~ J  * O I  x 891 ("1 '"Vl 

E4.4 Repeat E4.3 for GaAs. [1-"2 601 X 8Z.E (4 )  'c.lU3 8E-I (0) 'SUV]  

E4.5 Repeat E4.3 for Ge. [%-ma *,01 X 9'8 (4) ' r - ~ 3  ,,,O[ X 91.Z (0)  'SUV] 

4.1.4 The Intrinsic Fermi-Level Position 

We have qualitatively argued that the Fermi energy level is located near the  center of 
the forbidden bandgap for the intrinsic semiconductor. We can specifically calculate 
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the intrinsic Femi-level position. Since the electron and hole concentrations are 
equal, setting Equations (4.20) and (4.21) equal to each other, we have 

If we take the natural log of both sides of this equation and solve for EF, .  we obtain 

I 
EF,  = -(E, f E , )  + 

2 2 

From the delinitions for N ,  and N ,  given by Equations (4.10) and (4.1 X), respec- 
tively, Equation (4.25) may be written as 

The first term, f ( E ,  + E,), is the energy exactly midway between E, and E, .  or tht 

midgap energy. We can define 

so that 

If the electron and hole effective masses are equal so that m; = m ; ,  then the intrin- 
sic Fermi level is exactly in the center of the bandgap. If my, > mg. the intrinsic 
Fermi level is slightly above the center, and if m; < mz.  it is slightly below the cen. 
ter of the bandgap. The density of states function is directly related to the carrier ef- 
fective mass: thus a larger effective mass means a larger density of states function. 
The intrinsic Fermi level must shift away from the band with the larger density of 
states in order to maintain equal numbers of electrons and holes. 

EXAMPLE 4.4 1 Objective 

To calculate the position of the intrinsic Fermi level with respect to the center of the handgap 
in silicon at T = 300 K .  

The density of states effective carrier masses in silicon are rrif = I . O X I I > ~  and 
,n; = 056rno. 

Solution 
The intrinsic Fermi level with respect to the center of the bandgap is 

3 
E r ,  - Emiderp = - kT In 

4 I 
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I Comment 
The intrinsic Fcmi level in silicon is 12.8 rneV below the midgap energy. If we cornpare 
12.8 meV to 560 meV, which is one-half of the bandgap energy of silicon, we can, in Inany ap- 
plications, simply approximate the intrinsic Fermi level to be in the center of the bandgap. 

TEST YOUR UNDERSTANDING 

E4.6 Determine the position of the intrinsic Fermi level with respect to the center ofthe 
bandzap in GaAs at T = 300 K. (haul Z '8 t -  'sub') 

4.2 1 DOPANT ATOMS AND ENERGY LEVELS 
The intrinsic semiconductor may be an interesting material, but the real power of 
semiconductors is realized by adding small, controlled amounts of specific dopant, or  
impurity, atoms. This doping process, described briefly in Chapter I ,  can greatly alter 
the electrical characteristics of the semiconductor. The doped semiconductor, called 
an extrinsic material, is the primary reason we can fabricate the various semiconduc- 
tor devices that we will consider in later chapters. 

4.2.1 Qualitative Description 

In Chapter 3, we discussed the covalent bonding of silicon and considered the sim- 
ple two-dimensional representation of the single-crystal silicon lattice as shown in 
Figure 4.3. Now consider adding a group V element, such as phosphorus, as a sub- 
stitutional impurity. The group V element has five valence electrons. Four of these 
will contribute to the covalent bonding with the silicon atoms, leaving the fifth more 
loosely hound to the phosphorus atom. This effect is schematically shown in 
Figure 4.4. We refer to the fifth valence electron as a donor electron. 

Figure 4.3 1 Two-dimensional 
representation of the intrinsic silicon lattice. 

Figure 4.4 1 Two-dirnsnsional 
representation of the silicon lattice doped 
with a phosphorus atom. 
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The phosphorus atom without the donor electron is positively charged. At ver) 
low temperatures, the donor electron is bound to the phosphorus atom. However. by 
intuition, it should seem clear that the energy required to elevate the donor electron 
into the conduction band is considerably less than that for the electrons involved i n  
the covalent bonding. Figure 4.5 shows the energy-hand diagram that we would e l -  
pect. The energy level, Ed, is the energy state of the donor electron. 

If a small amount of energy, such as thermal energy. is added to the donor elec- 
tron, it can be elevated into the conduction band, leaving bchind a positively char@ 
phosphorus ion. The electron in the conduction band can now move through the cry,- 
tal generating a current, while the positively charged ion is fixed in the clystal. Th~s 
type of impurity atom donates an electron to the conduction band and so is called a 
donor imy~rri1)utom. The donor impurity atoms add electrons to the conduction band 
without creating holes in the valence band. The resulting material is referred to as an 
n - v p e  semiconductor (n for the negatively charged electron). 

Now consider adding a group I11 element, such as boron, as a substitutional 1111- 

purity to silicon. The group 111 element has three valence electrons, which are ;~ll 
taken up in the covalent bonding. As shown in Figure 4.6a, one covalent bonding po- 
sition appears to he empty. If  an electron wcre to occupy this "empty" position. i r i  

t Conducuon band 

------ - - - - - - 
X M + + + - Ed 

B F 
B 5 
c e c - 
2 

Valenee band E, : E, 
5 3 

Figure 4.5 1 The energy-hand diagram showing (a) the discrete donor energy state 
and (b) the effect of a donor state being ionized. 

,, ,, 
,, , 

. 
Figure 4.6 1 Twa-dimensional representation of a silicon lattice (a) doped with a boron atii~~~ 
and (b) showing [he ionization of the boron atom resulting in a hole. 
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Conducuon band 
4 t E, 

h A 

2 ZQ 
5 5 
E - - - - - - - E ' ,  j -T7-7--2;  - 

F, d - Valence band - 
L w + + + 

Figure A7 I The energy-band diagram showing (a) the discrete acceptor energy state 
and (b) the effect of an acceptor state being ionizcd. 

energy would have to be greater than that of the valence electrons, since the net charge 
state of the boron atom would now be negative. However, the electron occupying this 
"empty" position does not have sufficient energy to he in the conduction band, so its 
energy is far smaller than the conduction-band energy. Figure 4.6h shows how va- 
lence electrons may gain a small amount of thermal energy and move about in the 
crystal. The "empty" position associated with the boron atom becomes occupied, and 
other valence electron positions become vacated. These other vacated electron posi- 
tions can he thought of as holes in the semiconductor material. 

Figure 4.7 shows the expected energy state of the "empty" position and also the 
formation of a hole in the valence hand. The hole can move through the crystal gen- 
erating a current, while the negatively charged boron atom is fixed in the crystal. The 
group Ill atom accepts an electron from the valence band and so is refcrred to as an 
occeptur impuri9 arorn. The acceptor ;Itom can generate holes in the valence hand 
without generating electrons in the conduction band. This type of semiconductor ma- 
terial is referred to as ap-type material ( p  for the positively charged hole). 

The pure single-crystal semiconductor material is called an intrinsic material. 
Adding controlled amounts of dopant atoms, either donors or acceptors, creates a 
material called an rrtrinsic semiconductor. An extrinsic semiconductor will have ei- 
ther a preponderance of electrons (n type) or a preponderance of holes (p type). 

42.2 Ionization Energy 

We can calculate the approximate distance of the donor electron from the donor im- 
purity ion, and also the approximate energy required to elevate the donor electron 
into the conduction band. This energy is referred to as the ionization energy. We will 
use the Bohr model of the atom for these calculations. The justification for using lhis 
model is that the most probable distance of an electron from the nucleus in a hydro- 
gen atom, determined from quantum mechanics, is the same as the Bohr radius. The 
energy levels in the hydrogen atom determined from quantum mechanics are also the 
same as obtained from the Bohr theory. 

In the case of the donor impurity atom, we may visualize the donor electron or- 
biting the donor ion, which is embedded in the semiconductor material. We will need 
to use the permittivity of the semiconductor material in the calculations rather than 
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the permittivity of free space as is used in the case of the hydrogen atom. We willal 
use the effective mass of the electron in the calculations. 

The analysis begins by setting the coulonib force of attraction between the ek 
tron and ion equal to the centripetal force of the orbiting electron. This conditiona 
give a steady orbit. We have 

e2 m*u2 - - - - 
4ncr,' r,, 

where u is the magnitude of the velocity and r, is the radius of the orbit. If we assu 
the angular momentum is also quantized, then we can write 4 
where n is a positive integer. Solving for u from Equation (4.28), substituting i~ 
Equation (4.27), and solving for the radius, we obtain I 

The assumption of the angular momentum being quantized leads to the radius a1 
being quanti~ed. 

The Bohr radius is defined as 

We can normalize the radius of the donor orbital to that of the Bohr radius, which g i ~  

where E ,  is the relative dielectric constant of the semiconductor material, mo is I 
rest mass of an electron, and m* is the conductivity effective mass of the electron 
the semiconductor. 

If we consider the lowest energy state in which n = I ,  and if we consider silio 
in which t, = 11.7 and the conductivity effective mass is m*/ma = 0.26. then' 
have that 

or r ,  = 2 3 . 9 ~ .  This radius corresponds to approximately four lattice constants 
silicon. Recall that one unit cell in silicon effectively contains eight atoms, so the 
dius of the orbiting donor electron encompasses many silicon atoms. The donore11 
tron is not tightly bound to the donor atom. 

The total energy of the orbiting electron is given by I 
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where T is the kinetic energy and V is the potential energy of the electron. The kinetic 
energy is 

Using the velocity u from Equation (4.28) and the radius r,, from Equation (4.29), the 
kinetic energy becomes 

The potential energy is 

The total energy is the sum of the kinetic and potential energies, so that 

For the hydrogen atom, m' = mo and t = to .  The ionization energy of the hydrogen 
atom in the lowest energy state is then E = - 13.6 eV. If we consider silicon, the ion- 
ization energy is E = -25.8 meV, much less than the bandgap energy of silicon. 
This energy is the approximate ionization energy of the donor atom, or the energy re- 
quired to elevate the donor electron into the conduction band. 

For ordinary donor impurities such as phosphorus or arsenic in silicon or ger- 
manium, this hydrogenic model works quite well and gives some indication of the 
magnitudes of the ionization energies involved. Table 4.3 lists the actual experimen- 
tally measured ionization energies for a few impurities in silicon and germanium. 
Germanium and silicon have different relative dielectric constants and effective 
masses; thus we expect the ionization energies to differ. 

4.2.3 Group III-V Semiconductors 

In the previous sections, we have been discussing the donor and acceptor impurities 
in a group IV semiconductor, such as silicon. The situation in the froup Ill-V 

Table 4.3 I Impurity ionization energies in silicon 
and germanium 

Ionization energy (eV) 

Impurity Si Ge 

Donors 
Phosphorus 0.045 0.012 
Arsenic 0.05 0.0127 

Acceptors 
Boron 0.045 0.0104 
Aluminum 0.06 0.0102 
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Table 4.4 1 Impur~ty lonuatlon energles 
In galhum arsen~de 

Imnuritv Ionization enerev (eVI 

Donors 
Selenium 0.0059 
Tellurium 0.0058 
Silicon 0.0058 
Germanium 0.0061 
Acceprors 
~eryilium 
Zinc 
Cadmium 
Silicon 0.0345 
Germanium 0.0404 

compound semiconductors, such as gallium arsenide, is more complicated. ~ r o u ~ l  
elements, such as beryllium, zinc, and cadmium, can enter the lattice as subs1 
tional impurities, replacing the group I11 gallium element to become acceptor impu- 
rities. Similarly, group VI elements, such as selenium and tellurium, can enter the 
lattice substitutionally, replacing the group V arsenic element to become donor im- 
purities. The corresponding ionization energies for these impurities are smaller than 
for the impurities in silicon. The ionization energies for the donors in gallium ar. 
senide are also smaller than the ionization energies for the acceptors, because of the 
smaller effective mass of the electron compared to that of the hole. 

Group IV elements, such as silicon and germanium, can also be impurity atou~s 
in gallium arsenide. If a silicon atom replaces a gallium atom, the silicon impurity 
will act as a donor. but if the silicon atom replaces an arsenic atom. then the silicun 
impurity will act as an acceptor. The same is true for germanium as an impurity atom. 
Such impurities are called amphoreric. Experimentally in gallium arsenide, it is 
found that germanium is predominantly an acceptor and silicon is predominantly a 
donor. Table 4.4 lists the ionization energies for the various impurity atoms in gallium 
arsenide. 

( TEST YOUR UNDERSTANDING 

E4.7 Calculate the radius (normalized to a Bohr radius) of a donor electron in its lowest 
energy state in GaAs. (5'561 ' ~uv )  

4.3 1 THE EXTRINSIC SEMICONDUCTOR 
We defined an intrinsic semiconductor as a material with no impurity atoms pres 
in the crystal. An extrinsic semicondlrcror is defined as a semiconductor in 
controlled amounts of specific dopant or impurity atoms have been added so that 
thermal-equilibrium electron and hole concentrations are different from the intrin 
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canier concentration. One type of canier will predominate in an extrinsic semicon- 
ductor. 

4.3.1 Equilibrium Distribution of Electrons and Holes 

Adding donor or acceptor impurity atoms to a semiconductor will change the distrib- 
ution of electrons and holes in the material. Since the Fermi energy is related to the 
distribution function, the Fermi energy will change as dopant atoms are added. If the 
Fermi energy changes from near the midgap value, the density of electrons in the con- 
duction band and the density of holes in the valence band will change. These effects 
are shown in Figures 4.8 and 4.9. Figure 4.8 shows the case for EF > EFi  and 
Figure 4.9 shows the case for EF < EF, .  When E r  > Er i ,  the electron concentra- 
tion is larger than the hole concentration, and when EF < E w ,  the hole concentration 

E, 

hole concentration 

Figure 4.81 Density of states functions. Fermi-Dirac 
probability function, and areas representing electron 
and hole concentrations for the case when E F  is above 
the intrinsic Fermi energy. 
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liole concentrdrion 

f d E )  = 0 ~F(E)  = I 

Figure 4.9 1 Density of states functions, Fermi-Dirac 
probability function, and areas representing electron and 
hole concentrations for the casc when E,  is below the 
intrinsic Fermi energy. 

is larger than the electron concentration. When the density of electrons is greater than 
the density of holes, the semiconductor is n type; donor impurity atoms have been 
added. When the density of holes is greater than the density of electrons, the semi- 
conductor is p type; acceptor impurity atoms have been added. The Fermi energy 
level in a semiconductor changes as the electron and hole concentrations change and, 
again, the Fermi energy changes as donor or acceptor impurities are added. The 
change in the Fermi level as a function of impurity concentrations will be considered 
in Section 4.6. 

The expressions previously derived for the thermal-equilibrium concentrationo 

no and po in terms of the Fermi energy. These equations are again given as 

4 
electrons and holes, given by Equations (4.1 1) and (4.19) are general equations fa 

1 

no = N, exp I 
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and 

~ E F  - E,.i 
po = N ,  exp I 

As wejust discussed, the Fermi energy may vary through the handgap energy, which 
will then change the values of no and po. 

Objective I EXAMPLE 4.5 

To calculate the thermal equilihriurn concentrations of electrons and holes for a given Fermi 
energy. 

Consider silicon at T = 300 K so that N, = 2.8 x 10" cm-' and N, = 1.04 x 

lot9 ~ r n - ~ .  Assume that the Fermi energy is 0.25 eV below the conduction hand. If we assume 
that the bandgap energy of silicon is 1. I2 eV, then the Fermi energy will be 0.87 cV above the 
valence band. 

I Solution 
Using Equation (4.1 I), we have 

From Equation (4.19). we can write 

pi, = (1.04 x 10") exp (iig) - = 2.7 x 10' c m '  

I Comment 
The change i n  the Fertni level is actually a function of the donor or acceptor impurity conccn- 
uations that are added to the scmiconductor However, this examplc shows that electron and 
hole concentrations change by orders of magnitude from the intrinsic carrier concentration as 
the Femi energy changes by a few tenths of an electron-volt. 

In this example, since no > po, the semiconductor is n type. In an n-type semi- 
conductor, electrons are referred to as the majority carrier and holes as the minority 
carrier. By comparing the relative values of nu and po in the example, it is easy to 
see how this designation came ah i~ut .  Similarly, in a p-type selniconductor where 
po > no, holes are the majority carrier and electrons are the minority carrier. 

We may derive another form of the equations for the thermal-equilibrium con- 
centrations of electrons and holes. If w e  add and subtract an intrinsic Fermi energy in 
the exponent of Equation (4.1 I ) ,  we can write 

( E ,  - EFO + ( E r  - E F ~ )  
no = N, exp 

k T  I (4.38a) 

or 

no = N, exp E 6 , ) ]  [ ( E ~ ; ~ E f i ) l  (4.38h) 
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The intrinsic carrier concentration is given by Equation (4.20) as 

n, = N, exp I I 
so that the thermal-equilibrium electron concentration can be written as 

I I 

Similarly, if we add and subtract an intrinsic Fermi energy in the exponent of Eq 
tion (4.19), we will obtain 

As we will see, the Fermi level changes when donors and acceptors are added, 
hut Equations (4.39) and (4.40) show that, as the Fermi level changes from the intrin- 
sic Fermi level, no and po change from then; value. If E F  > E F ~ ,  then we will have 
no > n, and po < n,.  One characteristic of an n-type semiconductor is that EF >  en^ 
so that no > po. Similarly, in a p-type semiconductor, E F  < E F ~  SO that > 1 1 ,  an 
no c n , ;  thus po > no. 1 We can see the functional dependence of no and po with E r  in Figures 4.8 and 
4.9. As E,c moves above or below E.ri , the overlapping probability function with the 
density of states functions in the conduction band and valence band changes. As E F 8  
moves above Et ; .  the probability function in the conduction band increases, while' 
the probability, I - fF (E) ,  of an empty state (hole) in the valence band decreases. 
As E F  moves below EF, ,  the opposite occurs. 

4.3.2 The nope Product 

We may take the product of the general expressions for nu and po as given in Equa- 
tions (4.11) and (4.19). respectively. The result is 

nopu = N ,  N ,  exp [-'" - ""1 exp [-'":; "'1 (4.41) k T 

which may be written as 

As Equation (4.42) was derived for a general value of Fermi energy, the values 
of no and po are not necessarily equal. However, Equation (4.42) is exactly the same 
as Equation (4.23), which we derived for the case of an intrinsic semiconductor. We 
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then have that, for the semiconductor in thermal equilibrium, 

Equation (4.43) states that the product of no and po is alwayh a constant for a 
given semiconductor material at a given temperature. Although this equation seems 
very simple, it is one of the fundamental principles of semiconductors in thermal 
equilibrium. The significance of this relation will become more apparent in the chap- 
ters that follow. It is important to keep in mind that Equation (4.43) was derived 
using the Boltrmann approximation. If the Boltzmann approximation is not valid, 
then likewise, Equation (4.43) is not valid. 

An extrinsic semiconductor in thermal equilibrium does not, strictly speaking, 
contain an intrinsic carrier concentration, although some thermally generated carr-  
ers are present. The intrinsic electron and hole carrier concentrations are modified by 
the donor or acceptor impurities. However, we may think of the ir~trirlsic concentra- 
tion ni in Equation (4.41) simply as a parameter of the semiconductor material. 

$4.3.3 The Fed-Dirac Integral 

In the derivation of the Equations (4.1 1) and (4.19) for the thermal equilibrium elec- 
tron and hole concentrations, we assumed that the Boltzmann approximation was 
valid. If the Boltrmann approximation does not hold. the thermal equilibrium elec- 
tron concentration is written from Equation (4.3) as 

If we again make a change of variable and let 

and also define 

then we can rewrite Equation (4.44) as 

The integral is defined as 
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Figure 4.10 1 The Fermi-Dirac integral F, 12 as a function 
of the Fermi energy. 
(f.r<lm s:e 113i.J 

This function, called the Fermi-Dirac integral, is a tabulated function of the variabl 
q p .  Figure 4.10 is a plot of the Fermi-Dirac integral. Note that if q~ > 0. the 
Er > E,; thus the Fermi energy is actually in  the conduction band. 

EXAMPLE 4.6 I Objective 

To calculate the electron concentration using the Fermi-Dimc integral. 4 

Let 7~ = 2 so that the Fermi energy is above the conduction hand by approximatel 
52 meV at T = 100 K. 

Solution 
Equation (4.46) can he written as 

For silicon at 300 K, N,  = 2.8 x 10" cm ' and. from Figure 4.10, the Femi-Dirac integr: 
has a value of fi.,,>(2) = 2.3. Then 
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I Comment 
Note that if we had used Equation (4.11). the thermal equilibrium value of nu  would be no = 

2.08 x cm-', which is incorrect since the Boltzmann approximation is not valid for this 
case. 

We may use the same general method to calculate the thermal equilibrium con 
centration of holes. We obtain 

The integral in Equation (4.48) is the same Fermi-Dirac integral defined hy Equa- 
tion (4.47) although the variables have slightly different definitions. We may note 
that if q; z 0, then the Fermi level is in the valence hand. 

TEST YOUR UNDERSTANDING 1 
E4.8 Calculate the thermal equilibrium electron concentration in silicon Tor the case when 

EF = E, and 7 = 100 K. ( i -ms 6,01 X 6.1 'TUV) 

4.3.4 Degenerate and Nondegenerate Semiconductors 

In our discussion of adding dopant atoms to a semiconductor, we have implicitly as- 
sumed that the concentration of dopant atoms added is small when compared to the 
density of host or semiconductor atoms. The small number of impurity atoms are 
spread far enough apart so that there is no interaction between donor electrons, for 
example, in an n-type material. We have assumed that the impurities introduce dis- 
crete, noninteracting donor energy staLes in the n-type semiconductor and discrete. 
noninteracting acceptor states in the p-type semiconductor. These types of semicon- 
ductors are referred to as nondegenerate semiconductors. 

If the impurity concentration increases, the distance between the impurity atoms 
decreases and a point will he reached when donor electrons, for example, will begin 
to interact with each other When this occurs, the single discrete donor energy will 
split into a band of energies. As the donor concentration further increases, the band 
of donor states widens and may overlap the bottom of the conduction band. This 
overlap occurs when the donor concentration becomes comparable with the effective 
density of states. When the concentration of electrons in the conduction band exceeds 
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t 2F: t Empty states 
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l?igure 4.11 1 Simplified energy-band diagrams for degenerately doped (a) n-type and 
(b) p-type semiconductors. 

the density of states N ,  , the Fermi energy lies within the conduction b u d .  This ty 
of semiconductor is called a degenerate n-type semiconductor. 

In a similar way, as the acceptor doping concentration increases in a p-ty 
semiconductor, the discrete acceptor encrgy states will split into a band of energ' 
and may overlap the top of the valence band. The Fermi energy will lie in the valen 
band when the concentration of holes exceeds the density of states N,.. This type 
semiconductor is called a degenerate p-type scrniconductor. 

Schematic models of the energy-band diagrams for a degenerate n-type and d 
generate p-type semiconductor are shown i n  Figure 4.1 1 .  The energy states below 
are mostly filled with electrons and the energy states above EF are mostly empty. 
the degenerate n-type semiconductor, the states between E F  and E, are mostly fill 
with electrons; thus, the electron concentration in the conduction band is very I 
Similarly, in the degenerate p-type semiconductor, the energy states between E, 
E6 are ~nostly empty; thus, the hole concentration in the valence band is very I 

4.4 1 STATISTICS OF DONORS AND ACCEPTORS 
In the last chapter, we discussed the Fermi-Dirac distribution function, which gi 
the probability that a particular energy state will be occupied by an electron. We ne 
to reconsider this function and apply the probability statistics to the donor and ac- 
ceptor energy states. 

4.4.1 Probability Function 
One postulate used in the derivation of the Femi-Dirac probability function was the 
Pauli exclusion principle, which states that only one particle is pcmitted in 
quantum state. The Peuli exclusion principle also applies to the donor and accept 
states. -d 

Suppose we have Ni electrons and gi quantum states, where the subscript i indi- 
cates the ith energy level. There are 8; ways of choosing where to put the first pani- 
cle. Each donor level has two possible spin orientations for the donor electron; 
each donor level has two quantum states. The insertion of an electron into one qu 
tum state, however, precludes putting an electron into the second quantum state. 
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adding one electron, the vacancy requirement of the atom is satisfied, and the addi- 
tion of a second electron in the donor level is not possible. The distribution function 
of donor electrons in the donor energy states is then slightly different than the 
Femi-Dirac function. 

The probability function of electrons occupying the donor state is 

where n,l is the density of electrons occupying the donor level and E,, is the energy 
ofthe donor level. The factor 4 in this equation is a direct result of the spin factorjust 
mentioned. The factor is sometimes written as l /g ,  where g is called a degeneracy 
factor. 

Equation (4.50) can also be written in the form 

where N: is the concentration of ionized donors. In many applications, we will be 
interested more in the concentration of ionized donors than in the concentration of 
electrons remaining in the donor states. 

If we do the same type of analysis for acceptor atoms, we obtain the expression 

where N, is the concentration of acceptor atoms. E,, is the acceptor energy level, p ,  
is the concentration of holes in the acceptor states, and N; is the concentration of 
ionized acceptors. A hole in an acceptor state corresponds to an acceptor atom that is 
neutrally charged and still has an "empty" bonding position as we discussed in Sec- 
tion 4.2.1. The parameter g is, again, a degeneracy factor. The ground state degener- 
acy factor f is normnlly taken as four for the acceptor level in silicon and gallium 
arsenide because of the detailed band structure. 

4.4.2 Complete Ionization and Freeze-Out 

The probability function for electrons in the donor energy state was just given by 
Equation (4.50). If we assume that (Ed - EF)  >> kT,  then 

Nd 
nd = 

I 
= 2NC1 exp I (4.53) 

If (Ed - E f )  >> k T ,  then the Boltzmann approximation is also valid for the elec- 
trons in the conduction band so that. from Equation (4.1 1). 

no = N ,  exp 

L 
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We can determine the relative number of electrons in the donor state compa 
with the total number of electrons; therefore we can consider the ratio of electron$ 
the donor state to the total number of electrons in the conduction band plus dot 
state. Using the expressions of Equations (4.53) and (4.1 I), we write 

The Fermi energy cancels out of this expression. Dividing by the numerator term, 1 

obtain 

The factor ( E ,  - E,,) is just the ionization energy of the donor electrons. 

EXAMPLE 4.7 I Objective 

To determine the fraction of total electmns still in the donor states at T = 100 K. 
Conrider phusphorus doping in silicon, for T = 3M) K, at a concentration of Nd 

1016 cm-'. 

8 Solution 
Usmg Equat~on (4.55). we lind 

8 Comment 
This example shows that there are very few electmns in the donor state compared with th 
conduction band. Essentially all of the electrons from the donor states are in the conductio 
band and. since only about 0.4 percent of the donor states contain electrons, the donor state 
are said to be completely ionized. 

At room temperature, then, the donor states are essentially completely ionize1 
and, fora typical doping of 10"cnFJ, almost all donor impurity atoms have donate1 
an electron to the conduction band. 

At room temperature, there is also essentially comnplefe ioniinfiorl of the accep 
tor atoms. This means that each acceptor atom has accepted an electron from the va. 
lence band so that p, is zero. At typical acceptor doping concentrations, a hole is cre- 
ated in the valence hand for each acceptor atom. This ionization effect and the 
creation of electrons and holes in the conduction band and valence band, respec. 
tively, are shown in Figure 4.12. 
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Conductton band Conduction band 

t E< 

Figure 4.12 i Energy-hand diagrams showing complete ionization of (a) donor states 
and (b) acceptor states. 
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Figure 4.13 1 Energy-band diagram at T = 0 K for (a) n-type and (b) p-type 
semiconductors. 

The opposite of complete ionization occurs at T  = 0 K .  At absolute zero de- 
grees, all electrons are in their lowest possible energy state; that is, for an n-type 
semiconductor, each donor state must contain an electron, therefore n,, = Nd or 
N: = 0. We must have, then, from Equation (4.50) that exp [ (Ed  - E , ) / k T ]  = 0. 
Since T = 0 K, this will occur for exp (-oo) = 0, which means that E F  > Ed. The 
Fermi energy level must he above the donor energy level at absolute zero. In the case 
of a p-type semiconductor at absolute zero temperature, the impurity atoms will not 
contain any electrons, so that the Fermi energy level must be below the acceptor en- 
ergy state. The distribution of electrons among the various energy states, and hence 
the Fermi energy, is a function of temperature. 

Adetailed analysis, not given in this text, shows that at T  = 0 K ,  the Ferlni en- 
ergy is halfway between E, and Ed for the n-type material and halfway between E, 
and E,  for the p-type material. Figure 4.13 shows these effects. No electrons from 
the donor state are thermally elevated into the conduction band; this effect is called 
freeze-our. Similarly, when no electrons from the valance band are elevated into the 
acceptor states, the effect is also called freeze-out. 
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Between T = O K. freeze-out, and T = 300 K ,  complete ~onirat ion,  we hav 

partial ionization of donor o r  acceptor atoms. ! 
EXAMPLE 4.8 I Objective I 

To deteminc the temperature at which 90 percent of acceptor atoms are ionized. 
Consider p-type silicon doped with boron at a concentratian of N ,  = 10'" ~ m - ~ .  I 

w Solution 
Find the ratio of holes in the acceptor state to the total number of holes in the valence band pl 
acceptor state. Taking into account the Boltmmann appn,ximation and assuming the degenw 
acy factor is y = 4, we write 

Pn - 
I 

For 90 percent ionization, 

I 

Using trial and error, wc find that T = 193 K. 

w Comment 
This example shows that at approximately IOOC below room temperature. we still 
YO percent of the acceptor aalms ionized; in other words. 90 perccnt of the acceptor ato 
have "donated" a hole to the valence band. 

E4.9 Determine the fraction of total holes still in the acceptor states in silicon at T = 

300 K for a boron impurity concentration of N ,  = 10" cnrr3. (hLI'O S U V )  
- - - - E4.10 Consider silicon with a phosphorus impurity concentration of N,, = 5 x 10" cm-'. res - Plot the percent of i o n i d  impurity aalms versus temperature over the range 
< 

100 < T < 400 K. 

4.5 1 CHARGE NEUTRALITY 
I 

In thermal equilibrium, the semiconductor crystal is electrically neutral. The el 
trons are distributed among the various energy states. creating negative and positiv .i 
charges, but the net charge density is zero. This charge-neutrality condition is used 
determine the thermal-equilibrium electron and hole concentrations as a function 
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the impurity doping concentration. We will define a compensated semiconductor and 
then determine the electron and hole concentrations as a function of the donor and 
acceptor concentrations. 

4.5.1 compensated Semiconductors 

A comiiensated semiconductor is one that contains both donor and acceptor impurity 
atoms in the same region. A compensated semiconductor can he formed, for exam- 
ple, by diffusing acceptor impurities into an n-type material, or by diffusing donor 
impurities into a p-type material. An n-type compensated semiconductor occurs 
when Nd > N,, and a p-type compensated semiconductor occurs when N, > Nd. 
If N, = Nd, we have a completely compensated setniconductor that has. as we will 
show, the characteristics of an intrinsic material. Compensated semiconductors are 
created quite naturally during device fabrication as we will see later. 

4.5.2 Equilibrium Electron and Hole Concentrations 

Figure 4.14 shows the energy-hand diagram of a setniconductor when both donor 
and acceptor impurity atoms are added to the same region to form a compensated 

Total electron 
c~ncentration 

Thermal ( Donor 
electrons "0 electrons 

Un-ionized 
donors Ionized donors 

EF, 
Un-ionized No- = (N, - 1 3 ~ 1  

acceptors loni~ed acceptors 

Thermal 
PO 

i Acceptor 
holes holes 

Total hole 
concentration 

Figure 4.14 1 Energy-band diagram of a campenrated 
semiconductor showing ionized and un-ionized donors 
and acceptors. 



CHAPTER 4 The Semconductor in Equlllbrlum I 
semiconductor. The figure shows how the electrons and holes can be distributed 
among the various states. 

The charge neutrality condition is expressed by equating the density of 
charges to the density of positive charges. We then have 

where nu and po are the thermal-equilibrium concentrations of electrons and holes' 
the conduction band and valence band, respectively. The parameter nd is the conce 
tration of electrons i n  the donor energy states, so N: = Nn - n,, is the concentrati 
of positively charged donor states. Similarly, p ,  is the concentration of holes in th 

and temperature. 

3 
acceptor states, so N; = N,, - p ,  is the concentration of negatively charged accep- 
tor states. We have expressions for no. po. nd.  and p,, in terms of the Fermi energy 

If we assume complete ionization, n,, and p, are both zero, and Equation (4.57) 
becomes j 

If we express (1" as njlnu, then Equation (4.58) can be writtcn as 

which in turn can be written as 

The electron concentration no can be determined using the quadratic formula, or 

The positive sign in the quadratic formula must be used, since, in the limit of an in- 
trinsic semiconductor when N,, = N,i = 0. the electron concentration must he a pos- 
itive quantity, or nu = n i .  

Equation (4.60) is used to calculate the electron concentration in an n-type semi- 
conductor, or when Nd > N,,.  Although Equation (4.60) was derived for a compen- 
sated semiconductor, the equation is also valid for N,, = 0. 

EXAMPLE 4.9 I Objective 

To determine the thermal equilibrium electron and hole concentrations fur a given doping 
concentration. 

Consider an n-type silicon semiconductor at T = 300 K in which Nd = 10'' C ~ I  and 

N, = 0. The intrinsic carrier concentration is assumed to be r x ,  = 1.5 x 10" cm-' 
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1 Solution 
From Equation (4.60). the majority carrier electron concentration is 

The minority carrier hole concentration is found as 

I Comment 
In this example. N d  >> n,. so that the thermal-equilibrium majority carrier elzctran concen- 
tration is essentially equal to the donor impurity concentration. The thermal-equilibrium ma- 
jority and minority carrier concentrations can differ by many orders of magnitude. 

We have argued in our discussion and we may note from the results of Exam- 
ple4.9 that the concentmtioo of electrons in the conduction hand increases above the 
intrinsic carrier concentration as we add donor impurity atoms. At the same time, the 
minority carrier hole concentration decreases below the intrinsic carrier concentra- 
tion as we add donor atoms. We must keep in mind that as we add donor impurity 
atoms and the corresponding donor electrons, there is a redistribution of electrons 
among available energy states. Figure 4.15 shows a schematic of this physical redis- 
tribution. A few of the donor electrons will fall into the empty states in the valence 

Intrinsic 
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L'LLLLL 'L- - - -  
Ed 

__ri 

Un-ionized donor, 

E F ~  

A few donor electrons 
annihilate some 
intrinsic holes 

@ @ @ + > Inuinsic holes 
El 

, , . . 
+- 

'. ' . .. 

Figure 4.15 1 Energy-band diagram showing the 

- redistribution of electrons when donors are added. 
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band and, in doing so, will annihilate some of the intrinsic holes. The minority car- 
rier hole concentration will therefore decrease as we have seen in Example 4.9. At 
the Yame time, because of this redistribution, the net electron concentration in the 
conduction band is not simply equal to the donor concentration plus the intri 
electron concentration. 

EXAMPLE 4.10 I Objective 
I 

To calculate the thermal-equilibrium electron and hole concentrations in a germanium samplei 
for a given doping densiiy. 

Consider a germanium sample at T = 300 Kin which Nd = 5 x 10" c m  and N, = 
Assume that n, = 2.4 x 10" cm-'. 

Solution 
Again, from Equation (4.60). the majority carrier clectron concentration is 

I 
The minority carrier hole concentration is 

Comment 
If the donor impurity concentration is not too different in magnitude from the intrinsic carrier 
concentratiun. then the thermal-equilibrium majority carrier electron concentration is influ- 
enced by the intrinsic concentration. 

We have seen that the intrinsic carrier concentration n, is a very strong function 
of temperature. As the temperature increases, additional electron-hole pairs are ther- 
mally generated so that the nj term in Equation (4.60) may begin to dominate. The 
semiconductor will eventually lose its extrinsic characteristics. Figure 4.16 shows 
the electron concentration versus temperature in silicon doped with 5 x 10'' donors 
per cm3. As the temperature increases, we can see where the intrinsic concentration 
begins to dominate. Also shown is the partial ionization, or the onset of freeze-out, at 
the low temperature. 

If we reconsider Equation (4.58) and express no as nflpu, then we have 1 
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Figure 4.16 1 Electron concentration versus temperature 
showing the three regions: partial ionization, extrinsic, and 
intrinsic. 

Using the quadratic formula, the hole concentration is given by 

where the positive sign, again, must he used. Equation (4.62) is used to calculate the 
thermal-equilibrium majority carrier hole concentration in a p-type semiconductor, 
or when N. > Nd. This equation also applies for Nd = 0. 

O b j e c t i v e  I EXAMPLE 4.11 

To calculate the thermal-equilibrium electron and hole concentrations in a compensated p-type 
,emiconductor. 

Consider a silicon semiconductor at T = 300 K in which N,, = 1016 cm-? and N,, = 
3 x 10'' cm~'.Assumen, = 1.5 x 10'' cm-'. 

1 Solution 
Since No > N d ,  the compensated semiconductor is p-type and the thermal-equilibrium ma- 
jority camier hole concentration is given by Equation (4.62) as 
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The minority carrier electron concentration is 

n i  (1.5 x 1 0 ' v 2  
, t o = =  = 3 21 x IOQm-' 

po 7 x 10" 

Comment I 
If we assume camplete ionization and if ( N ,  - N d )  >> n , ,  then the majority carrier hole co 
centration is, to a very good approximation, just the difference between the acceptor and 
concentrations. 

We may note that, fo r  a compensated p-type semiconductor, the minority cam 
electron concentration is determined from 1 

DESIGN I Objective 
EXAMPLE 4.12 

To determine the required impurity doping concentration in a semiconductor material. 
A silicon device with n-type material is to be operated at T = 550 K. At this trmperaturq 

the intrinsic carrier concentration must contribute no more than 5 percent of the total elec 
concentratjon. Determine the minimum donor concentration required to meet this 

Solution 
At T = 550 K, the intrinsic camer concentration is found from Equation (4.23) as 

or 

so that 

For the intrinsic carrier concentration to contribute no more than 5 percent of the total electrcn 
concentration, we set no = 1.05Nd. 

From Equation (4601, we have ! 

or 

+ (3.20 1 0 1 4 ) 2  



which yields 

4.6 Position of Ferm! Energy Level 

I Comment 
If the temperature remains less than 7 = 550 K, then the intrinsic carrier concentration will 

contribute less than 5 percent of the total electron concentration for this donor impurity 
concentration. 

Equations (4.60) and (4.62) are used to calculate the majority carrier electron 
concentration in an n-type semiconductor and majority carrier hole concentration in 
a p-type semiconductor, respectively. The minority carrier hole concentration in an 
n-type semiconductor could, theoretically, be calculated from Equation (4.62). How- 
ever, we would be subtracting two numbers on the order of 1016 cm-', for example, 
toobtain a number on the order of 10'' cm-', which from a practical point of view is 
not possible. The minority carrier concentrdtions are calculated from nope = 1 1 ;  once 
the majority carrier concentration has been determined. 

k TEST YOUR UNDERSTANDING I 
E4.11 Consider a compensated GaAs semiconductor at T = 300 K doped at N,, = 

5 x loJ5 c m '  and N,, = 2 x 10'"cm-'. Calculate the thermal equilibrium electron 
and hole concentrations. ( t U l "  r-O1 x 91'2 = "" '[ "2 V,Ol X 5'1 = Od "V)  

E4.12 Silicon is doped at N, = 10" cm-' and N,, = 0. (n)  Plot the concentration of - 
electrons vmus temperature over the range 300 5 r 5 6W x. ih) Call~Iate the 
temperature at which the electron concentra~ion is equal to 1.1 x 10" cm->. += 
(XZSS % .L 'SUV) 

4.6 1 POSITION OF FERMI ENERGY LEVEL 
We discussed qualitatively in Section 4.3.1 how the electron and hole concentrations 
change as the Fermi energy level moves through the bandgap energy. Then, in Sec- 
tion 4.5, we calculated the elcctron and hole concentrations as a function of donor 
md acceptor impurity concentrations. We can now determine the position of the 
Fermi energy level as a function of the doping concentrations and as a function of 
temperature. The relevance of the Fermi energy level will be further discussed after 
the mathematical derivations. 

4.6.1 Mathematical Derivation 

The position of the Fenni energy level within the bandgap can be determined by 
using the equations already developed for the thermal-equilibrium electron and hole 
concentrations. If we assume the Boltzmann approximation to be valid, then from 

[ Equation(4.ll) we haven" = N ,  exp [-(E, - Ep)/kT].  Wecansolvefor E, - EF 
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from this equation and obtain 

(4.6 

where no is given by Equation (4.60). If we consider an n-type semiconductor i 
which Nd >> n i ,  then nu = N,,, so that 

I 
The distance between the bottom of the conduction band and the Fernii energy 

is a logarithmic function of the donor concentration. As the donor concentration in- 
creases, the Fermi level moves closer to the conduction band. Conversely, if the 
F e m i  level moves closer to the conduction band, then the electron concentration in 

the conduction band is increasing. We may note that if we have a compensated semi- 
conductor, then the Nd term in Equation (4.64) is simply replaced by Nd - No,  or t i le 
net effective donor concentration. 

DESIGN I Objective 
EXAMPLE 4.13 

To determine the requircd donor impurity concentration to ohtain a specified Fermi energ). 
Silicon at T = 300 K contains an acceptor impurity concentration of N,, = 1016 cm '. 

-< Determine the concentration of donor impurity atoms that must be added so that the silicun 15 

n type and the Fermi energy is 0.20 eV below the conduction band edge. 

Solution r' 
From Equation (4.64). we have 

which can be rewritten as 

N,, - N, = N, exp 
( E ,  - E ,  ) 

Then 

N,, - N, = 2.8 x 10" exp = 1.24 x 10" cm-' 

or i 
Nd = 1.24 x 1016 + Ne = 2.24 x 10" cm-3 

Comment 
A compensated .se,niconductor can be fabricated to provide a specific Fermi energy level. 



4.6 Posltlon of Fermi Energy Level 

We may develop a slightly different expression for the position of the Fermi 
level. We had from Equation (4.39) that no = n, exp[(Ef - EF;)/kT]. We can 
solve for EF - EF; as 

Equation (4.65) can be used specifically for an n-type semiconductor, where n o  is 
given by Equation (4.60). to find the difference hetween the Fermi level and the in- 
trinsic Fermi level as a function of the donor concentration. We may note that, if the 
net effective donor concentration is zero, that is, N ,  - N, = 0, then no = n ,  and 
EF = E F ; .  A completely compensated semiconductor has the characteristics of an 
intrinsic material in terms of carrier concentration and Fenni level position. 

We can derive the same types of equations for a p-type semiconductor. From 
Equation (4.19), we have po = N ,  exp 1-( E F  - E,.)/  k T ] .  so that 

If we assume that N ,  >> 11,. then Equation (4.66) can be written as 

The distance between the Fermi level and the top of the valence-band energy for 
a p-type semiconductor is a logarithmic function orthe acceptor concentration: as the 
acceptor concentration increases, the Fermi level moves closer to the valence band. 
Equation (4.67) still assumes that the Boltzmann approximation is valid. Again. if we 
have a compensated p-type semiconductor, then the N, term in Equation (4.67) is re- 
placed by N, - Nd, or the net effective acceptor concentration. 

We can also derive an expression for the relationship between the Fermi level 
and the intrinsic Fermi level in terms of the hole concentration. We have from Equa- 
tion (4.40) that po = n, exp [-(EF - En)/kT] .  which yields 

Equation (4.68) can be used to find the difference between the intrinsic Fermi level 
and the Fermi energy in terms of the acceplor concentration. The hole concentration 
po in Equation (4.68) is given by Equation (4.62). 

We may again note from Equation (4.65) that, for an n-type semiconductor, 
no > n, and EF > Efj.  The Fermi level for an n-type semiconductor is above E F , .  
For a p-type semiconductor, po > n , ,  and from Equation (4.68) we see that 
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(a) (b)  

Figure 4.17 1 Position of Fcrmi lcvcl for an (a) n-type (N,, > N,,) and (b) p-type 
(N, > N,,) semiconductor. 

E F ~  > E F .  The Fenni level for a p-type semiconductor is below E F , .  These result 
are shown in Figure 4.17. 

4.6.2 Variation of EF with Doping Concentration 
and Temperature 

We may plot the position of the Fermi energy level as a function of the doping con 
centration. Figure 4.18 shows the Fermi energy level as a function of donor concen 
tration (n type) and as a function of acceptor concentration (p type) for silicon a 
T = 300 K. As the doping levels increase, the Fenni energy level moves closer to th 
conduction band for the n-type material and closer to the valence band for the p-typ 
material. Keep in mind that the equations for the Ferlni energy level that we havede 
rived assume that the Boltzmann approximation is valid. 

Figure 4.18 I Position of Fermi level as a function of donor 
concentration (n type) and acceptor concentration (p type). 
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Objective I EXAMPLE 4.14 

To determine the Fermi-level position and the maximum doping at which the Boltzmann 
approximation is still valid. 

Consider p-type silicon, at T = 300 K, doped with boron. We may assume that the limit 
of the Boltzmann approximation occurs when EF - E, = 3 k T .  (See Section 4.1.2.) 

I Solution 
From Table 4.3, we find the ionization energy is E, - EL, = 0.045 eV for boron in silicon. If 
we assume that E l ,  ^- Emidgap. then from Equation (4.681, the position of the Fermi le\,el at 
the maximum doping is given by 

We can then solve for the doping as 

0.437 N, n, exp (--) = 3.2 x 10'' c m '  
0.0259 

I Comment 
Ifthe acceptor (or donor) concentration in silicon is greater than approxi~nately 3 x 10" cm-', 
then the Boltzmann approximation of the distribution function becomes less valid and the 
equations for the Fermi-level position are no longer quite as accurate. 

TEST YOUR UNDERSTANDING I 
E4.13 Determine the position of the Fermi level with respect to the valence band energy in 

p type GaAs at T = 300 K. The doping concentratiuns are N ,  = 5 x 1016 ccm3 and 
Nd = 4 x cm-'. (AJ O E I O  = "3 - ' 3  'suV) 

E4.14 Calculate the position of the Fermi energy levcl in n-type silicon at T =  300 K with 
respect to the intrinsic Fermi energy level. The doping concentrations are N,! = 2 x 

10" cm-' and N, = 3  x 1016 cm-). (Aa IZP'O = ''3 - j7 '"V) 

The intrinsic carrier concentration n, .  in Equations (4.65) and (4.68), is a strong 
function of temperature, s o  that Ef is a function of temperature also. Figure 4. I 9  
shows the variation of the Fermi energy level in silicon with temperature for several 
donor and acceptor concentrations. As  the temperature increases, n,  increases, and 
E F  moves closer to the intrinsic Fermi level. At high temperature, the semiconduc- 
tor material begins to lose its extrinsic characteristics and begins to behave more like 
an intrinsic semiconductor. At the very low temperature, freeze-out occurs; the 
Boltzmann approximation is no longer valid and the equations we derived for the 
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Figure 4.19 1 Porition of Fermi lcvcl aq a function of 
temperature for various doping concentrations. 
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Fermi-level position no longer apply. At the low temperature where freeze-out oe- 
curs, the Ferm~ level goes above E d  for the n-type mater~al and below E ,  for the 
p-type material. At absolute zero degrees, all energy states below EF are full andall 
energy states above E+ are empty. 

4.6.3 Relevance of the Fermi Energy 

We have been calculating the position of the Fermi energy level as a function of dop 
ing concentrations and temperature. This analysis may seem somewhat arbitrary and 
tictitiiius. Howcver, these relations do become hignificant later in our discussion of 
pn junctions and the other semiconductor devices we consider. An important pointis 
that, in thermal equilibrium, the Fer~ni energy level is a constent throughout a sys- 
tem. We will not prove this statement, but we can intuitively see its validity by con- 
sidering the following example. 

Suppose we have a particular material, A, whose electrons are distributed in the 
energy states of an allowed band as shown in Figure 4.20a. Most of the energy state 
below E F A  contain electrons and most of the energy states above E F A  are empty of 
electrons. Consider another material, B, whose electrons are distributed in the e d  
ergy states of an allowed band as shown in Figure 4.20b. The energy states below 
EFB are mostly full and the energy states above E e H  are mostly empty. If these two 
materials are brought into intimate contact, the electrons in the entire system will 
tend to seek the lowest possible energy. Electrons from material A will flow into the 
lower energy states of material B, as indicated in Figure 4.20c, until thermal equi- 
librium is reached. Thermal equilibrium occurs when the distribution of electrons, a) 
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Figurn 4.20 I The Fermi energy of (a) material A in thernml equilibrium, (b) material B 
in thermal equilibrium, (c) materials A and B at the instanl lhcy are placed in contact, 
md (dl materials Asnd B in contact at (henna1 equilibrium. 

a function of energy, is the same  in  the two  materials. This  equilibrium state occurs 
when the Fermi energy is the same in the two  materials as shown in Figure 4.20d. 
The F e m i  energy, important in the physics of the semiconductor, also provides a 
good pictorial representation of the characteristics of the  semiconductor materials 
and devices. 

4.7 1 SUMMARY 
I The concentration of electrons in the conduction band is the integral over the conduction 

band energy of the product of the density of states function in thc conduction hand and 
the Frrmi-Dirac probahility function. 

I The concentration of holes in the valencc band is the integral over the valence bend 
energy of the product of the dmsity of states function in the valence band and the 
probahility of a state being empty, which is [I - f,(E)I. 

I Using thc hlaxwrll-Baltzmann approximation, the thermal equilibrium concentration 
of electrons in the conduction band is given by 

no = N, cxp 

where N, is the effectivz density of htatcs in thc conduction band 
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Using thc Maxwell-Boltzmann approximation, the thermal equilibrium concentration 
of holes in the valence band is given by 

po = N, exp I I 
where Nu is the effective dcnsity of states in the valence hand 
The intrinsic canter concentration is found from 

rt: = N< N, exp [$I 
The concept of doping the semiconductor with dunor (group V elements) impurities 
and acceptor (group 111 elements) impurities to form n-type and p-type extrinsic 
semiconductors was discussed. 
The fundamental rclationship uf nope = r z i  was derived. 
Using the concepts of complete ionization and charge neutrality, equations for the 
electron and hole concentrations as a function of impurity doping concentrations we 
derived. 
The position of the Fermi energy level as a function of impurity doping concentratio 
was derived. 
The relevance of the Ferlni energy wds discussed. The Fermi energy i s  a consvant 
throughout a se~niconductor that is in thermal equilibriurn. 

GLOSSARY OF IMPORTANT TERMS 1 
acceptor atoms Impurity atoms added to a \cmsonductor to create a p-type mater~il 

charge carrier The electron andlor hole that moves inside the semiconductor and gives rise 
to electrical cumnts. 

compensated semiconductor A semiconductor that contains both donors and 
the same scmiconductor region. 

complete ionization The condition when all donur atoms are positively 
up their donur electrons and all acceptor atoms arc negatively charged by accepting electr 

degenerate semiconductor A scmiconductor whose electron concentratiun or hole co 
tration is ereater than the effective density of states, sa that the Fermi level is in the co 
tion band (n type) or in the valence band (p type). 

donor atoms Impurity atoms added to a semiconductor to create an n-type material. 

effective density of states The parameter N, . which results from integrating the dens' 
quantum states g,(E) times the Fermi function fi ( E )  over the conduotion-band ene 
the parameter N , .  which results from integrating the density of quantum states g, (E) ti 
[I - f ,  ( E ) ]  over the valence-band energy. 

extrinsic semiconductor A semiconductor in which controlled amounts of donors an 
acceptors have heen added so that the electron and hole concentrations change from th 
trinsic carrier concentration and a preponderance of cither electrc,ns (n type) or holes (pty 
is created. 

freeze-out The condition that occurs in a semiconductor when the temperature is 1 
and the donors and acceptors become neutrally charged. The electron and hole concen 
become very small. 



intrinsic carrier concentration n; The electron concentration in the conduction hand and 
the hole concentration in the valence band (cqual values) in an intrinsic semiconductor. 

intrinsic Fermi level EFj The position of the Fermi level in an intrinsic semiconduclor. 

intrinsic semiconductor A pure semiconductor material with no impurity atoms and no lat- 
tice defects in thc crystal. 

nondegenerate sernicunductur A semiconductor in which a relatively small number of 
donors andlor acceptors have been addcd sn that discrete, nonintcracting donor states and/or 
discrete, noninteracting acceptor states are introduced. 

CHECKPOINT 
After studying this chapter. the reader should have the ability to: 

Derive the equations for the thermal equilibrium concentrations of electrons and holes 
in terms nf the Fermi energy. 
Derive the equation for the intrinsic carrier conccntratian. 

I State the value of the intrinsic carrier concentration for silicon at T = 100 K. 
Derive the rxpressir>n for rhe intrinsic Fcrmi level. 

I Describe the effect of adding donor and acceptor impurity aturns to a semiconductor. 

. "." , 
I Descrihe the meanin@ uf degenerate and nandegenerate semiconductors. 
I Discuss the concept of charge neutrality. 
I Derive the equations for no and pi, in tcrnms af  impurity doping concentrations. 
I Discuss the variation of the Ferrni energy with doping concentration and temperature. 

REVIEW QUESTIONS 
1. Write the equation for n(E1 as a function of the density of states and the Fermi proba- 

bility function. Repeat for the function p ( E ) .  

2. In deriving the equation for ,L,, in ternis of the Fenni function. the upper limit of the 
integral should be the energy at the top of the conduction hand. Justify using infinity 
instead. 

3. Assuming the Brlltzrnann approximation applies, write the equations for 11" and pi, in 
terms of the Fcrmi energy. 

4. What is the value of thc intrinsic carrier concentration in silicon at 7 = 300 K? 

5. Under what condition would the intrinsic Fermi levcl be at the midgap energy? 

6. What is a donor impurity'! What is an acceptor impurity? 

7. What is meant by complete ionization? What is meant by freeze-out? 

8. What is the product of no and po equal to? 

9. Write the equation for charge neutrality for the condition of complete ioniration. 

10. Sketch a graph of ,lo versus temperature for an n-type material. 

11. Sketch graphs of the Fenni energy versus donor impurity concentration and versus 
temperature. 
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PROBLEMS 4 
Section 4.1 Charge Carriers in Semiconductors $ 
4.1 Calculate the intrinsic carrier concmtration. n,. at T = 200.400. and 600 K for 

(a )  silicon, (b) germanium, and ( r )  gallium arsenide. 

4.2 The intrinsic carrier concentration in silicon is to be no greater than n, = 1 x 
10'' cm-'. Assume E, = 1.12 eV. Determine the maximum temperature allowedfc 
the silicon. 

- - - 4.3 Plot the intrinsic carrier concentration, n,, for a temperature range of 200 5 T < 
600 K for ( a )  silicon, (b) germanium, and (c) gallium arsenide. (Use a log scale 

=== for n, .) 

4.4 In a particular semiconductor material, the elfective density of states functions are 
given hy N, = N,o(T)',' and N,. = N,o(T)'12 where NCo and N,.,, are consrants in, 
dependent of tenrperature. The experimentally determined intrinsic carrier concentn 
lions as a function of temperature are given in Tahle 4.5. Determine the product 
NCoNvo and the handgap energy E,. (Assume E, is independent of lemperature.) 

4.5 (a) The magnitude of the product gc (E) fF(E)  in the conduction band is a function 
energy as shown in Figure 4. I. Assume the Boltrmann approximation is valid. Deta 
mine the energy with respect to E,  at which the tnaximum occurs. (b) Repeat pan ( I  

for the magnitude of the product g,,.(E) [I - f~ ( E ) ]  in the valence band. 

4.6 Assume the Baltzmann approximation in a semiconductor is valid. Determine the 
ra t iooln(E)  = gc(E) ~ F ( E )  at E = E, + 4 k T  to that at E = E ,  + kT/2. 

4.7 Assume that E, - EF = 0.20 eV in silicon. Plot n ( E )  = & ( E )  f8.(E) over the ran1 
Ec s E S E ,  + 0 1 0 e V f o r ( a ) T = 2 0 0 K a n d ( b ) T = 4 O O K .  

4.8 Two semiconductor materials have exactly the samc properties except that material 
has a bandgap energy of 1.0 eV and material B has a bandgap energy of 1 .Z eV. D ~ I ,  
mine the ratio of ti, of ~naterial A to that of material B for T = 300 K. 

5 - - 4.9 (0) Consider silicon at T = 300 K. Plot the thermal cquilihrium electron concentra- 
Lion n ,  (on a log scale) over the energy range 0.2 5 E, - E F  5 0.4 eV. (b) Repeat 
pan ( u )  lor the hole concentration over the range 0.2 5 E, - E, 5 0.4 eV. 

4.10 Givcn the effective messes o l  electrons and holes in silicon. germanium. and galliur 
arsenide, calculate the position of the intrinsic Permi energy levcl with rerpect to thi 

center of the bandeap for each semiconductor at 7' = 300 K. - .  

4.11 (a) The carrier effeclive masyes in a semiconductor are nl; = 0.621no and nr; = 1.411 
Determine the oosition of the intrinsic Fermi level with resnect to the center of the 
bandgap at T = 300 K. (b) Repeat pan (0) if m: = I .  lorn,, and m; = 0.25mo. i 

Table 4.5 1 lntrtns~c cnncentrdtlon a\ a 
lunctlon of temperature 

T (K) q (cm-') 

200 1 82 x 10' 



Problems 

4.12 Calculate E F ,  with respect to the center af the bdndgap in silicon for T = 200. 400, 
and 600 K. 

4.13 Plot the intrinsic Fermi energy E F ,  with reapect to the center of the bandgap in silicon -% 

for 200 T 5 600 K. 

4.14 Uthe density of states function in the conduction band of a oarticular  emi icon duct or 
is a constant equal to K, derive the expression for the thermal-equilibrium concentra- 
tion of electrons in the conduction hand, assuming Fermi-Dirac statistics and assun- 
ing the Boltzmann approximation is valid. 

4.15 Repeat Problem 4.14 if the density of states function is given by g,(E) = C, (E - E,) 
for E ? E, where Cl  is aconstant. 

Section 4.2 Dopant Atoms and Energy Levels 

4.16 Calculate the ionization energy and radiur of the donor electron in germanium using 
the Bohr theory. (LTsc the density of states effective mass as a first apprr~uimation.) 

4.17 Repeat Problem 4.16 for gallium arsenide. 

Section 4.3 The Extrinsic Semiconductor 

4.18 Theelectron concentration in ailicon at T = 300 K i s  no = 5 x IOJ cm-'. ( a )  Deter- 
mine p,. Is this n- or p-type matenal? (b) Determine the position of the Fermi level 
with respect to the intrinsic Fermi level. 

4.19 Detenr~ine the values of n, and p, for silicon at T = 300 K if thz Fermi encrgy is 
0.22 eV above the valence band energy. 

420 (a) If E, - E,  = 0.25 eV in gallium arsenide at T = 400 K. calculate the values of 
no and p". (b) Assuming the value of no from part (a) remains constant, determine 
E, - E F  and p, at T = 300 K. 

4.21 The value of p,, in silicon at T = 300 K is 10'' cm-'. Determine (a) E,  - E f  and 
ib) no. 

4.22 (a) Consider silicon at T = 300 K. Determine po if E,. , - E,. = 0.35 eV. (b)  Assum- 
ing that po from part (a)  remains constant, determine the value of E F ,  - EF when 
T =  400 K. (r.) Find the value of no in both parts (a) and (b). 

4.23 Repeat problem 4.22 for GaAs. 

*4.24 Assume that E ,  = E, at T = 300 K in silicon. Determine PO. 

s4.25 Consider silicon at T = 300 K, which has n,, = 5 x I O l 9  cm-? Determine E, - E F .  

Section 4.4 Statistics of Donors and Acceptors 

*4.26 The electron and hole concentrations as a function of energy in the conduction hand 
and valence band peak at a particular energy as shown in Figure 4.8. Consider silicon 
and assume E, - EF = 0.20 e V  Determine the energy, relative to the band edges, at 
which the concentrations peak. 

'4.27 For the Boltzmann approximation to he valid for a scmicunductor, the Fermi level 
must be at least 3kT below the donor level in an n-type material and at least 3kT above 
the acceptor level in a p-type material. If T = 300 K, determine thc maximum elec- 
tron concentration in an n-type semiconductor and the maximum hole concentration 
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in a p-type semiconductor for the Boltzmann approximation to be valid in ( a )  silicon 
and (b) gallium arsenide. 

- - - 4.28 Plot the ratio of un-ionized donor atoms to the total electron conccntration versus 
temperature for silicon o\,er the range 50 5 T 5 200 K. 

Section 4.5 Charge Neutrality 

4.29 Considcr a ger~nanium semiconductor at T = 300 K. Calculate the thermal equilib 
riuln concentrations of r ~ i ,  and PC, for  ( a )  N, = 10'' c m  '. N, = 0, and (b)  Nd = 
5 x 1015 cm-', N,, = 0. 

*4.30 The Fermi level in n-type silicun at T = 300 K is 245 meV below the conduction 
band and 200 meV below the donor level. Determine thc probability of finding an 
electron ( r , )  in the donor level and (b) in a state in the conduction band kT above the 
conductian band edge. 

4.31 Determine the equilibrium electron and hole concentrations in silicon for the follow- 
ing conditions: 21 
(a) T = 3 0 0 K , N d = 2 x  101 'cm ' .N , ,  = 0  

(b)  T = 300 K. N, = 0. N,, = 1016 cm-' 

( c )  T = 300K. Nd = N,, = 10'' cm-' 

(d) T = 400K. No = 0. N,, = 10"cm-' 

( e )  7' = 500 K. Nd = 10" cm-'. N,, = 0 
4.32 Repeat problem 4.31 for GaAs. 

4.33 Assume that silicon. germanium, and gallium arsenide each have dopant concentra- 
tions of N,, = I x 10" cm-' and N,  = 2.5 x 10" cm-' at T = 300 K. For eachof 
thc three materials ('8) Is this material n type or p type'? ib) Calculate 1 1 ,  and /lo. 

4.34 A sample of silicon at T = 450 K is doped with boron at a concmlration of 1.5 x 

lo i5  cm ' and with arsenic at a concentration af 8 x loL4 ccm2. (u) Is the materialn 
or p type? (h)  Determine the elcctron and hule concentrations. (c) Calculate the total 
ionized impurity concentration. 

4.35 The thermal equilibrium hole concentration in silicon at T = 300 K is /lo = 2 x 
10' cm-'. Determine the thcrrnal equilibrium electron concentration. Is the material 
n type or p type? 

4.36 In a sample of GaAs at T = 200 K, we have experimentally determined that n,, = 5 1  
and that N,, = 0. Calculate no ,  po, and N,!. 

- - - 4.37 Consider a sample of silicon doped at N,, = 0 and N,, = 10" cm-'. Plot the majoril] hr - camier concentration versus temperature uver thr range 200 5 T 5 500 K. 
< - 

4.38 The temperature of a sample of silicon is T = 300 K and the acceptor doping conceo - - - 

t OJ 
tration is N,, = 0. Plat the minority camer concentratiun (on a log-log plot) versus R 
over the range 10" 5 Nd 5 10'' cm-'. 1 

- - 4.39 Repeat problem 4.38 for GaAs. 

0 4.40 A particular semiconductor material is doped at Nd = 2 x 1013 cn- j .  N,, = 0. and - 
i 

the inuinsic carricr concentration is n, = 2 x 10'' cm-'. Assume complete ionirati 4 
Determine the thermal equilibrium maiority and minority carrier concenuations. 

4.41 (a )  Silicon at T = 300 K is uniformly doped with arsenic atoms at a concentrationof 
2 x 10'%m-' and boron atoms at a concmtration of 1 x 10'%cm '. Determine the 
thertnal equilibrium concentrations of majority and minority carriers. (b) Repeat 

J 



part (a) if the impurity concentrations are 2 x 10" cm-' phosphorus atoms and 3 x 
1016 c m 3  boron atoms. 

4.42 In silicon at T = 300 K. we have experimentally found that no = 4.5 x 10' cm-? and 
Nd = 5 x 10" cm-'. (a )  Is the material n type or p type? ( 6 )  Determine the majority 
and minority carrier concentrations. (c) What types and concentrations of impurity 
atoms exist in the material? 

Section 4.6 Position of Fermi Energy Level 

4.43 Consider germanium with an acceptor concentration of N, = 10" cm-' and a donor 
concentration of N, = 0. Consider temperatures of T = 200,400. and 600 K. Calcu- 
late the position of the Fermi energy with respect to the intrinsic Fermi level at these 
temperatures. 

4.44 Consider germanium at T = 300 K with donor concentrations of Nd = IO1*, l o b 6 ,  
and 1O1%m3. Let N,, = 0. Calculate the position of the Fermi energy level with re- 
spect to the intrinsic Fermi level for these doping concentrations. 

4.45 AGaAs device is doped with a donor concentration of 3 x 10" cm-'. For the device 
lo operate properly. the intrinsic carrier concentration must remain less than 5 percent 
of the total electron concentration. What is the maximum temperature that the dcvice 
may operate? 

1.46 Consider germanium with an acceptor concentration of N ,  = 1015 cm-' and a donor --- 
concentration of N,, = 0. Plot the position of the Fermi energy with respect to the QJ - 
intrinsic Fermi level as a function of temperature over the range 200 5 T 5 600 K. -~ 

4.47 Consider silicon at T = 300 K with No = 0. Plot the position of the Fermi energy - - ~~ 

level with respect to the intrinsic Fenni le+,el as a function of the donor doping con- 
centration over the range 1 0 ' 3  Nd s cm-) fl - 

4.48 For aparticular semiconductor, E, = 1.50 eV. rn; = 10m:, T = 300 K, and 
n, = I x LO5 cm-'. (u )  Determine the position of the intrinsic Fermi energy level 
with respect to the ccnter of the bandgap. ( h )  Impurity atoms are added so that the 
Fermi energy level is 0.45 eV below the center of the bandgap. ( i )  Are acceptor or 
donor atoms added? ( i i )  What is the concentration of impurity atoms added? 

4.49 Silicon at T = 300 K contains acceptor atoms at a concentration uf Nu = 5 x 
lo'' cm-). Donor atoms are added forming an n-type compensated semiconductor 
such that the Fermi level is 0.215 eV below the conduction band edge. What concen- 
tration of donor atoms are added? 

4.50 Silicon at T = 300 K is doped with acceptor atoms at a concentration of N,, = 7 x 
10'' cm-'. (a) Determine E r  - E,. (h)  Calculate the concentralinn of additional 
acceptor atoms that must be added to movc the Fermi level a distance kT closer to the 
valence-band edge. 

4.51 (a) Determine the position of the Fermi level with respect to the intrinsic Fermi lcvel 
in silicon at T = 300 K that is doped with phosphorus atoms at a concentration of 
IOl5 cm-'. (h)  Repeat part ( a )  if the silicon is dopcd with boron atoms at a conccntra- 
tion of 10'' cm-? ((c Calculate the electron concentration in the silicon for parts 
la) and (h). 

4.52 Gallium arsenide at T = 300 K contains acceptor impurity atoms at a density of 
10'' cm-'. Additional impurity atoms are to be added so that the F e m ~ i  level is 
0.45 eV below the intrinsic level. Determine the concentration and type (donor or 
acceptor) of impurity atoms to be added. 
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4.53 Determine the Fermi energy level with respect to the intrinsic Fermi level for each 

condition given in Problem 4.31 

4.54 Find the Fermi energy level with respect to the valence band energy for the conditi 
given in Problem 4.32. 

4.55 Calculate the position of the Fermi energy level with respect to the intrinsic Fermi 
the conditions given in Problem 4.42. 

Summary and Review 
- - - 4.56 A special semiconductor material is to he "designed." The semiconductor is to be 3 n-type and doped with 1 x 10" cm-' donor atoms. Assume complete ionization a - assume No = 0. The effective density of states functions are given by N, = N, = 

1.5 x 10" cm-' and are independent of temperature. A particular semiconductor 
device fabricatcd with this material requires the electron concentration to he no i: 
greater than 1.01 x 1015 cm-' at T = 400 K. What is the minimum value of the ' 

bandgap energy'! 

4.57 Silicon atoms, at a concentration of 10" c m  ', are added to gallium arsenide. Ass 
that the silicon atoms act as fully ionized dopant atoms and that 5 percent of the c 
centration added replace gallium atoms and 95 percent replace arsenic atoms. Let 
T = 300 K. ( a )  Determine the donor and acceptor concmtrations. (h)  Calculate the 
electron and hole concentrations and the position of the Fcrmi level with respect 
to E,, . 

4.58 Defects in a semiconductor material introduce alluwed energy states within the for- 
bidden bandgap. Assume that a particular defect in silicon introduces two discrete I 
els: a donor level 0.25 eV above the top of the valence band, and an acceptor level 1 
0.65 eV above the top of the valence band. The charge state af each defect is a func- i. 
tion of the position of the Fermi level. ( a )  Sketch the charge density of each defect 
the Fermi level moves from E, to E,. Which defect level dominates in heavily do d 
n-type material'? In heavily doped p-type material? (h)  Determine the electron and 
hole concentrations and the location af the Fermi level in ( i )  an n-type sample doped 
at N ,  = l O " ~ r n - ~  and ( i i )  in a p-type sample doped at N ,  = 10'' cm-'. ( L . )  Deter- 
mine the Fermi level position if no dopant atoms are added. Is the material n-lype, 
p-type, or intrinsic? 

READING LIST 
*l. Hess, K. Advanced Theorj of Semiconductor Devices. Englewood Cliffs, NJ: Prentice 

Hall, 1988. 

2. Kano, K. Semicorzducrur Devices. Upper Saddle River, NJ: Prentice Hall, 1998. 

*3. Li, S. S. Semiconductor Physical El~ctrunics. New York: Plenum Press. 1993. 

4. McKelvey, J.  P. Solid State Physicsfor Engineering and Moteriul.~ Scienct.. Malabar, 
FL.: Krieger Publishing, 1993. 

5. Navun, D. H. Semicn,zducror Microdevices nnd Materials. New York: Halt, Rinehan 
&Winston. 1986. 

6. Pierret, R. F. Semicondrrctor Device Fundamenrulr. Reading. MA: Addison-Wesley, 
1996. 

7. Shur, M. Introduction to Elecrronic Devicer. New Yrlrk: John Wiley and Sons, 1996. 



Readng L~st 

*8. Shur, M. Physic ofSerniconducror De~,ices. Englewood Cliffs, NS: Prentice Hall. 
1990. 

9. Singh, J. S~nico,~da. tor  Devices: An 1,zrmdix.tinn. New York: McGraw-Hill, 1994. 

10. Sinph, I. Semiconductor Drvicer: Basic Principlex. New York: John Wiley and Sons, 
2001. 

'11. Smith, R .  A. Sernir.onducror.~. 2nd ed. New York; Cambridge University Press, 1978. 

12. Streetman, B. G., and S. Banerjee. Solid State Electronic Devkes. 5th ed. Upper 
Saddle River, NJ: Prentice Hall, 2000. 

13. Sze, S. M .   physic.^ of S~miconducmr L)r~Vc.ei 2nd ed. New York: Wiley, 1981. 

$14. Wang, S .  Fundame,ltal.~ "f Semirunducr~~r Theon. nad D~r, icr  Phyrics. Englewood 
Cliffs, N J :  Prentice Hall, 1989. 

*IS. Wolfe, C. M., N. Hulonyak. Jr ,  and G. E. Stillman. Phrsicnl Properriex ofsemicon- 
diccnrrr. Englewuod Cliffs. NS: Prentice Hall. 1989. 

16. l'ang, E. S. Micmrlrcrrorric Devices. New York: ivfcGraw-Hill, 1988. 



Carrier Transport Phenomena 

P R E V I E W  

I n the previous chapter, we considered the semiconductor in equilibrium and de- 
termined electron and hole concentrations in the conduction and valence bands, 
respectively. A knowledge of the densities of these charged particles is important 

toward an understanding of the electrical properties of a semiconductor material. The 
net flow of the electrons and holes in a semiconductor will generate currents. The pro- 
cess by which these charged particles move is called transport. In this chapter we 
will consider the two basic transport mechanisms in a semiconductor crystal: drift- 
the movement of charge due to electric fields, and diffusion-the flow of charge due 
to density gradients. We should mention, in passing, that temperature gradients in a 
semiconductor can also lead to carrier movement. However, as the semiconductor 
device size becomes smaller, this effect can usually be ignored. The carrier transport 
phenomena are the foundation for finally determining the current-voltage character- 
istics of semiconductor devices. We will implicitly assume in this chapter that, 
though there will be a net flow of electrons and holes due to the transport processes, 
thermal equilihrium will not be substantially disturbed. Nonequilibrium processes 
will be considered in the next chapter. w 

5.1 1 CARRIER DRIFT 
An electric field applied to a semiconductor will produce a force on electrons and 
holes so that they will experience a net acceleration and net movement, provided 
there are available energy states in the conduction and valence bands. This net move- 
ment of charge due to an electric field is called driji. The net drift of charge gives rise 
to a drip current. 



5.1.1 Drift Current Density 

Ifwe have a positive volume charge density p moving at an average drift velocity ud,  
the drift current density is given by 

J,IQ = PU,I (5.1) 

where J is in units of C/cm2-s or amps/cm2. If the volume charge density is due to 
positively charged holes, then 

Jpldri = (ell)udp (5.2) 

where JPld,, is the drift current density due to holes and ud,, is the average drift ve- 
locity of the holes. 

The equation of motion of a positively charged hole in the presence of an elec- 
tric field is 

F =m*u  = e E  
P (5.3) 

where e is the magnitude of the electronic charge, rr is the acceleration, E is the elec- 
tric field, and m; is the effective mass of the hole. If the electric tield is constant, then 
we expect the velocity to increase linearly with time. However, charged particles in a 
semiconductor are involved in collisions with ionized impurity atoms and with ther- 
mally vibrating lattice atoms. These collisions, or scattering events, alter the velocity 
characteristics of the particle. 

As the hole accelerates in a crystal due to the electric field, the velocity in- 
creases. When the charged particle collides with an atom in the crystal, for example, 
the panicle loses most, or all, of its energy. The particle will again begin to acceler- 
ate and gain energy until it is again involved in a scattering process. This continues 
over and over again. Throughout this process, the particle will gain an average drift 
velocity which, for low electric fields, is directly proportional to the electric feld. 
We may then write 

udp = w,]E (5.4) 

where @, is  the proportionality factor and is called the hole mobility. The mobility is 
an important parameter of the semiconductor since it describes how well a particle 
will move due to an electric tield. The unit of mobility is usually expressed in terms 
of cm2/v-s. 

By combining Equations (5.2) and (5.4). we may write the drift current density 
due to holes as 

Jl,ldri = (ep)u,ip = ew,17E (5.5) 

Thedrift current due to holes is in the same direction as the applied electric field. 
The same discussion of drift applies to electrons. We may write 

Jl i ldrf  = = (-en)%, (5.6) 

where Jnldri is the drift current density due to electrons and udn is the average drift 
velocity of electrons. The net charge density of electrons is negative. 
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Table 5.1 1 Typical mobility values at 7 = 300 K and luw doping 

Silicon 1350 480 
Gallium anenide 8500 400 
Germanium 3900 1900 

1 
The average drift velocity of an electron is also propostional to the electric fieh 

for small fields. However, since the electron is negatively charged, the net motiona 
the electron is opposite to the electric field direction. We can then write 

Udll = -w,,E 

where w. is the electron mobility and is a poqitivr quantity. Equatlon (5.6) may 
be written as 

The conventional drift current due to electrons is also in the same direction a s h  
applied electric field even though the electron movement is in the opposite directia 

Electron and hole mobilities are functions of temperature and doping concenm 
tions, as we will see in the next section. Table 5.1 shows some typical mobility val 
ues at T = 300 K for low doping concentrations. 

Since both electrons and holes contribute to the drift cument, the total drifr c u m  
1 

densit). is the sum of the individual electron and hole drift current densities, so we mq 
write 

I J,i,i = e(w.n + p,,p)E I ( .  A 
EXAMPLE 5.1 I Objective 

To calculate the drift current density in a semiconductor for it given electric field. 
Consider a gallium arsenide sample at 7 = 300 K with doping concentrations of N, =! 

and Nd = 1016 ~ m - ~ .  Assume complete ionization and assume electron and hole mobiliq 
given in Table 5.1. Calculate the drift current density if the appliedelecuic field is E = IOVIC~ 

Solution 
Since Nd z N;,, the semiconducn~r is n type and the majority carrier electron concenvatia 
from Chapter 4 is given by 

The minority carrier hole concentration is 



For this extrinsic n-type ~emiconductor, the drift current density is 

Jd,,  = e( lr , ,n + u,,p)E - eir,,N,,E 

I Comment 
Significant drift current densities can be obteined in n sernicunductor applying relatively small 
electric fields. We may note from this example that the drift current will usuelly he due pri- 
marily to the mtijority carrier in an extrinsic semiconductor. 

TEST YOUR UNDERSTANDING I 
E5.1 Consider a sample of silicon at T = 300 K doped at an impurity concentration of 

Nd = lo'' cm-' and N, = 10" cm-'. Assume elcctron and hole lnobilities given in 
Table5.1. Calculale the drift current density if the applied electric field is E = 35 Vlcm. 
(zmJiv08'9 s u v )  

E5.2 Adrift current density of .Id,, = 120Ncm' is required in a particular se~niconductur 
device usine p-type silicon with an applied electric lield of E = 20 V/cm. Determine 
the required impurity doping concentration to achieve this specification. Assume elec- 
tron and hole mobilities given in Table 5.1. C i  UJ ~ 0 1  x 1 8 1  = "N = "d 'sub') 

5.1.2 Mobility Effects 

In the last section, we defined mobility, which relates the average drift velocity of a 
carrier to the electric field. Electron and hole mobilities are important semiconductor 
parameters in the characteriration of carrier drift, as seen in Equation (5.9). 

Equation (5.3) related the acceleration of a hole to a force such as an electric 
held.ye may write this equation as 

where u is the velocity of the particle due to the electric field and does not include 
the random thermal velocity. If we assume that the effective mass and electric field 
are constants, then we may integrate Equation (5.10) and obtain 

where we have assumed the initial drift velocity to be zero. 
Figure 5 . la  shows a schematic model o f  the random thermal velocity and mo- 

tion of a hole in a semiconductor with zero electric tield. There is a mean time he- 
tween collisions which may be denoted by r,,,. If a small electric field (E-field) is 



CHAPTER 5 Carrler TransDoit Phenomena 

--F 
E field 

(h) 

Figure 5.1 1 Typical random hehavior of a hole in a scrniconductor (a) without an 
electric field and (b) with an electric field. 

applied as indicated in Figure 5.lb. there will be a nct drift of the hole in the directiw 
of the E-field, and the net drift velocity will be a small pe~turbation on the random 
thermal velocity, so the time between collisions will not be altered appreciably. Ifwe 
use the mean time between collisions r , ,  in place of the time r in Equation (5.11), 
then the mean peak velocity just prior to a collision or scattering event is 

The average drift velocity is one half the peak value so that we can write 

However, the collision process is not as simple as this model, but is statisticalm 
nature. In a Inore accurate model including the effect of a sttatistical distribution.ttu 
factor f in Equation (5.12b) does not appear. The hole mobility is then give11 by 

The same analysis applies to electrons; thus we can write the electron mobility as 

where r,,, is the mean time between collisions for an electron. 
There are two collision or scattering mechanisms that dominate in a semicon. 

ductor and affect the carrier mobility: phonon or lattice scattering, and ionized im. 
purity scattering. 

The atoms in a semiconductor crystal have a certain amount of thermal energy 
at temperatures above absolute zero that causes the atoms to randomly vibrate about 
their lattice position within the crystal. The lattice vibrations cause a disruption in@ 

I 



perfect periodic potential function. A perfect periodic potential in a solid allows elec- 
trons to move unimpeded. or with no scattering, through the crystal. But the thermal 
vibrations cause a disruption of the potential function, resulting in an interaction be- 
tween the electrons or holes and the vibrating lattice atoms. This lattice scattering is 
also referred to as phonon scuffering. 

Since lattice scattering is related to the thermal motion of atoms, the rate at 
which the scattering occurs is a function of temperature. If we denote p L  as the mo- 
bilit)~ that would be observed if only lattice scattering existed, then the scattering the- 
ory states that to first order 

Mobility that is due to lattice scattering increases as the temperature decreases. Intu- 
itively, we expect the lattice vibrations to decrease as the temperature decreases, 
which implies that the probability of a scattering event also decreases, thus increas- 
ing mobility. 

Figure 5.2 shows the temperature dependence of electron and hole mobilities in 
silicon. In lightly doped semiconductors, lattice scattering dominates and the carrier 
mobility decreases with temperature as we have discussed. The temperature depen- 
dence of mobility is proportional to T-".  The inserts in the figure show that the pa- 
rameter n is not equal to ; as the first-order scattering theory predicted. However, 
mobility does increase as the temperature decreases. 

The second interaction mechanism affecting carrier mobility is called ionized 
impurity scattering. We have seen that impurity atoms are added to the semiconduc- 
tor to control or alter its characteristics. These impurities are ionized at room tem- 
pereture so that a coulomb interaction exists between the electrons or holes and the 
ionized impurities. This coulomb interaction produces scattering or collisions and 
also alters the velocity characteristics of the charge canier. If we denote M I  as the 
mobility that would be observed if only ionized impurity scattering existed, then to 
first order we have 

where N I  = Nd+ + N; is the total ionized impurity concentration in the semicon- 
ductor. If temperature increases, the random thermal velocity of a carrier increases, 
reducing the time the carrier spends in the vicinity of the ionized impurity center. The 
less timespent in the vicinity of a coulomb force, the smaller the scattering effect and 
the larger the expected value of M I .  If the number of ionized impurity centers 
increases, then the probability of a carrier encountering an ionized impurity center 
increases, implying a smaller value of p,. 

Figure 5.3 is a plot of electron and hole mobilities in germanium, silicon, and 
gallium arsenide at T = 300 K as a function of impurity concentration. More accu- 
rately, these curves are of mobility versus ionized impurity concentration N , .  As 
[he impurity concentration increases, the number of impurity scattering center5 in- 
creases, thus reducing mobility. 





5.1 Carrier Dr~fl 

Impurity concentration (cm-'I 

Figure 5.3 1 Electron and hale niobilitics versus impurity 
concentrations for germanium, silicon. and gallium 
arsenide at T = 300 K. 
(Fronz S;u l I2I.J 

TEST YOUR UNDERSTANDING 

E5.3 (a) Using Figure 5.2, find the electron mobility For ( i )  N,, = 10" cm-'. T = 150C  
and (ii) N,, = 10" cm-?, T = OC. (h) Find the hole mobilities for (i) N,, = 
101hcm-i, T = 50.C; and (ii) N,, = 10'' cm->, T = 150°C. 
[s-Ncmsooz-- (!!I '~-A/zwJ OXE- (!) (4) :~-AI~LUJOOSI-  (!!I '"NZmJ 00s (!) (4 .suvI 

ES.4 Using Figure 5.3, determine the electron and hole mobilities in (a) silicon for 
Nd = 1015 cm-'. N,, = 0; (b )  silicon for N,, = 10'' an - ' ,  N,, = 5 x 1016 cm-'; 
(c) silicon for N,, = 10'' cm-', N,, = 10'' cm ; and (dl GaAs for 
pid = N ,, - - 1017 cm-'. [ S - ~ \ ~ ~ L U J  ozz i; "7i .oosp ;; " I {  ( p )  
!01E ii. " '()OR % "d ( 2 )  :OOE % "77 'OOL % "d (4) : 0 8 ~  = "71 '"St, ^- "d  (V) . s u ~ ]  

If rL is the mean time between collisions due  to lattice scattering, then d t / r L  is 
the probability of a lattice scattering event occurring in a differential time dt. 
Likewise, if r, is the mean time between collisions due to  i u n i ~ e d  impurity scattering, 
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then dtlrl is the probebility of an ionized impurity scattering event occurring in rh. 
differential time dt. If these two scattering processes are independent, then the  tot.^ 

probability of a scattering event occurring in the differential time dt is the sum ofth 
individual events, or 

d t  d t  dt - - -  
- + -  (5.1. 

T TI TL 

where r is the mean time between any scattering event. 
Comparing Equation (517) with the definitions of mobility given by Equ;. 

tion (5.13) or (5.14), we can write 

where WI is the mobility due to the ionized impurity scattering process and p~ isth. 
mobility due to the lattice scattering process. The parameter ir is the net mobilit! 
With two or more independent scattering mechanisms, the inverse mobilities add 
which means that the net mobility decreases. 

5.1.3 Conductivity 

The drift current density, given by Equation (5.9). may be written as 

where 0 is the conductivity of the semiconductor material. The conductivity is gibe' 
in units of (R-cm)-' and is a function of the electron and hole concentrations and mi' 
bilities. We have just seen that the mobilities are functions of impurity concentration, 
conductivity, then is a somewhat complicated function of impurity concentration. 

The reciprocal of conductivity is resistivity, which is denoted by p and is gi!? 
in units of ohm-cm. We can write the formula for resistivity as 

Figure 5.4 is a plot of resistivity as a function of impurity concentration in silicor 
germanium, gallium arsenide, and gallium phosphide at T = 300 K. Obviously, th, 
curves are not linear functions of Nd or N,, because of mobility effects. 

If we have a bar of semiconductor material as shown in Figure 5.5 with a volt 
age applied that produces a current I, then we can write 

I 
J = -  (5.21a 

A 
and 



Impurity concentration ( ~ r n - ~ )  

111" 1015 10'" 1017 10" 10" 

Impurity concentration (cm-') 

Figure 5.4 1 Resistivity versus impurity concentration at T = 300 K in (a) silicon 
and (b) germanium, gallium arsenide, and gallium phosphide. 
(Fmm Sze 1/21.) 
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Figure 5.5 1 Bar of semiconductor material as a resistor. 

We can now rewrite Equation (5.19) as 

Equation (5.22b) is Ohm's law for a semiconductor. The resistance is a function of1 
resistivity, or conductivity, as well as the geometry of the semiconductor. 

If we consider. for example, a p-type semiconductor with an acceptor doplng 
N,, (Nd = 0) in which N ,  >> n i ,  and if we assume that the electron and hole mubili. 
ties are of the same order of magnitude, then the conductivity becomes 

If we also assume complete ionization, then Equation (5.23) becomes 

The conductivity and resistivity of an extrinsic semiconductor are a function pri- 
marily of the majority carrier parameters. 

We may plot the carrier concentration and conductivity of a semiconductor ass/ 
function of temperature for a particular doping concentration. Figure 5.6 shows the 
electron concentration and conductivity of silicon as a function of inverse temperatutt 
for the case when N d  = 10'' cm-'. In the midtemperature range, or extrinsic range, 
as shown, we have complete ionization-the electron concentration remains essen- 
tially constant. However, the mobility is a function of temperature so the conductivity 



varies with temperature in this range. At higher temperatures, the intrinsic carrier con- 
centration increases and begins to  dominate the electron concentration as well as the 
conductivity. In the lower temperature range, freere-out begins to occur; the electron 
concentration and conductivity decrease with decreasing temperature. 

O b j e c t i v e  I EXAMPLE 5.2 

500 T(KJ 

10001 300 200 100 75 

To determine the doping concentration and majority carrier mobility given the type and con- 
ductivity of a cnmpensated semiconductor 

Consider compensated n-type silicon at T = 300 K, with a conductivity of n = 
16(Q-cm)' and an acceptor doping concentration of 10" cm-'. Determine the dunur con- 
centration and the electron mobility. 

10 _ - 
E 

10" 

- 
; ,"I" 
E - 
c 

I Solution 
For n-type silicon at 7 = 300 K, we can assume complete ionization; therefore the conductiv- 
ity, assuming Nd - N,, >> n, , is given hy 

q. a =  el*.^^ = eb,,iN,r - N , )  

We have that 

16 = (1 6 x ~ o ' ~ ) / L , , ( N , ,  - 10") 

.- - g 1 0 ' 5 ,  
u 

B 
c 
E: - : 10'" - 
W 

101) 

I, 
- 

Since mobility is a function of the ionized impurity cnncentration. we can use Figure 5.3 alung 
with trial and enor to determine w,, and N , .  For example, if we choose Nd = 2 x 10". then 

I 

I I\ 

I '  : i ,*' > 

I !  \ ' 8' 

+# , 
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I 
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J 
Figure 5.6 I Electron concentration and conductivity versus 
inverse temperature for silicon. 
(Afirr  S i u  il2I.I 
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N, = N,i + N,, = 3 x 10'' so that jr,, c 510 c m ' ~ - s  which gives a = 8.16 
If we choose N,, = 5 x 10". then N, = h x 10" so thal p,, Z 325 cm'lv-s, 
n = 20.8 (Q-cm)-'. The doping is hounded between these two values. Funhcr trial ande 
yields 

and 

which gives 

Comment 
We can see from this cxample that. in high-conductivity semicunductor material. mohility is, 
strong function of carrier concentration. 

DESIGN 
EXAMPLE 5.3 

I O b j e c t i v e  

To design a semiconductor resistor with a specified resistance to handle a given current de 
Asilicon semiconductur at T = 300 K is initially doped with donors at a concentrati 

Nd = 5 x lo t5  cm-'. Acceptors are to be added to form a compensated p-type rnaterial 
resistor is to have a rcsistancc of 10 kn and handle a current density of 50 Alcm' whcn 5 
applied. 

Solution 
For 5 V applied to a 10-kR resistor, the total current is 

If the current density is limited to 50Alcm" then the cross-sectional area is 

If we, somewhat arbitrarily a1 this point, limit the electric field to E = 100 Vlcm. the 
length of the resistor is 

From Equation (5.22b). the conductivity of the semicunductor is 

The conductivity of a compensated p-type semiconductor is 

a = ep ,>p  = ru,,(N,, - Nd) 

where the mahility is a function of the total ionized impurity concentration N,, + N,,. 



Using trial and error, if N, = 1.25 x 10Ih cm-'. then N,, + Nd = 1.75 x 1016 cm-', 
and the hole mobility, from Figure 5.3, is approximately @, = 410 cm2/V-s. The conductivity 
is then 

which is very close to the value we need 

I Comment 
Since the mobility is related to the total ionized impurity concentration, the determination of 
the impuritv concentration ta achieve a particular conductivity is not straichtforward. 

TEST YOUR UNDERSTANDING 

E5.5 Silicon at T = 300 K is doped with impurity concentrations of N,, = 5 x 1016 cm-' 
and N,, = 2 x 10j6 cm-'. (a) What are the electron and hole mobilities? (b )  Deter- 
mine the conductivity and resistivity of the material. ("3-U 8020 = d 
',-(W3-u) 8.P = 0 (9) !S-N,U3 OSE = ''V 'S-NzU12 0001 = "d (0) 'SUV] 

E5.6 For a particular silicon semiconductor device at T = 300 K, the required material is 
n type with a resistivity of 0.10 Q-cm. (a )  Determine the required impurity doping 
concentration and (b) the resulting electron mobility. 
[ s - ~ ~ m ~ q j 9  - "d (q) ' , - i u 3  9,01 x 6 = PN 'PS arnZy word ( n )  .suv] 

E5.7 A bar of p-typc silicon, such as shown in Figure 5.5, has a cross-sectional area of 
A = cm2 and a length of L = 1.2 x lo-' cm. For an applied voltage of 5 V, a 
current of 2 mAis required. What is the required ( a )  resistance, (b )  resistivity of the 
silicon, and (c) impurity doping concentration? 
[s-m3 i , o ~  x 1 = 'W (J) '~1 .7-8  RO'Z (4) '3'1 S'Z ("1 'SUVI 

For an intrinsic material, the conductivity can b e  written as  

The concentrations o f  electrons and holes are equal in a n  intrinsic semiconductor, so  
the intrinsic conductivity includes both the electron and hole mohility. Since, in gen- 
eral, the electron and hole mobilities are not equal, the intrinsic conductivity is not 
the minimum value possible a t  a given temperature. 

5.1.4 Velocity Saturation 

So far inour discussion of  drift velocity, w e  have assumed that mobility is not a func- 
tion of electric field, meaning that the drift velocity will increase linearly with ap- 
plied electric field. The total velocity of a particle is the sum of the random thermal 
velocity and drift velocity. At T = 300 K, the average random thermal energy is 
given by 
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Electric field (V/cm) 

Figure 5.7 1 Carrier drift velocity versus electric field for 
high-purity silicon. germanium, and gallium arsenide. 
1Fmm S;e lI2I.I 

This energy translates into a mean thermal velocity of approximately 10' cm/s foran 
electron in silicon. If we assunic an electron mobility of M,, = 1350 cm2/V-s in  low^ 
doped silicon, a drift velocity of 10' cm/s, or I percent of the thermal velocity, i k  

achievcd if the applied electric field is approximately 75 Vlcm. This applied elecmc 
field does not appreciably alter the energy of the electron. 

Figure 5.7 is a plot of average drift velocity as a function of applied electric field 
for electrons and holes in  silicon, gallium arsenide, and germanium. At low electric 
fields, where there is a linear variation of velocity with electric field, the slope ofthe 
drift velocity versus electric field curve is the mobility. The behavior of the drift ve- 
locity of carriers at high electric fields deviates substantially from the linear relation- 
ship observed at low fields. The drift velocity of electrons in silicon, for example. 
saturates at approximately 10' cmls at an electric field of approximately 30 kVlcm. 
If the drift velocity of a charge carrier saturates, then the drift current density also 
saturates and becomes independent of the applied electric field. 

The drift velocity versus electric field characteristic of gallium arsenide is I& 
complicated than for silicon or germanium. At low fields, the slope of the drift ve- 
locity versus E-field is constant and is the low-field ele~xron mobility, which is ap- 
proximately 8500 cm2/v-s for gallium arsenide. The low-field electron mobility in 
gallium arsenide is much larger than in silicon. As the field incrcases, the electron 
drift velocity in gallium arsenide reaches a peak and then decreases. A differential 
mobility is the slope of the u,, versus E curve at a particular point on the curve and 
the negative slope of the drift velocity versus electric field represents a negatived& 
ferential mobility. The negative differential mobility produces a negative differential 
resistance; this characteristic is used in the design of oscillators. 



Figure 5.8 1 Energy-hand structure 
for gallium arsenide showing the 
upper valley and lower valley in 
the conduction band. 
(Fr<nv S z  [I.?].) 

The negative differential mobility can be understood by considering the E versus 
k diagram for gallium arsenide, which is shown again in Figure 5.8. The density of 
states effective mass of the elcctron in the lower valley i sm& = 0.067mo. The small 
effective mass leads to a large mobility. As the E-field increases. the energy of the 
electron increases and the electron can be scattered into the upper valley, where the 
density of states effective mass is 0.55mo. The larger effective mass in the upper 
valley yields a smaller mobility. This intervalley transfer mechanism results in a de- 
creasing average drift velocity of electrons with electric field, or the negative differ- 
ential mobility chilracteristic. 

-6. 
5.2 1 CARRIER DIFFUSION 
There is a second mechanism, in addition to drift, that can induce a current in a semi- 
conductor. Wemay consider a classic physics example in which a container, as shown 
inFigure 5.9, is divided into two parts by a membrane. The left side contains gas mol- 
ecules at a particular temperature and the right side is initially empty. The gas mole- 
cules are in continual random thermal motion so that, whcn the membrane is broken, 
the gas molecules How into the right side of the container. Diffuusiorl is the process 
whereby panicles flow from a region of high concentration toward a region of low 
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Figure 5.9 1 Container 
divided by a membrane with 
gas molecules on one side. 

Figure 5.10 1 Electron concentration versus distance. 

concentration. If the gas molecules were electrically charged, the net flow of ch 
would result in a diffusion current. 

5.2.1 Diffusion Current Density 

To begin to understand the diffusion process in a semiconductor, we will consida 
simplified analysis. Assume that an electron concentration varies in one dimension 
shown in Figure 5.10. The temperature is assumed to be uniform so that the ave 
thermal velocity of electrons is independent of x. To calculate the current, we will 

x = 0. If the distance 1 shown in Figure 5.10 is the mean-free path of an electron, 

4 
termine the net Row of electrons per unit time per unit area crossing the planed 

is, the average distance an electron travels between collisions (I = U ~ ~ T ~ , , ) ,  then 
the average, electrons moving to the right at x = -1 and electrons moving to the 
at x = +I will cross thex = 0 plane. One half of the electrons at x = -I will be 3 
eling to the right at any instant of tirne and one half of the electrons at x = +I will d 
traveling to the left at any given time. The net rate of electron flow, F,,, in the 



direction at x = 0 is given by 

If we expand the electron concentration in a Taylor series about x = 0 keeping 
only the first two terms, then we can write Equation (5.27) as 

which becomes 

dn 
F,, = - U , I , /  - 

dx 

Each electron has a charge (-el, so the current is 

The current descrihed by Equation (5.30) is the electron diffusion current and is pro- 
portional to the spatial derivative, or density gradient, of the electron concentration. 

The diffusion of electrons from a region of high concentration to a region of low 
concentration produces a flux of electrons flowing in the negative x direction for this 
example. Since electrons have a negative charge, the conventional current direction 
is in the positive x direction. Figure 5.  I l a  shows these one-dimensional flux and cur- 
rent directions. We may write the electron diffusion current density for this one- 
dimensional case. in the form 

where D,, is called the electron dflusiusion co~$Jicienr, has units of crn'ls, and is a pos- 
itive quantity. If the electron density gradient becomes negative, the electron diffu- 
sion current density will be in the negative x direction. 

Figure 5.1 1b shows an example of a hole concentration as a function of distance 
in a semiconductor. The diffusion of holes, from a region of high concentration to a 
region of low concentration, produces a flux of holes in the negative x direction. 
Since holes are positively charged particles, the conventional diffusion current den- 
sity is also in the negative x direction. The hole diffusion current density is propor- 
tional to the hole density gradient and to the electronic charge, so we may write 
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Figure 5.11 1 (a) Diffusion of electrons due to a densily 
gradient. (b) Diffusion of holes due to a densily gradient. 

for  the one-dimensional case. T h e  parameter D, is called the hole d1ffu.sior1 car 
cirnt, has units of  cm2/s,  and is  a positive quantity. If the  hole density gradient 
comes negative, the hole diffusion current density will be in the  positive x directi 3 

EXAMPLE 5.4 I Objective 

To calculate the diffusion current density given a density gradient. 
Assumc that. in an n-typc gallium arsenide semiconductor at T = 300 K, the elee ! 

concentration varies linearly from 1 x 10'' to 7 x 10" cm-' over a dislance of 0.10 c n ~  CJ 
culate the diffusion current density if the electron diffusion coefficient is D,, = 225 crn'l. 

H Solution 
The diiiusion current density is given by 

H Comment 
A significant diffusion current density can be generated in a semiconductor material wi th4 
a modest density gradient. 

1 



5.3 Graded lmpurlty Distr~but~on 

TEST YOUR UNDERSTANDING I 
E5.8 Theelectron concentration in silicon isgiven b y n ( x )  = 10 '5 r " 'L ,b1  cm-' (r ? 0) 

where L, = 1 0  ' cm. The electron diffusion coefficient is U,, = 25 cm'ls. Determine 
the electron diffusion current density at (n) .Y = 0, ( b )  x = 10-%m, and (c) x i. oc. 

4 [O iJ) .,w3/V L.PI - (4) 'zUL31v OP- (17) .SUVI 
E5.9 The hole concentration in silicon varies lincarly from I = 0 to x = 0.01 cm. The 

hole diffusion coefficient is D, = I0 cm2/s, the hole diffusion current denhity is 
20A/cm2, and the hole concentration at x = 0 is p = 4 x 10" cm-'. What is the 
value of the hole concentration at I = 0.01 cm? ( 1-w3 r l O l  X SL'Z '"V) 

E5.10 The hole concentratian in ~ilicun is given by p(r) = 2 x 10'Se~ir'Ln)cm-3 
(x ? 0). The hale diffusion coefficient is D - IOcm'Is. The value of the diffusion 

,- current density at r = 0 is Jd , i  = +6.4A/cm-. What is the value of L,,? 
(m2 x s = "7 suv)  

5.2.2 Total Current Density 

We now have four possible independcnt current mechanisms in a semiconductor. 
These components are electron drift and diffusion currents and hole drift and diffu- 
sion currents. The total current density is the hum of these four components, or, for 
the one-dimensional case, 

This equatlon may be generalized to three dimensions as 

The electron mobility gives an indication of how well an electron moves in a 
semiconductor as a result of the force of an electric field. The electron diffusion co- 
efficient gives an indication of how well an electron moves in a semiconductor as a 
result of adensity gradient. The electron mobility and diffusion coefticient are not in- 
dependent parameters. Similarly. the hole mobility and diffusion coefficient are not 
independent parameters. The relationship between mobility and the diffusion coeffi- 
cient will be developed in the next section. 

The expression for the total current in a semiconductor contains four terms. For- 
tunately in most situations, we will only need to consider one term at any one time at 
a particular point in a semiconductor. 

5.3 1 GRADED IMPURITY DISTRIBUTION 
In most cases so far, we have assumed that the semiconductor is uniformly doped. In 
many semiconductor devices, howcver, thcre may be regions that are nonunifonnly 
doped. We will investigate how a nonuniformly doped semiconductor reaches thermal 
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equilihrium and, from this analysis, we will derive ihe Einstein relation, which re1 
mobility and the diffusion coefficient. 

5.3.1 Induced Electric Field I 
Consider a semiconductor that is nonunifnrmly doped with donor impurity atoms4 
the semiconductor is in thermal equilibrium, the Fermi energy level is co! 
through the crystal so the energy-band diagram may qualitatively look like ::I. 

shown in Figure 5.12. The doping concentration decreases as* increases in thih L.nr 

There will be a diffusion of majority carrier electrons froln the region of hiell ciir 

centration to the region of low concentration, which is in the +x direction. Thu llo, 
of negative electrons leaves behind positively charged donor ions. The separntloii I 
positive and negative charge induces an electric field that is in a direction to ol'l'o\ 
the diffusion process. When equilibrium is reached, the mobile carrier concentr.lllo 
is not exactly equal to the fixed impurity concentration and the induced electric 11cI 
prevents any further separation of charge. In most cases of interest, the space cl1.11: 
induced by this diffusion process is a small fraction of the impurity concentratla 
thus the mobile carrier concentration is not too different from the impurity 
density. 

The electric polential @ is related to electron potential energy by the ch 
( - e ) ,  so we can write 

The electric field for the one-dimensional situation is defined as 

Figure 5.12 I Encrgy-band diagram for 
ic semic~~nduclor in thermal equilihrium 
with a nonuniform donor impurity 
concentration 



5.3 Graded lmpurlty D~strlbut~on 

If the intrinsic Fermi level changes as a function of distance through a semiconduc- 
tor in thermal equilibrium, an electric field exists in the semiconductor. 

If we assume a quasi-neutrality condition in which the electron concentration is 
almost equal to the donor impurity concentration, then we can still write 

Solving for EF - E F i ,  we obtain 

The Femi level is constant for thermal equilibrium so when we take the derivative 
with respect to x we obtain 

Theelectric field can then be written, combining Equations (5.39) and (5.36), as 

Since we have an electric field, there will be a potential difference through the semi- 
conductor due to the nonuniform doping. 

Objective I EXAMPI.E 5.5 

Todetetmine the induced electric field in a semiconductor in thermal equilibrium, @\,en a lin- 
ear variation i n  doping concentration. 

Assume that the donor concentration in an n-type semiconductor at T = 100 K is given by 

N,(x) = 10'" 10'yx (cm-') 

wherex is given in cm and ranges hetween 0 5 r 5 I i r m  

B Solution 
Taking the derivative of the donor concentration, we have 

Theelectric field is given hy Equation (5.40). so we have 

Atx = 0, for exarnplc, wc find 

E, = 25.9 V/cm 
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w Comment 
We ,nay recall from our previous discussion of drift current that fairly small electric fields 
produce higniiicant drift currelit densities, so that an induced electric field from nonuni 

5.3.2 The Einstein Relation 

If we consider the nonuniformly doped semiconductor represented by the ene 
band diagram shown in Figure 5.12 and assume there are no electrical connection 
that the semiconduct~~r is in thermal equilibrium, then the individual electron 
hole currents must be zero. We can write 

J,, = O = e n p , , E , + r D , ,  - 

If we assume quasi-neutrality so that n % NN,(x), then we can rewrite 
tion (5.41) as 

tion (5.42). we obtain 

Equation (5.43) is valid for the condition 

D, kT ---  - 
P" e 

The hole current must also be zero in the semiconductor. From this condi 
we can show that 

- 
k T ! ! -  

W P  

Combining Equations (5.44a) and (5.44b) gives 

between the mobility and diffusion coefficient, given by Equation (5.45), is kno 
the Ei~utein relurion. 



Table 5.2 1 Typical mobility and diffusion coefficient values at 
T = 300 K ( i ~  = cm2N-s and 0 = cm'ls) 

fim D. a DP 
Silicon 1350 35 480 12.4 
Gallium arsenide 8500 220 400 10.4 
Germanium 3900 101 1900 49.2 

Objective 1 EXAMPLE 5.6 

Todetermine the diffusion coefficient given the carrier mobility. Assume that thc mobil~ 
ity of a particular carrier is 1000 cm'N-s at T = 300 K. 

I Solution 

f 
Using the Einstein relation. we havc that 

fl = - 11 = (0.0259)(1000) = 25.9 crn2/s ("I) 
I Comment 
Although this example is fairly simple and straightforward. i t  is important to keep in ,mind the 
relative orders of magnitude of the mobility and diffusion coefficient. The diffurion uocfticient 
is approximately 40 times smaller than the mobility at room temperature. 

Table 5.2 shows the diffusion coefficient values at T = 300 K corresponding to 
the mobilities listed in Table 5.1 tor silicon. gallium arsenide. and germanium. 

The relation between the mobility and diffusion ccefficient given by Equa- 
tion (5.45) contains temperature. It is important to keep in mind that the major tem- 
perature effects are a result of lattice scattering and ionized impurity scattering 
processes, as discussed in Section 5.1.2. As the mobilities are strong functions of 
temperature because of the scattering processes, the diffusion coefficients are also 
strong functions of temperature. The specific temperature dependence given in Equa- 
tion (5.45) is a small fraction of the real temperature characteristic. 

5 . 4  1 THE HALL EFFECT 
The Hall effect is a consequence of the forces that are exerted on moving charges by 
electric and magnetic fields. The Hall effect is used to distinguish whether a semi- 
conductor is n type or p typet and to measure the majority carrier concentration and 
tnajority carrier nlohility. The Hall effcct device, as discussed in this section, is used 
to experimentally measure semiconductor parameters. However, it is also used 
extensively in engineering applications as a magnetic probe and in other circuit 
applications. 

'We will assume an extrinsic ~cmiconductor materiitl i n  which the rmajority carrier concentration is much 
I er than the minority carrier concentration. "k 
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Figure 5.13 1 Geometry for measuring the Hall effect 

The force on a particle having a charge q  and moving in a magnetic field 
given by 

F = q u x  B  (5.1 

where the cross product is taken between velocity and magnetic field so that the fox 
vector is perpendicular to both the velocity and magnetic field. 

Figure 5.13 illustrates the Hall effect. A semiconductor with a current I ,  
placed in a magnetic field perpendicular to the current. In this case, the magnetic fie: 
is in the i direction. Electrons and holes flowing in the semiconductor will exper 
ence a force as indicated in the figurc. The force on both electrons and holes is intl 
(-y) direction. In a p-type semiconductor (po > no), there will be a buildup of po 
itive charge on the y = 0 surface of the semiconductor and. in an n-type semico~ 
ductor (11" > PO),  there will be a buildup of negative charge on the y = 0 surfac 
This net charge induces an electric field in the y-direction as shown in the figure.: 
steady state, the magnetic field force will be exactly balanced by the induced electr 
field force. This balance may be written as 

F = q [ E + u x B ] = O  (5.47 

which becomes 

qE, = r/u, B; (5.41 

The induced electric field in the y-direction is called the Hallfield. The Hall fie 
produces a voltage across the semiconduclor which is called the Hull voltrrgr. Wecr 
write 

VH = +EH W (5.4; 
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T h e  hole rnobility is then given b y  

1, L 
Lr - - 
" - ',I VL Wd 

Similarly for  an n-type semiconductor, the low-field electron mobility is determi 
from 1 

EXAMPLE 5.7 I Objective 

To determine the majority carrier concentration and mobility. g i x n  Hall effect parameter 
Consider the geometry shown in Figure 5 . 1 3  Let L = 10-' cni, W = cm, 

d = 1 0 '  cm.Alsoassumethat I,  = l.OmA, V, = 12.5V, B: = 500gauss = 5 x 10-'1 
and V, = 6 . 2 5  mV. 1 

Solution 
A negative Hall valtage for this geometry implics that we have an n-type semicondu 
Using Equation (5.54). we can calculate the electron concentration as 

The electron mohilily is then determined fromEquation (5.58)  as 

(10-')(10-~) 
= 0. I0 ~ ' I v - s  

IL" = (1.6 x 10 19)(5 x 10~1) (12 .5 ) (10-4 ) (105)  

or 

u,, = 1000 c m ' ~ - s  

Comment 

to vield correct results. 

1 
It is imporrant to notc that the MKS units must be used consistently in the Hall effect equat 

5.5 1 SUMMARY 4 
The two basic tritnspon mechanisms are drift, due to an applied electric field. and 
diffusion. due to a density gradient. 
Carriers reach an average drift velocily in the presence of an applied electric fie1d.d) 
to scattcring events. Two scattering proccsscs within a semiconduclur are lattice 
scattering and impurity scattering. I 
The average drift velocity is a linear function of the applied electric field for small 
values of electric field, hut the drift velocity reaches a saturatio~i limit that is on the 
order o r  10' ctnls at high electric fields. 1 



1 Carrier mobility i~ the ratio of the average drift velocity and applied elechic field. The 
electron and hole niohilities are functions of temperature and of the ionized impurity 
mncentration. 

1 The drift current density i~ thc pnduct of c~mducti~rity and electric field (a form of 
Ohm's law). Conductivity is a function of the carrier concentrations and mobilities. 
Resistivity is the inverse of conductivity 

I The diffi~sion cunent density is proportional to the carrier diffusion coefficient and the 
canier density gradient. 

1 The diffusion coefficient and mohilitv are related throuph the Einstein relation. - 
I The Hall effect is a consequence of a charged carrier moving in the presence of 

perpendicular electric and magnetic fields. The charged carrier is deflected. inducing 
~ ~ 

a Hall voltage. The polarity of the Hall voltage is a function of the semiconductor 
conductivity type. The majority carrier concentration and mobility can he determined 
from the Hall voltage. 

GLOSSARY OF IMPORTANT TERMS 
conductivity A material parameter related to carrier drift; quanlitatively, the ratio of drift 

current density to electric field. 

difision The process whereby particles flow from a region of high concentration to a region 
of low concentration. 

diffusion coefficient The parameter relating particle Run to the particle density gradient. 

diffusion currrnt The current that results from the diffusion of charged particle?. 

drift The procesh wherehy charged particles move while under the influence of an electric 
field. 

drift current The cunent that results from the drift of charged particles. 

drif! velocity The average velacity of charged particles in the presence of an electric field. 

Einstein rrlation The relation between the mohility and the diffusion coefficient. 

Hall voltage The voltage induced across a semiconductor in a Hall effect measurement. 

ionized impurity scattering The interaction between a charged carrier and an ionized 
impurity center. 

latticescattering The interaction between a charged carrier and a thenn;~lly vibrating lattice 
atom. 

mobility The parameter relating carrier drift velocity and electric field. 

resistivity The reciprocal of conductivity; a material parameter that is a measure of the 
resistance to current. 

velwity saturation The saturation of calrier drift velocity with increasing electric field. 

CHECKPOINT 
After studying this chapter, the reader should have the ability to: 

1 Discuss carrier drift current density. 
I Explain why carriers reach an average drift velocity in the presence of an applied 

electric field. 
1 Discuss the mechanisms of lattice scattering and impurity scattering. 
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Define mobility and discuss the temperature and ionized impurity concentration 
dependence on mobility. 
Define conductivity and resistivity. 
Discuss velocity saturation. 
Discuss carrier diffusion current density. 
State the Einstein relation. 
Descrihe the Hall effect. 

REVIEW QUESTIONS 
1. Write the equation for the total drift current density. 

2. Define carrier mobility. What is the unit of mobility'? 

3. Explain the temperature dependence of mobility. Why is the carrier mobility a functi 
of the ionized impurity concentrations? 

4. Define conductivity. Define resistivity. What are the units of conductivity and resistiu 

5. Sketch the drift velocity of electrons in silicon versus electric field. Repeat for GaAi 

6. Write the equations for the diffusion current densities of electrons and holes. 

7. What is the Einstcin relation? 

8. Describe the Hall effect. I 

9. Explain why the polarity of the Hall voltage changes depending on the conductivity 
(n type or p type) of the semiconductor. 

PROBLEMS 
(Note; Use the \emiconductor parameters given in Appendix B if the parameters an 
specifically given in a problem.) 

Section 5.1 Carrier Drift i 
5.1 Consider a homogeneous gallium arsmide semiconductor at T = 300 K with Nd 1 

10'' cm-' and Ng, = 0.  ( a )  Calculate thc thermal-equilibrium values of electron d 
hole concentrations. ( b )  For an applied E-field of 10 Vlcni. calculate the drift cum 
dcnsity. (c) Repeat parts ( a )  and (h )  if N,, = 0 and N,, = 10'%ni7. 

5.2 A silicon crystal having a cross-sectional area of 0.001 cm' and a length of 10-3 CI 

connected at its ends to a 10-V battery. At T = 100 K,  we wanr a current of 10011 
in the silicon. Calculate: (0) the required resistance R. ( h )  the required conductivit 
(c )  the density of donor atoms to be added to achieve this conductivity. and id) 6% 
concentration of acceptor atoms to be added to form a compensated p-type materii 
with the conductivity given from part ( h )  if the initial concentmtion of donor atom 
N - ,015 cm-3, 

i, - 
5.3 (a )  A silicon semiconductnr is in the shape of a rectangular har with a cross-sectia 

area of 100 a length of 0.1 cm, and is doped with 5 x 10'" cm-' arsenic alot 
Thc temperature is T = 300 K. Determine the current if 5 V is applied across the 
length. (b )  Repeat part (n)  if the length is reduced to 0.01 cm. ( c )  Calculate the 
average drift velocity of electrons in parts (a )  and (h) .  

5.4 (a)  A GaAs semiconductor resistor is doped with acceptor impurities at a concenu 
tion of N, = 10" cm-'. The cross-sectional area is 85 pm'. The current in the 



resistor is to be I = 20 mA with 10 V applied. Determine the rcquired length uf the 
device. (b) Repeat part (n)  for silicon. 

5.5 (a) Three volts is applied across a I-cm-long scmiconductor bar. The average electron 
drift velocity is 10'cmIs. Find the electron mobility. (b) If the electron mobility in 
part (a) were 800 cm2N-s, what is the average electron drift velocity? 

5.6 Use the velocity-field relations for silicon and gallium arsenide shown in Figure 5.7 
todetermine the transit time of electrons through a I-jcrn distance in these materials 
for an electric field of (a) 1 kV1cm and (h) 50 kV/cm. 

5.7 Aperfectly compensated semiconductor is one in which the donor and acceptor impu- 
rity concentrations are exactly equal. Assuming complete iuni~ation, determine the 
conductivity of silicon at T = 300 Kin which the impurity concentrations are 
(a) N, = Nd = 1 0 ' 5 ~ '  and (b) N,> = Nd = 10IRcm '. 

5.8 (a)  In a p-type gallium arsenide semiconductor, the conductivity is a = 5 (Q-cm)-' 
at T = 300 K. Calculate the thermal-equilibrium values ofthe electron and hole 
concentrations. (b) Repeat parl ( a )  lor n-type silicon if the resistivity is p = 8 a-cm. 

5.9 In a particular semiconductor material, p,, = 1000 c m ' ~ - s ,  p ,  = 600 cm'N-s, and 
Nc = N ,  = 10" cm-'. These parameters arc independent of temperature. The 
measured conductivity of the intrinsic material is a = (R-cm)-' at T = 300 K .  
Find the conductivity at T = 500 K. 

5.10 (a)  Calculate the resistivity a1 T = 300 K of intrinsic (i) silicon, (ii) germanium. and 
(iii) gallium arsenide. (b) If rectangular semiconductor bars are fabricated using thc 
materials in part (a), determine the resistance of each bar if its cross-sectional arra is 
85 &m' and length is 200 p m .  

5.11 An n-type silicon sample has a reiistivity of 5 a -cm at T = 300 K. (a) What is the 
donor impurity concentration? (h) What is the expected rcsistivity at (i)  T = 200 K 
and (ii) T = 400 K. 

5.12 Consider silicon doped at impurity concentrations of N ,  = 2 x IO" cm-' and N,, = 0. 
An empirical expression relating electron drift velocity to electric field is gi\,en by 

where u , , ~  = 1350 cm'N-s, u,,, = 1.8 x 10' cmls, and E is given in Vlcm. Plot 
electron drift current density (magnitude) versus electric field (log-log scale) over thc 
range 0 < E < lo6 Vlcm. 

5.13 Consider silicon at T = 300 K. Assurnc the electron mobility is p,, = 1350 cm'lv-s. 
The kinetic energy of an electron in the conduction band is (1/2)m: u j ,  where m; is 
the effective mass and v,, is the drift velocity Detenninc the kinetic energy of an 
electron in the conductian hand if the applied electric field is ( a )  10 Vlcm and 
(b)  I kVlcm. 

5.14 Consider a semiconductor that is uniformly doped with Nd = 10" cm-' and N, = (1, 
with an applied electric field of E = 100 Vlcm. Assume that p,, = 1000 cm 2N-s  and 
1, = 0. Also assume the following parameters: 
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(a)  Calculate the eleclric-current density at T = 300 K. (b) At what temperaturewil 
this current increase by 5 percent? (Assume the mobilities are independent of 
temperature.) 

5.15 A semiconductor material has electron and hole n~obilities I*,, and u,,. respective 
When the conductivity is considered as a function of the hole concenvatiun po, 
(a) show that the minimum value of conductivity, o,,,,,, can be written ar 

4 
I 

~ U , ( F , , F ~ ) ~ ! !  
on,in = 

( l ~ , ,  + P,,) 4 

where m, is the intrinsic conductivity, and (b) show that the corresponding hole : 
concentration is po = n,  (lr , , /~, ,) ' / ' .  

5.16 A particular intrinsic semiconductor has a resistivity of 50 0 -cm at T = 300 K 
5 R-cm a1 T = 330 K. Neglecting the change in mobility with temperature, dete 
the bandgap energy of the semiconductor 

2000 c m ' ~ - s ,  if unly the second mechanism were present, the mobility would 

4 
5.17 Three scattering mechanisms are present in a particular semiconductor material. 

If only the first scattering mechanism were present, the mobility would be = 

/*> = 1500 cm2N-s, and if only the third mechanism were prcscnt, the mobilit 
be 113 = 500 cm2N-s. What is the net mobility? 

5.18 Assume that the mahility ofelectrons in silicon at T = 300 K is u,, = 1300 cm' 
Also assume that the mobility is limited by lattice scattering and varies as T-'l2. 

Determine the electron mobility at lo) T = 200 K and (b) T = 400 K. 
5.19 Two scattering me~.hanisms exist in a semiconductor. I l  unly the firs1 mechanism 

present. the mobility would he 250 cm2/V-s. If only the second mechanism wer 
sent, the mobility would be 500 cm'/V-s. Determine the mobility when both sca 
mechanisms exist at the samc time. 

- 5.20 The effective density of states functians in silicon can be written in the form :h 
- 

N, = 2.8 x l o f 9  Nu = 1.04 x 10" 

Assume the mobilities are given by 

:\\,ume thc l..jnJg..pc.ocr;! I *  I ,  I . ?  c \  ~ 1 1 . 1  ~!~.l~,pcnrlr.nl .,I tcrlipcr~l~re M 
1 1 1 ~ .  I I I ~ I I ~ \ I .  ; ~ ~ I I , ~ I I . ' I I \ I I !  . t \  .x I O ~ L I L ~ U I  .)I I .~\ ' , r  the range 20t1 . 7 . hut. K I 

- 5.21 (0) Assume that the electron mobility in an n-type semiconductor is given by 

- 
5 1350 

I*. = ,,, cm2/v-s  

( I + -  Nd ? i 
where Nd is the donor concentration in cm '. Assuming complete ionization. 
conductivity as a function of Nd over the range 10" 5 N, 10" ern-?. (b) Co 
the results of part (u)  to that if thc mobility were assumed to he a constant 



plot the electnm drift current density of pans ( a )  and ih )  

Section 5.2 Carrier Diffusion 

5.22 Consider a sample of silicon at T = 300 K. Assume that the electron concentration 
varies linearly with distance, as shown in Figure 5.14. The diffusion current density is 
found to he J,, = 0.19 A/cm2. If the electron diffusion coefficient is U,, = 25 cm2/s, 
determine the electron concentration at x = 0. 

5.23 Theelectron concentration in silicun decreases linearly from 1 0 1 % m '  to 10" cm-' 
over a distance of 0.10 cm. The cross-sectional area of the sample is 0.05 cm'. The 
electron diffusion coefficient is 25 cm2/s. Calculate the electron diffusion current. 

534 The electron concentration in a sample of n-type silicon varies linearly from 10" cm ' 
at x = 0 to 6 x 10Ih cm-' at r = 4 {rm. There is no applied electric ficld. The 
electron current density is experimentally measured to bc -400A/cm2. What is the 
electron diffusion coefficient? 

5.25 The holeconcentration in p type GaAs is given by 1, = 10'"l - x / L )  cm-' for 
0 5 x 5 L where L = I0 fim. The hole diffusion coeflicient is I0  cm'ls. Calculate 
the hole diffusir~n current density at ( a )  x = 0, (h )  x = 5 fim, and ( c )  x = 10 u m .  

5.26 The hole concentralion is given by p = 10" exp ( - x / L , , )  cm-' for I x >and  the 
electron concentration is given by 5 x IO" exp (+x/L, , )  cm-' for x 5 0. The values 
of L,, and L,, are 5 x lo-' cm and lo-' cm, respectively. The hole and electron diffu- 
sion coefficients are 10 cm'/s and 25 cm2/s, respectively. The total current density 
is defined as the sun? of the hole diffusion current density at .r = 0 and the electron 
diffusion current density at I- = 0. Calculate the total current density. 

5.27 The hole concentration in germanium at T = 300 K varies as 

p(.r) = 10'' exp - cm-' (3 
where .r is measured in urn. If the hole diffusion coefficient is D, = 48 cm2/s, 
determine the hole diffusion current density as a function of x. 

5.28 The electron cancentration in silicon at T = 300 K is given by 

I ~ ( x )  = 1016 exp - cm-' ! rsi 

Figure 5.14 1 Figure f o ~  
Problem 5.22. 
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where x is measured in /Lm and is limited to 0 5 x 5 25 p m .  The electron diffusi 
coefticient is D,, = 25 cm'ls and the clectron mobility is p,, = 960 crn'lV-s. The 
electron current density ihrough the semiconductor is constant and equal to .I>, = 

4 0  Alcm2. The electron current has both diffusion and drift current components. 
Determine the electric field as a function of r which must exist in the semiconduct 

5.29 The total current in a semiconductor is constant and is composed of electron dnft 
current and hole diffusion current. The electron concentration is constant and is eq 
to I O l h  The hole concentration is given by 

where L = 12 Fm. The hole diffusion coefficient is D, = 12 cm2/s and the elecm 
mobility is u,, = I000 cm2N-s. The total current density is J = 4.8 Alcm'. Calcul 
(a) the hole difrusion current density versus x, (b) the electron current density vers 
x, and ( r )  the electric field versus x. 

*5.30 A constant electric field, E = 12 Vlcm, exists in the +r direction of an n-type gall 
arsenide semicanductor for 0 5 x 5 50 pm.  The total current density is a constant 
and is J = 100 A/cm2. At x = 0, the drift and diffusirjn currents are equal. Let 
T = 300 K and p,, = 8000 cm2N-s. (a) Determine the expression for the electron 
concentration n(x). (b) Calculate the electron concentration at x = 0 and at 
x = 50 pm. (c) Calculate the drift and diffusion current densities at x = 50 pm. 

*5.31 In n-type silicon, the Fermi energy level varies linearly with distance over a shon 
range. At x = 0, E ,  - E F ,  = 0.4 eV and, at x = lo-' cm, E ,  - E,; = 0.15 eV. 
( a )  Write the expression for the electron concentration over the distance. (b) If the 
electron diffusion coefficient is D,, = 25 cm21s, calculate the electron diffusion 
current density at ( i )  x = 0 and ( i i )  x - 5 x lo-' cm. 

3.32 (u) The electn~n concentration in a semiconductor is given by n = 10'" I - x/L)c~  
for 0 5 ,r 5 L. where L = 10 pm.  The electron mobility and diffusion coefficient 
p, = 1000 cm2N-s and D,, = 25.9 cm'ls. An electric field is applied such that the 
total electron current density is a constant over the given range of x and is J,, = 
-80 A/cm2. Determine the required electric field versus distance function. (b)  Rep 
part ( a )  if J,, = -20 A/cm2. 

Section 5.3 Graded Impurity Distribution 

5.33 Consider a se~niconductor in thermal equilibrium (no current). Assume that the  don^ 
concenvation varies exponentially as 

Nd(x )  = Nno exp (-ax) 

over the range O 5 r 5 I /u  where N,,u is a constant. ( a )  Calculate the electric field 
as a function of x for 0 5 .x 5 l j u .  (b )  Calculate the potential difference hetween 
x = O a n d x =  I /u .  

5.34 Using the data in Example 5.5, calculate the potential difference hetween x = O and 
x = l llm. 

5.35 Determine a doping profile in a semiconductor at T = 300 K that will induce an 
electric field of I kVlcm over a length of 0.2 wm. 



Problems 

*5.36 In GaAs. the donor impurity concentration varies as N,,,, exp ( - r /L)  for 0 5 x 5 L, 
where L = 0.1 @m and Nda = 5 x IOlh cm-'. Assume u,, = 6000 cm7/V-s and 
7 = 300 K. (o) Derive the expression for the electron diffusion current density versus 
distance over the given range of x. (b) Determine the induced electric field that gener- 
ates a drift current density that compensates the diffusion current density. 

5.37 (a) Consider the electron mobility in silicon for N,, = 101 'cm '  from Figure 5.2a. 
Calculate and plot the electron diffusion coefficient versus temperature over the range 
-50 5 T 5 200°C. (b )  Repeat pan (a) if the electron diffusion coefficient is given 
by D,, = (0.0259),~,, for a11 temperatures. What conclusion can be made about the 
temperature dependence of the diffusion coefficient? 

5.38 (o)Assume that the mobility of a carrier at T = 300 K i~ ,r = 925 cm'lv-s. Calculate 
the carrier diffusion coefficient. (b )  Assume that the diffusion coefticient of a carrier at 
T = 300 K is D = 28.3 cm'ls. Calculate the carrier mobility. 

Section 5.4 The Hall Effect 

(Nore: Refer to Figure 5.13 fur the geometry of the Hall effect.) 

5.39 A sample of silicon is doped with 1016 baron atoms per cm'. The Hall sample has the 
same geometrical dimensions given in Example 5.7. The current is I, = 1 mA with 
B: = 350 gauss = 3.5 x lo-' tesla. Deterlnine ( a )  the HdI voltage and ( b )  the Hall 
held. 

5.40 Germanium is doped with 5 x 10" donor atotns per cm' at 7 = 300 K. The dimen- 
sions of the Hall device are d = 5 x 10-' cm, W = 2 x 10-' cm, and L = 1 0 '  cm. 
The current is I, = 250 @A. the applied voltage is V, = 100 mV. and the magnetic 
flux density is B: = 500 gauss = 5 x lo-' tesla. Calculate: (a) the Hall voltage, 
(b) the Hall field. and (c) the carrier mobility 

5.41 Asilicon Hall device at 7 = 300 K has the fr~llowing geometry: d = lo-' cm, 
W = lo-' cm, and L = 10-I cm. The following parameters are measured: 
I, = 0.75 mA, V ,  = 15 V, Vti = +5.8 mV, and 8; = 1000 gauss = 10-' tcsla. 
Determine (a)  the conductivity type, (b) the majority carrier concentratjon, and 
(c)  the majority carrier mobility. 

5.42 Consider silicon at T = 300 K. A Hall effect device is fehric;rted with the fnllowing 
geometry: d = 5 x cm, W = 5 x lo-' cm, and L = 0.50 cm. The electrical 
parameters measured are: I, = 0.50 mA, V, = 1.25 V, and B; = 650 gauss = 
6.5 x 10.' tesla. The Hall field is E H  = 1 6 . 5  mV/cm. Determine (a) the Hall 
voltage, (0) the conductivity type, ( c )  the majurity carrier conccntretion, and (d) the 
majority carrier mobility. 

5.43 Consider a gallium arsenide sample at 7 = 300 K. A Hall effect device has been 
fabricated with the following geometry: d = 0.01 cm, W = 0.05 cm. and L = 0.5 cm 
The electrical parameters are: I, = 2.5 mA, V ,  = 2.2 V, and B; = 2.5 x 10.' tesla. 
The Hall voltage is VH = 4 . 5  mV Find: (a) the conductivity type, ( h )  the majority 
carrier concentration, (c) the mobility, and (d) the resistivity. 

Summary and Review 

5.44 An n-type silicon semiconductor resistor is to be designed so that i t  carrics a current 
of 5 mA with an applied voltage of 5 V. (a) If Nd = 3 x 10'' cm-' and N,, = 0, 
design a resistor lo meet the required specifications. (b) If N,, = 3 x 10'"m3 and % 
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N, = 2.5 x 1016 c m ' ,  redesign the resistor. ( c )  Discuss the relative lengths of the 
two designs compared to the doping concentration. Is there a linear relationship'! 

5.45 In fabricating a Hall effect device, the two points at which the Hall voltage is mea- 
sured may not be lined up exactly perpendicular to the current I, (see Figure 5.13). 
Discuss the effect this misalignment will have on the Hall voltage. Show that a valid 
Hall voltage can be obtained from two measurements: first with the magnetic field in 
the +z direction, and then in the z direction. 

5.46 Another technique for determining the conductivity type of a semiconductor is called 
the hot probe method. It consists of two probes and an ammeter that indicates the 
direction of current. One probe is heated and the other is at room temperature. No 
voltage is applied, but a current will exist when the probes touch the semiconductor 
Explain the operation of this hot probe technique and sketch a diagram indicating the 
direction of current for p- and n-type semiconductor samples. 
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Nonequilibrium Excess Carriers - 

in Semiconductors 

P R E V I E W  

0 ur discussion of the physics of semiconductors in Chapter 4 was based on 
then~ial equilibrium. When a voltage is applied or a current exists in a semi- 
conductor device, the semiconductor is operating under nonequilibrium 

conditions. In our discussion of current transport in Chapter 5, we did not address 
nonequilibrium conditions but implicitly assumed that equilibrium was not signifi- 
cantly disturbed. Excess electrons in the conduction band and excess holes in the va- 
lence band may exist in addition to the thermal-equilibrium concentrations if an 
external excitation is applied to the semiconductor. In this chapter, we will discuss 
the behavior of nonequilibrium electron and hole concentrations as functions of time 
and space coordinates. 

Excess electrons and excess holes do not move independently of each other. 
They diffuse, drift, and recombine with the same effective diffusion coefficient, drift 
mobility, and lifetime. This phenomenon is called ambipolar transport. We will de- 
velop the ambipolar transport equation which describes the behavior of the excess 
electrons and holes. The behavior of excess carriers is fundamental to the operation of 
semiconductor devices. Several examples of the generation of excess carriers will be 
explored to illustrate the characteristics of the ambipolar transport phenomenon. 

The Fermi energy was previously defined for a semiconductor in thermal equi- 
librium. The creation of excess electrons and holes means that the semiconductor is 
no longer in thermal equilibrium. We can define two new parameters that apply to 
the nonequilibrium semiconductor: the quasi-Fermi energy for electrons and the 
quasi-Fermi energy for holes. 

Semiconductor devices are generally fabricated at or near a surface. We will 
study the effect of these surfaces on the characteristics of excess electrons and holes. 
These effects can significantly influence the semiconductor device properties. . 
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6.1 1 CARRIER GENERATION 
AND RECOMBINATION 

In this chapter, we discuss carrier generation and recombination, which we can detine 
as follows: generation is the process whereby electrons and holes are created, and re- 
c o m b i n ~ ~ t i o ~ ~  is the process whereby electron? and holes are annihilated. 

Any deviation from therinal equilibrium will tend 111 change the electron and 
hole concentrations in a semiconductor. A sudden increase in temperature, for exam- 
ple, will increase the rate at which electrons and holes are ther~nally generated so that 
their concentrations will change with time until new equilibriuin values are reached. 
An external excitation, such as light (a Hux of photons), can also generate electrons 
and holes, creating a nonequilibrium condition. To understand the generation and 
recombination processes, we will first cot~sider direct band-to-band generation and 
recombination, and then, later, the effect of allowed electronic energy states within 
the bandgap, referred to as traps or recombination centers. 

6.1.1 The Semiconductor in Equilibrium 

We have determined the thermal-equilibrium concentration of electruns and holes in 
the conduction and valence bands, respectively. In thermal equilibrium, these con- 
centrations are independent of  time. However, eelctn~ns are continually bcing ther- 
mally excited from the valence band into the conduction band by the random nature 
of the thermal process. At the same time, electrons moving raiidu~nly through the 
crystal i n  the conduction band may come in close pnlxirnity to holes and "fall" into 
the empty states in the valencc band. This recombination process annihilates both the 
electron and hole. Since the net carrier concentrations are independent of time in 
thermal equilibrium, the rate at which electrons and holes are generated and the rate 
at which they recombine must be equal. The generation and recombination processes 
are schematically shown in Figure 6.1. 

Let G,,o and G,,o be the therinal-generatio11 rates of electn~ns and holes, respec- 
tively, given in units of #/cm2-s. For the direct band-to-band generation. the electrons 
and holes are created in pairs, so we must have that 

Electron-hole 
generation 

Figure 6.1 I Electrun-hole generation and recornhination 



6.1 Carrier Generation and Recombination 

Let Rna and R,,o be the recomhination rates of electrons and holes, respectively, for 
a semiconductor in thermal equilibrium, again given in units of #/cm3-s. In direct 
band-to-hand recombination, electrons and holes recombine in pairs, so  that 

t R,,o = R,o (6.2) 

In thermal equilibrium, the concentrations of electrons and holes are independent of 
tune; therefore, the generation and recomhination rates are equal, so we have 

Gnu = Gpa = Roo = R,o (6.3) 

6.1.2 Excess Carrier Generation and Recombination 

Additional notation is introduced in this chapter. Table 6.1 lists some of the more 
pertinent symbols used throughout the chapter. Other symbols will be defined as we 
advance through the chapter. 

Electrons in the valence hand may be excited into the conduction hand when, for 
example, high-energy photons are incident on a semiconductor. When this happens, 
not only is an electron created in the conduction band, but a hole is created in the 
valence band; thus an electron-hole pair is generated. The additional electrons and 
holes created are called excess electrons and excess holes. 

The excess electrons and holes are generated by an external force at a particular 
rate. Let g:, be the generation rate of excess electrons and gb be that of excess holes. 
These generation rates also have units of #icm3-s. For the direct hand-to-hand gener- 
ation, the excess electrons and holes are also created in pairs, so we must have 

When excess electrons and holes are created, the concentration of electrons in 
the conduction band and of holes in the valence band increase above their thermal- 
equilibrium value. We may write 

n = no + Sn (6.5a) 
and 

P = P O + ~ P  (6.5b) 

I Table 6.1 1 Relevant notdtlon used in Chapter 6 

Svmbol Definition 

"0. P,, Thermal equilibrium electron and hole concentrations 
(independent of time and also usually position). . . 

n .  P Total electron and hole concentrations (may be 
functions of time andlor position). 

Sn = n - no Excess electron and hole concentrations (may 
SP = P - Pi, be functions of time andlor position). 

g,: 3 xb Excess electron and hole generation rates. 

Rh, R, Excess electron and hole recombination rates. 
Tt,03 rpo Excess minority carrier electron and hole lifetimes. 
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1 where no and pa are the thermal-equilibrium concentrations, and 6n and Sp are the 

excess electron and hole concentrations. Figure 6.2 shows the excess electron-hole ~ 
generation process and the resulting carrier concentrations. The external force has ' 
perturbed the equilibrium condition so that the semiconductor is no longer i n  thermal 
equilibrium. We may note from Equations (6.Sa) and ( 6 3 )  that, in a nonequilibrium 

2 condition, np # nopo = ni . 
A steady-state generation of excess electrons and holes will not cause a continual 

buildup of the carrier concentrations. As in the case of thermal equilibrium, an elec- 
tron in the conduction band may "fall down" into the valence band, leading to the 
process of excess electron-hole recombination. Figure 6.3 shows this process. The 
recombination rate for excess electrons is denoted by R:, and for excess holes by Rb. 
Both parameters have units of #/cm3-s. The excess electrons and holes recombine 10 

pairs, so the recombination rates must be equal. We can then write 

In the direct band-to-band recombination that we are considering, the recombi- 
nation occurs spontaneously: thus, the probability of an electron and hole reconibin- 
ing is constant with time. The rate at which electrons recombine must be proportional 

Figure 6.2 1 Creation of excess electron and hole densities by 
photons. 

Figure 6.3 1 Recombination of excess carriers 
reestablishing thermal equilibrium. 
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to the electron concentration and must also be proportional to the hole concentration. 
If there are no electrons or holes, there can be no recombination. 

The net rate of change in the electron concentration can be written as 

where 

I 
1 The first term. a,$. in Equation (6.7) is the thermal-equilibrium generation m e .  

Since excess electrons and holes are created and recombine in pairs, we have that 
Sn(t) = Sp(t) .  (Excess electron and hole concentrations are equal so we can simply 
use the phrase excess carriers to mean either.) The thermal-equilibrium parameters, 
no and po, being independent of time, Equation (6.7) becomes 

I Equation (6.9) can easily be solved if we impose the condition of /OM;-level in- 
jection. Low-level injection puts limits on the magnitude of the excess carrier con- 
centration compared with the thermal equilibrium carrier concentrations. In an ex- 

i trinsic n-type material, we generally have no >> po and, in an extrinsic p-type 
material, we generally have po >>no. Low-level injection means that the excess 
carrier concentration is much less than the thermal equilibrium majority carrier con- 
centration. Conversely. high-level injection occurs when the excess carrier concen- 
tration becomes comparable to or greater than the thermal equilibrium majority car- 
rier concentrations. 

If we consider a p-type material (po >> no) under low-level injection (Sn( t )  << 
po), then Equation (6.9) becomes 

The solution to the equation is an exponential decay from the initial excess concen- 
tration, or 

! where r,,o = (a,po)-' and is a constant for the low-level injection. Equation (6.11) 
describes the decay of excess minority carrier electrons so that rno is often referred 
to as the excess minority carrier lifetime.' 

'In Chapter 5 we defined r as a mean rime between collisions. We definer here as the mean time before 
a recornhination event occurs. The two parameters are not related. 
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The recombination rate-which is defined as a positive quantity--of excess mi- 
nority carrier electrons can be written, using Equation (6.10). as 

For the direct hand-to-hand recombination, the excess majority carrier holes recom- 
bine at the same rate, so that for the p-type material 

(6.13) 

In the case of an n-type material (nu >> po) under low-level injection 
(Sn(t) <<no), the decay of minority canier holes occurs with a time constant 
rlJo = (a,no)-I. where r1,~ is also referred to as the excess minority carrier lifetime. 
The recombination rate of the majority carrier electrons will be the same as that of 
the minority carrier holes, so we have 

1 
The generation rates of excess carriers are not functions of electron or hole con- 

centrations. In general, the generation and recolnbination rates may be functions of 
the space coordinates and time. 

TEST YOUR UNDERSTANDING 

E6.1 Excess electrons have been generated in a semiconductor to aconcentration ofSn(0) = 
10" cn1r3. The excess carrier lifetime is r,,o = 1 0  s. The forcing function generating 
the excess carriers turns off at r = 0 so the semicdnductor is allowed to return to an 

equilibrium condition for r > 0. Calculate the excess electron concentration for 

(a) t = 0, (b) t = l us, and (c) t = 4 us. 
[,-ma S , O I  x E X I  ( J ) ' , - ~ J  * ,OI  x XYE ( Y ) ' ~ - ~ J ~ , o I  (")'JuvI 

E6.2 Using the parameters given in E6.1, calculate the recombination rate of the excess 
electrons for (a) t = 0, (b )  r = I us, and (c) t = 4 &s. 
1 , s  ,-m3 d l O l  X £81 (2) ' , - S  (-1113 oiOl X 89-E (4) ' , S  r-m3 l rOl  (1) )  sUV] 1 

6.2 1 CHARACTERISTICS OF EXCESS CARRIERS 
The generation and recombination rates of excess caniers are important parameters, 
but how the excess caniers behave with time and in space in the presence of electric 
fields and density gradients is of equal importance. As mentioned i n  the preview sec- 
tion, the excess electrons and holes do not move independently of each other, but 
they diffuse and drift with the same effective diffusion coefficient and with the same 
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effective mobility. This phenomenon is called amhipolar transport. The question that 
must be answered is what is the effective diffusion coefficient and what is the effec- 
tive mobility that characterizes the behavior of these excess carriers? To answer these 
questions, we must develop the continuity equations for the carriers and then develop 
the ambipolar transport equations. 

The final resulth show that. fc~r an extrinsic semiconductor under low injection 
(this concept will be defined in the analysis). the effective diffusion coefficient and 
mobility parameters are those of the minority carrier. This result is thoroughly de- 
veloped in the following derivations. As will he seen in the following chapters, the 
behavior of the excess carriers has a profound impact on the characteristics of semi- 
conductor devices. 

3 6.2.1 Continuity Equations 

The continuity equations for electrons and holes are developed in this section. 
Figure 6.4 shows a differential volume element in which a one-dimensional hole- 
panicle flux is entering the differential element at r and is leaving the elelllent at 
r + d.r. The parameter F: is the hole-particle flux, or  flow, and has units of num- 
ber of holeslcm2-s. For the I componcnt of the particle current density shown, we 
may write 

This equation is a Taylor expansion of F$.(.x + d l ) .  where the differential length d x  
is small, so that only the first two termsin the expansion are significant. The net in- 
crease i n  the number of holes per unit time within the differential volume element 
due to the x-component of hole Rux is given by 

If F&(x) > Fz (X + dx),  for example, there will be a net increase in the num- 
ber of holes in the differential volume elemenl with time. Jf we generalize to a rhree- 
dimensional hole flux, then the right side of Equation (6.16) may be written as 

Figure 6.4 1 Differential volumr showing 
x component of the hole-particle flux. 
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-V . F,+ d x  d y  d z ,  where V . F,+ is the divergence of the flux vector. We will limit 
ourselves to a one-dimensional analysis. 

The generation rate and recombination rate of holes will also affect the hole con- 
centration in the differential volume. The net increase in the number of holes per unit 
time in the differential volume element is then given by 

wherep is the density of holes. The first term on the right side of Equation (6.17) is 
the increase in the number of holes per unit time due to the hole flux, the second term 
is the increase in the number of holes per unit time due to the generation of holes, and 
the last term is the decrease in the number of holes per unit time due to the recombi- 
nation of holes. The recombination rate for holes is given by p/rpCpl where T,, includes 
the thermal equilibrium carrier lifetime and the excess carrier lifetime. 

If we divide both sides of Equation (6.17) by the differential volume d x  d y  d z ,  
the net increase in the hole concentration per unit time is 

Equation (6.18) is known as the continuity equation for holes. 
Similarly, the one-dimensional continuity equation for electrons is given by 

where F,- is the electron-particle flow, or flux, also given in units of number of 
electrons/cm2-s. 

6.2.2 Time-Dependent Diffusion Equations 

In Chapter 5, we derived the hole and electron current densities, which are given, in 
one dimension, by 

and 
all 

J, =ew,nE+eD,- (6.21) 
a x  

If we divide the hole current density by (+e) and the electron current density by 
(- e ) ,  we obtain each particle flux. These equations become 

and 



Taking the divergence of Equations (6.22) and (6.23), and substituting back into 
the continuity equations of (6.18) and (6.19), we obtain 

Keeping in mind that we are limiting ourselves to a one-dimensional analysis, we can 
expand the derivative of the product as 

In a more generalized three-dimensional analysis, Equation (6.26) would have to be 
replaced by a vector identity. Equations (6.24) and (6.25) can be written in the form 

P + g  - - = -  P (6.27) 
70, at 

and 
n an  

+ g , - - = -  (6.28) 
re, at 

Equations (6.27) and (6.28) are the time-dependent diffusion equations for holes 
and electrons, respectively. Since both the hole concentrationp and the electron con- 
centration n contain the excess concentrations, Equations (6.27) and (6.28) describe 
the space and time behavior of the excess camers. 

The hole and electron concentrations are functions of both the thermal equilib- 
rium and the excess values are given in Equations (6.5a) and (6.5b). The thermal- 
equilibrium concentrations, no and po. are not functions of time. For the special case 
of a homogeneous semiconductor, no and po are also independent of the space coor- 
dinates. Equations (6.27) and (6.28) may then be written in the form 

Note that the Equations (6.29) and (6.30) contain terms involving the total concen- 
trations, p and n ,  and terms involving only the excess concentrations, Sp and Sn. 

6.3 1 AMBIPOLAR TRANSPORT 
Originally, we assumed that the electric field in the current Equations (6.20) and 
(6.21) was an applied electric field. This electric field term appears in the time- 
dependent diffusion equations given by Equations (6.29) and (6.30). If a pulse of 
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Figure 6.5 1 The creation ot an internal electric field 
as excess electrons and holes rend to separate. 

excess electrons and a pulse of excess holes are created at a particular point in a semi- 
conductor with an applied electric field, the excess holes and electrons will rerld to 
drift in opposite directions. However, because the electrons and holes are charged 
particles, any separation will induce an internal electric field between the two sets of 
particles. This internal electric tield will create a force attracting the electrons and 
holes back toward each other. This effect is shown in Figure 6.5. The electric field 
term in Equations (6.29) and (6.30) is then composed of the externally applied field 
plus the induced internal field. This E-field may be written as 

whcre E,,, is the applied electric field and E,,,, is the induced internal electric field. 
Since the internal E-field creates a force attracting the electrons and holes. this 

E-field will hcild the pulses of excess electrons and excess holes together. The nega- 
tively charged electrons and positively charged holes then will drift or diffuse 
together with a single effective mobility or diffusion coefficient. This phenomenon is 
called rmmDipolur diffusion or umhipolur rransl)or.r. 

6.3.1 Derivation of the Ambipolar Transport Equation 

The time-dependent diffusion Equations (6.29) and (6.30) describe the behavior of the 
excess carriers. However, a third equation is required to relate the excess electron and 
hole concentrations to the internel electric field. This relation is Poisson's equation, 
which may be written as 

where c ,  is the permittivity of the semiconductor material. 
To make the solution of Equations (6.29), (6.30). and (6.32) more tractable, we 

need to make some approximations. We can show that only a relatively small internal 
electric field is suficient to keep the excess electrons and holes drifting and diffusing 
together. Hence, we can assume that 
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However. the V . E,,, term may not be negligible. We will impose the condition 
of charge neutrality: We will assume that the excess electron concentration is just bal- 
anced by an equal excess hole concentration at any point in space and time. If this 
assumption were exactly true, there would be no induced internal electric tield to keep 
the two sets of panicles together. However, only a very small difference in the excess 
electron concentration and excess hole concentration will set up an internal E-field 
rufficient to keep the particles diffusing and drifting together. We can show that a 
I percent difference in Sp and Sn. for example, will result in non-negligible values of 
the V . E = V . Ei,, term in Equations (6.29) and (6.30). 

We can combine Equations (6.29) and (6.30) to eliminate the V . E term. Con- 
sidering Equations (6.1) and (6.4), we can define 

and considering Equations (6.2) and (6.6), we can define 

The lifetimes in Equation (6.35) include the thermal-equilibrium carrier lifetimes and 
theexcess-carrier lifetimes. If we impose thecharge neutrality condition, then Sn =z Sp. 
We will denote both the excess electron and excess hole concentrations in Equa- 
tions (6.29) and (6.30) by Gn. We may then rewrite Equations (6.29) and (6.30) as 

If we multiply Equation (6.36) by @,n, multiply Equation (6.37) by w,,p, and 
add the two equations, the V . E = aE/ax  term will be eliminated. The result of this 
addition gives 

If we divide Equation (6.38) by the tern1 (w,,n + w,p) ,  this equation becomes 

where 
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and 

Equation (6.39) is called the ombipolur transport equutinn and describes the be- 
havior of the excess electrons and holes in time and space. The parameter D' is called 
the omhipolnr difluusion coefficient and p' is called the u~iihipnlar rnobilir?: 

The Einstein relation relates the mobility and diffusion coefficient by 

- e LLn @!> - - - - - - 
D,, 11, kT 

Using these relations, the ambipolar diffusion coefficient may be written in the form 

The ambipolar diffusion coefficient, D', and the a~nbipolar mobility, w' ,  are func- 
tions of the electron and hole concentrations, n and p ,  respectively. Since both n 
and p contain the excess-carrier concentration Sn, the coefficient in the amhipolar 
transport equation are not constants. The amhipolcrr transport equation, given by 
Equation (6.39), then, is a nonlinear differential equation. 

6.3.2 Limits of Extrinsic Doping and Low Injection 

The ambipolar transport equation may be simplified and linearized by considering an 
extrinsic semiconductor and by considering low-level injectinn. The ambipolar dif- 
fusion coefficient, from Equation (6.431, may be written as 

, D,,D,I(na +an) + (PO + S I I ) ~  
D = 

D,,(nu + Sn) + D,(po + Sn) 

where no and po are the thermal-equilibrium electron and hole concentrations, 
respectively. and Sn is the excess carrier concentration. If we consider a p-type semi- 
conductor, we can assume that p,, >> 11". The condition of low-levelinjection, orjust 
low injection, means that the excess carrier concentration is much smaller than the 
thermal-equilibrium majority carrier concentration. For the p-type semiconductor, 
then, low injection implies that Sn << pu. Assuining that no << I?,I and Sn << po. and 
assuming that D,, and D, are on the same order of magnitude. the ambipolar diffusion 
coefficient from Equation (6.44) reduces to 

D' = D,, (6.45) 

If we apply the conditions of an extrinsic p-type semiconductor and low injection to 
the ambipolar mobility, Equation (6.41) reduces to + 
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If is important to iiote fhotfor an e-xtrinsic p-@pe soniconductor under low 
jection, the ambipolar diffusion coeflcient and the ambipolar mobility coefficient L 

red~rce to rht minorig-currier electroil parameter ~,olue.r. ~ ' l ~ i c h  are constants. The 
ambipolar transport equation reduces to a linear differential equation with constant 
coefficients. 

If we now consider an extrinsic n-type semiconductor under low injection, we 
may assume that po <<no and &I <<no. The ambipolar diffusion coefficient from 
Equation (6.43) reduces to 

4 D' = D, (6.47) 

and the ambipolar mobility from Equation (6.41) reduces to 

5 W = -I"> (6.48) 

ambipolar parameter5 again reduce to the minorit?-currier  value.^, which are 
constants. Note that, for the n-type semiconductor, the amhipolar mobility is a nega- 
tive value. The ambipolar mobility ten11 is associated with carrier drift; therefore. the 
sign of the drift term depends on the charge of the particle. The equivalent amhipolar 
particle is negatively charged, as one can see by comparing Equations (6.30) and 
(6.39). If the amhipolar mobility reduces to that of a positively charged hole, a nega- 
tive sign is introduced as shown in Equation (6.48). 

The remaining terms we need to consider in the ambipolar transport equation are 
the generation rate and the recombination rate. Recall that the electron and hole 
recombination rates are equal and were given by Equation (6.35) as R, = Rp = 
nlr,, = plr,,, = R .  where T,,, and r are the mean electron and hole lifetimes, re- 

, Ir .  . 
spectively. If we consider the inverse 11tetime functions, then I/T,,, is the probability 
per unit time that an electron will encounter a hole and recombine. Likewise, I /r,, is 
the probability per unit time that a hole will encounter an electron and recombine. If 
we again consider an extrinsic p-type semiconductor under low injection, the con- 
centration of majority canier holes will be essentially constant, even when excess 
carriers are present. Then, the probability per unit time of a minority carrier electron 
encountering a majority carrier hole will be essentially constant. Hence r,,, -- r,, the 
minority carrier electron lifetime, will remain a constant for the extrinsic p-type 
semiconductor under low injection. 

Similarly, if we consider an extrinsic n-type semiconductor under low injection, 
the lniriority carrier hole lifetime, T,,, -- r,,, will remain constant. Even under the 
condition of low injection, the minority carrier hole concintration may increase by 
several orders of magnitude. The probability per unit time of a majority carrier elec- 
tron encountering a hole may change drastically. The majority carrier lifetime, then, 
may change substantially when excess carriers are present. 

Consider, again, the generation and recombination terms in the ambipolar trans- 
pon equation. For electrons we may write 

g R = g , , -  R,, =(G, ,o+g: ) - (R, ,o+RL)  (6.49) 

where G,," and g ,  are the thermal-equilibrium electron and excess electron genera- 
tion rates, respectively. The terms R,,o and R,: are the thermal-equilibrium electron 
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and excess electron recombination rates, respectively. For thermal equilibrium, we 
have that 

G,,o = Rno (6.50) 

so Equation (6.49) reduces to 

where 7, is the excess minority canier electron lifetime. 
For the case of holes, we may write 

where G," and gb are the thermal-equilibrium hole and excess hole generation rates, 
respectively. The terms R,," and R;, are the thermal-equilibrium hole and excess hole 
recombination rates, respectively. Again, for thermal equilibrium, we have that 

Goo = R,o (6.53) 

so that Equation (6.52) reduces to 

where r, is the excess minority carrier hole lifetime. 
The generation rate for excess electrons must equal the generation rate for ex- 

cess holes. We may then define a generation rate for excess carriers as g', so that 
g; = gb = g'. We also determined that the minority carrier lifetime is essentially a 
constant for low injection. Then the term g - R in the ambipolar transport equation 
may he written in terms of the minority-carrier parameters. 

The ambipolar transport equation, given by Equation (6.39), for a p-type scmi- 
conductor under low injection then becomes 

The parameter Sn is the excess minority carrier electron concentration, the parame- 
ter r,," is the minority carrier lifetime under low injection, and the other parameters 
are the usual minority carrier electron parameters. 

Similarly, for an extrinsic n-type semiconductor under low injection, the ambi- 
polar transport equation becomes 

The parameter fip is the excess minority carrier hole concentration, the parameter T," 
is the minority carrier hole lifetime under low injection, and the other parameters are 
the usual minority carrier hole parameters. 
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Table 6.2 I Common amblpolar transport equatlon \~mpllfiiatlon\ 

Specification Effect 

Steady slate alsnl ~ ( S P )  
= 0 .  - = 0 ar ar 

d2(Sn)  d'(6n) 
Uniform distribution of excess carriers D,, ----- = 0. D,, ----- = 0 
(uniform generation ratc) il.Y2 ax' 

a(sn)  
Zero electric field E- d IJPI = O .  E-=n a . ~  ax  
No excess canier generation g =0 

No excess carrier recombination 
(infinite lifetime) 

It is extremely important to note that the transport and recombination parameters 
inEquations (6.55) and (6.56) are those of the minority carrier. Equution.~ (6.55) and 
i(6.56) describe the dr i f t ,  diffusion, and recombination o/'excess minority carriers as 
afunction of .spatial coordinates and ns rr ,firnctinr~ of rime. Recall that we had im- 
posed the condition of charge neutrality; the excess minority carrier concentration is 
equal to the excess majority carrier concentration. The excess majority carriers, then, 
diffuse and drift with the excess minority carriers; thus, the behavior of the excess 
majority carrier is determined by the minority carrier parameters. This ambipolar 
phenomenon is extremely important in semiconductor physics, and is the basis for 
describing the characteristics and behavior of semiconductor devices. 

6.3.3 Applications of the Ambipolar Transport Equation 

We will solve the ambipolar transport equation for several problems. These examples 
will help illustrate the behavior of excess carriers in asemiconductor material, and the 
results will be used later in the discussion of the pn junction and the other semicon- 
ductor devices. 

The following examples use sevcrel common simplifications in the solution of 
the ambipolar transport equation. Tahle 6.2 summarizes these simplifications and 
their effects. 

Objective I EXAMPLE 6.1 

To determine the time behavior af excess carriers as a semiconductor returns to thermal equi- 
librium. 

Consider an infinitely large, homogeneous n-type semiconductor with rero applied clsc- 
rric field. Assume that at time r = 0, a uniform concentration of excess carricrs exists in thc 
crystal, but assume that 8' = 0 for r > 0. If wc assumc that thc concentration of cxccsr 
carriers is much smaller than the thermal-equilibrium electron concmlration, then the low- 
in,iection condition applies. Calculate the excess carrier concentration as a function af time 
for 1 > 0. 



CHAPTER 6 Nonequ~br~um Excess Carrlers In Sem~conductors 

Solution 
For the n-type semiconductor, we need to consider the ambipolar transport equation for the 
minority carrier holes, which was given by Equation (6.56). The equation is 

We are as~uming a uniform concentration ofexcess holes so that a'(6p)/i3x2 = a(6p)lax = 0. 
Fort > 0, we are also assuming that g' = 0. Equation (6.56) reduces to 

Since there is no spatial variation, the total time derivative may be used. At low injection, the 
minority omier hole lifetime, rPo, is a constant. The solution to Equation (6.57) is 

where Sp(0) is the uniform concentration of excess carriers that exists at time r = 0. The con- 
centration of excess holes decays exponentially with time, with a time constant equal to the 
minority carrier hole lifetime. 

From the charge-neutrality condition, we have that 6n = Sp, so the excess electron con- 
centration is given by 

Numerical Calculation 
Consider n-type gallium arsenide doped at Nd = 10" c m 3 .  Assume that I O l 4  electron-hole 
pairs per cm3 have been created at r = 0, and assume the minority carrier hole lifetime is 
roo = 10 ns. 

We mdy note that 6p(0) << no. so low injection applies. Then from Equation (6.58) we 
can write 

Gp(t) = 10'"-"'~-~ C I I - ~  

The excess hole and excess electron concentrations will decay to l/e of their initial value in 
10 ns. 

Comment 
The excess electrons and holes recombine at the rate determined by the excess minority car- 
rier hole lifetime in the n-type semiconductor. 

EXAMPLE 6.2 I Objective 

To determine the time dependence of excess carriers in reaching a steady-state condition. 
Again consider an infinitely large, homogeneous n-type semiconductor with a zero ap- 

plied electric field. Assume that, for t < 0, the semiconductor is in thermal equilibrium and 
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that, for r ? 0, a uniform generation rate exists in the crystal. Calculate the excess carrier con- 
centration as a function of time assuming the condition of low injection. 

Solution 
The condition of a uniform generation rate and a homogeneous semiconductor again implies 
that a'(8p)/ax2 = a(Sp)/ax = 0 in Equatian (6.56). The equation, for this case, reduces to 

The solution to this differential equation is 

I Numerical Calculation 
Considern-type siliconat T = 300Kdopedat Nd = 2 x 10lh ~ m - ~ . A s s u m e  that r,," = lo-' s 

and g' = 5 x 10" cm-l s '  . From Equation (6.61) we can write 

I Comment 
We may note that fo r t  -t oo. we will create a steady-state excess hole and electron concen- 
tration of 5 x 10" cm-'. We mdy note that Sp << ,LO, so low injection is valid. 

The excess minority can ie r  hole concentration increases with time with the same 
time constant rPo, which is the  excess minority carrier lifetime. T h e  excess carrier 
concentration reaches a steady-state value as  time goes to  infinity, even though a 
steady-state generation of excess electrons and holes exists. This  steady-state effect 
can he seen from Equation (6.60) by setting d ( S p ) / d t  = 0. The remaining tenns sim- 
ply state that, in steady state, the generation rate is equal to  the recotnbination rate. 

TEST YOUR UNDERSTANDING I 
E6.3 Silicon at T = 300 K has been doped with boron atoms to a concentration of 

No = 5 x 10Ih c m ' .  Excess carriers have been generated in the uniformly doped 
material to a concentration of 10" cm-'. The minority canier lifetime is 5 us .  
(o) What carrier type is the minority carrier? (b) Assuming g' = E = 0 for 1 > 0, 
determine the minority carrier concentration for r > 0. 
r r 9 3  xr,,+as,ol (9 )  ' " o n w  ( a )  s u v l  

E6.4 Consider silicon with the same parameters as given in E6.3. The material is in ' 
thermal equilibrium for t  < 0. At t = 0, a source generating excess carriers is turned 
on, producing a generation rate of g' = 1 0 2 " c m ~ 3 s  ' .  (a) What canier type is the 
minority carrier? (b) Determine the minority carrier concentration for t  > 0. (c) What 
is the minority canier concentration as t + cu? 
rC+"3 *,Ol x 5 ( 3 )  'i-m5 lg Olxi,,-~ - l l t , o ~  x s ( q )  ' s u o ~ a l a  ( o )  -sub'] 
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EXAMPLE 6.3 I Objective 

To determine the steady-state spatial dependence of the excess carrier cancentration. 
Consider a p-type semiconductor that is homogeneous and infinite in extent. Assume a 

rero applied electric field. For a one-dimensional crystal, assume that excess carriers are being 
generated at x = 0 only, as indicated in Figure 6.6.  The excess carriers being generated at 
x = 0 will begin diffusing in both the +x and - x  directions. Calculate the steady-state ex- 
cess carrier concentration as a function of r .  

Solution 
The nmhipolar transport equation lor excess minority carrier electrons was given by Equa- 
tion (h.55). and is written as 

a2(sn)  aiSn) Sn a(6,tj 
0" -- 

ax2 + u i , E T + g ' - -  =- 
r,,, ill 

Froln our assumptions. we have E = 0, g' = 0 for r # 0. and a(Sn)/ar = 0 fur steady state. 
Assuming a one-dimensional crystal, Equation (6.55) reduces to 

d'(S,r) Sn n,, ---- - - - - 0 
dx' T,," 

Dividing by the diffusion coefficient, Equation (6.62) may he written as 

where we have defined L: = D,,T,,,~. The parameter L,, has the unit of length and i5 called the 
minority carrier electron diffusion length. The general solulion to Equation (6.63) i s  

&,ix) = A?-$",, + ~ ~ r ~ l . . ,  (6.64) 

As the minority carrier electrons diffuse away from x = 0. they will recombine with the ma- 
jority carricr holes. The minority carrier electron concentration will then decay toward rero at 
both r- = +x and r = - x  These boundary conditions mean that B = 0 fr,r .r > 0 and 
A = 0 for .r < 0. The solutinn lu Equation (6.63) may then he written as 

Figure 6.6 1 Steady-state generation 
rate at x = 0. 



where Sn(0) is the value of the excess electron concentration at x = 0. The steady-state 
excess electron concentration decays exponentially with distance away from the source at 
x = 0. 

rn Numerical Calculation 
Consider p-type silicon at T = 300 K doped at N,  = 5 x IO'%cm3. Assume that r,," = 
5 x IW7 s, D,, = 25 cm2/s, and Sn(0) = 10'' cm-'. 

The minority carrier diflusion length is 

L,, = = J(zsjc5 x LO-') = 3 5 . 4 ~ m  

Then for x ? 0, we have 
&(,) = ~01Su-'l35 "mod cm-3 

I Comment 
We may note that the steady-state excess concentration decays to I/? of its value at x = 

35.4 irm. 

As before, we will assume charge neutrality; thus, the steady-state excess major- 
ity carrier hole concentration also decays exponentially with distance with the same 
characteristic minority carrier electron diffusion length L,,. Figure 6.7 is a plot of the 
total electron and hole concentrations as a function of distance. We are assuming low 
injection, that is, Sn(0) << p~ in the p-type semiconductor. The total concentration of 
majority carrier holes barely changes. However, we may have Sn(0) >> no and still 
satisfy the low-injection condition. The minority carrier concentration may change 
by many orders of magnitude. 

TEST YOUR UNDERSTANDING 1 
E6.5 Excess electrons and holes are generated at the end uf a silicon bar ( x  = 0). The 

I silicon is doped with phosphorus atoms to a concentration of Nd = lo1' ~ r n - ~ .  The 
minority carrier lifetime is 1 @s, the electron diffusion coefficient is D, = 25 cm2/s, 
and the hole diffusion coefficient is D,, = 10 cm2/s. If Sn(0) = Sp(0j = 10'' cm-), 
determine the steady-state electron and hole concentrations in the silicon for x > 0. 
(u3 u! s! w aJaqnr ',-ru3 c-,,, xp,  i , r -  J , ,OI  = (x)dg = (x)ug .suv) 

E6.6 Using the parameters given in E6.5, calculate the electron and hole diffusion current 

t densities at x = 10 @m. (z"3/V 69E.O- = "/. 'zUJ3/~ 69t'Of = "f ' s ~ v )  

The three previous examples, which applied the amhipolar transport equation to 
specific situations, assumed either a homogeneous or a steady-state condition; only 
the time variation or the spatial variation was considered. Now consider an example 
in which both the time and spatial dependence are considered in the same problem. 
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Carrier 
cuncentratlon 
(log scale) 

P" + S"(0) 

----------------- ----------------- -_I 

Figure 6.7 1 Steady-state electron and hole concentrations for the case 
when excess electrons and holes are generated at r = 0. 

EXAMPLE 6.4 I Objective 

To determine both the time dependence and spatial dependence of the excess carrier concen- 
tration. 

Assume that a finite number of electron-hole pairs is generated instantaneously at time 
t  = 0 and at x = 0. but assume 8' = 0 fo r t  > 0. Assume we have an n-type semiconductor 
with a constant applied electric field equal to Eo. which is applied in the +x direction. Calcu- 
late the cxcess carrier concentration as a function o f x  and t. 

Solution 
The one-dimensional ambipolar transport equation for the minority carrier holes can be writ- 
ten from Equation ( 6 5 6 )  as 

The soluLion to this pmial differential equation is of the form 

Sp(.,, r )  = p ' ( r .  t ) e ~ " ' ~ "  (6.67) 

By substituting Equation (6.67) into Equation (6.66), we arc left with the panial differential 
equation 

a2p'(x ,  t )  ap ' i x , t )  ap ' ( x , r )  
DD ax' - -/*,,Eo- - - 

ax ar 
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Equation (6.68) is normally salved using Laplace transform techniques. The solution, without 
going through the mathematical dcrails, is 

The total solution. from Equations (6.67) and (6.69). for the excess minority carrier hole con- 
centration is 

Comment 
Wecould show that Equation (6.70) is a solution hy direct substitution back into the partial dif- 
ferential equation. Equation (6.66). 

Equation (6.70) can be plotted as a function of distance x, for various times. 
Figure 6.8 shows such a plot for the case when the applied electric field is zero. For 
t > 0, the excess minority carrier holes diffuse in both the +x and -x directions. 
During this time, the excess majority c a m e r  electrons, which were generated, diffuse 
at exactly the same rate as the holes. As time proceeds, the excess holes recombine 

Figure 6.8 1 Excess-hole concentration versus distance 
at various times for zero applied electric field. 
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Figure 6.9 I Excess-hole concentration versus dislance at various times for a 
constant applied electric field. 

Sp(x. 1) A 

/ 
/ 

x 

with the excess electrons so that ar t = oo the excess hole concentration is zero. In 
this particular example, both diffusion and recombination processes are occurring at 
the same time. 

Figure 6.9 shows a plot of Equation (6.70) as a function of distance x at various 
times for the case when the applied electric field is not zero. In this case, the pulse of 
excess minority carrier holes is drifting in the +x direction, which is the direction of 
the electric field. We still have the same diffusion and recombination processes as we 
had before. An important point to consider is that, with charge neutrality, 6n = Spat 
any instant of time and at any point in space. The excess-electron concentration is 
equal to the excess-hole concentration. In this case, then, the excess-electron pulse is 
moving in the same direction as the applied electric field even though the electrons 
have a negative charge. In the alnbtpolar transport process, the excess carriers are 
characterized by the minority canier parameters. In this example, the excess caniers 
behave according to the minority canier hole parameters, which include D p ,  f ip .  and 
rpo. The excess majority camier electrons are being pulled along by the excess minor- 
ity canier holes. 

r = r , > n  

E" - 
I t = t3 > 1, 

I , ,*--*, , 
8 

I , , , , , , , I , . , , 
'\ 

*.-- 
= 0 Distance, x 

I TEST YOUR UNDERSTANDING 

E6.7 As a good approximation, the peak value of a normalized excess canierconcentration, 
given by Equation (6.701, occurs at x = @,,Eat. Assume the following parameters: 
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r,,o = 5 ps. D, = 10 cm'ls. u p  = 186 cm2/V-s. and Eo = 10 Vlcrn. Calculate the 
peak value at times of (a) r = I ws. (h)  r = 5 LLS, (c) t = 15 ws, and ( d )  1 = 25 ps. 
What are the corresponding values of x for pans ( a )  to (d)'! I'JJ" 196 = 'OZI 'O (PI 
!lU71 6LS = X'SI'I (.>) :Uld £61 = X 'LPI (4) !lUd 9'85 = X ' O ' f i  (D)  SUV] 

E6.8 The exceas carrier concentration, given by Equation (6.70), is to bc calculated at dis- 
tances of one diffusion length away from the peak value. Using the parameters given 
in E6.7. calculate the valucs of Bp for (0) 1 = I / i s  at (i) 1.093 x 10.' cm and 
( i i )  r = -3.21 x lo-' cm; ( b )  t  = 5 ps at ( i )  .r = 2.64 x lo-' crn and 
(ii) r = 1.22 x 10-'crn; (c )  r = 15 irs at ( i ) x  = 6.50 x lo-' cm and 
( i i )  r = 5.08 x 1 0  ' cm. 
150'1 (!!) 'SVI (!)(,?I !b'I 1 (!!I 'Vll (!) ( q )  Y'0Z (!!) '6'0Z (!) (0) 'SUVI 

Eh.9 Using the parameters given in E6.7, (0) plot 6p(x,  r )  from Equation (6.70) versus x ---= 

for ( i )  r = I s ( i )  r = 5 s a ( i  I = 1 s a h )  pot 8 .  1 )  s s  t i  
< fix ( i )  x = cm, ( i i )  s = 3 x 10 ' cm, and (iii) r = 6 x 1 0  ' cm. -~ 

6.3.4 Dielectric Relaxation Time Constant 

We have assumed in the previous analysis that a quasi-neutrality conditions exists- 
that is, the concentration of excess holes is balanced by an equal concentration of ex- 
cess electrons. Suppose that we have a situation as shown in Figure 6.10, in which a 
uniform concentration of holes 6p is suddenly injected into a portion of the su&ce 
of a semiconductor. We will instantly have a concentration of excess holes and a net 
positive charge density that is not balanced by a concentration of excess electrons. 
How is charge neutrality achieved and how fast? 

There are three defining equations to he considered. Poisson's equation is 

The current equation, Ohm's law, is 

The continuity equation, neglecting the effects of generation and recombination, is 

Figure 6.10 1 The injection of a cuncentration of 
holes into a small region aL the surface of an n-type 
semiconductor. 
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The parameter p is the net charge density and the initial value is given by e(8p). We 
will assume that 6p is uniform over a short distance at the surface. The parameter 6 
is the permittivity of the semiconductor. 

Taking the divergence of Ohm's law and using Poisson's equation, we find 

Substituting Equation (6.74) into the continuity equation, we have 

UP ap d~ ------- - - (6.75) 
c at dr 

Since Equation (6.75) is a function of time only, we can write the equation as a total 
derivative. Equation (6.75) can be rearranged as 

Equation (6.76) is a first-order differential equation whose solution is 

p( f )  = p(0)ed' l")  (6.77) 

where 

and is called the dielectric relaxation time constant. 

EXAMPLE 6.5 I Objective 

Calculate the dielechic relaxation time constant for a particular semiconductor. 
Assume an n-type semiconductor with a donor impurity concentration of Nd = 

1016 cm?. 

Solution 
The conductivity is found as 

where the value of mobility is the approximate value found from Figure 5.3. The permittivity 
of silicon is 

The dielectric relaxation time constant is then 
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Comment 
Equation (6.77) then predicts that in approximately four time constants, or in approximately 
2 ps, the net charge density is essentially zero; that is, quasi-neutrality has been achieved. 
Since the continuity equation, Equation (6.73). does not contain any generation or recombina- 
tion terms, the initial positive charge is then neutralized by pulling in electrons from the bulk 
n-type material to create excess electrons. This process occurs very quickly compared to the 
normal excess camer lifetimes of approximately 0.1 /L>. The condition of quasi-charge- 
neutrality is then justified. 

*6.3.5 Haynes-Shockley Experiment 

We have derived the mathematics describing the behavior of excess caniers in a 
semiconductor. The Haynes-Shockley experiment was one of the first experiments 
to actuallv measure excess-camer behavior. ~ ~ , 

Figure 6.1 1 shows the basic experimental arrangement. The voltage source V, 
establishes an applied electric field Eo in the +x direction in the n-type semiconduc- 
tor sample. Excess carriers are effectively injected into the semiconductor at contact 
A. Contact B is a rectifying contact that is under reverse bias by the voltage source 
V2. The contact B will collect a fraction of the excess carriers as they drift through the 
semiconductor. The collected carriers will generate an output voltage, Vn. 

This experiment corresponds to the problem we discussed in Example 6.4. 
Figure 6.12 shows the excess-carrier concentrations at contacts A and B for two con- 
ditions. Figure 6.12a shows the idealized excess-carrier pulse at contact A at time 
t = 0. For a given electric field Eo,, the excess carriers will drift along the semicon- 
ductor producing an output voltage as a function of time given in Figure 6.12b. The 
peak of the pulse will arrive at contact B at time t". If the applied electric field is re- 
duced to a value En>. E02 < EOI. the output voltage response at contact B will look 
approximately as shown in Figure 6 . 1 2 ~ .  For the sn~aller electric field, the drift ve- 
locity of the pulse of excess carriers is smaller, and so it will take a longer time for the 

Figure 6.11 I The basic Haynes-Shockley experimental 
arrangement. 
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Figure 6.12 1 (a) The idealized excess-carrier pulse at 
terminal A at t = 0. (b) The excess-carrier pulse versus time 
at terminal B for a given applied electric field. (c) The 
excess-carrier pulse versus time at terminal B for a smaller 
applied electric field. 

pulse to reach the contact B. During this longer time period, there is more diffusion 
and more recombination. The excess-carrier pulse shapes shown in Figures 6.12b and 
6 . 1 2 ~  are different for the two electric field conditions. 

The minority carrier mobility, lifetime, and diffusion coefficient can be deter- 
mined from this single experiment. As a good first approximation, the peak of the 
minority camer pulse will arrive at contact B when the exponent involving distance 
and time in Equation (6.70) is zero, or 
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In this case x = d, where d is the distance between contacts A and B. and t =fa, 
where to is the time at which the peak of the pulse reaches contact B. The mobility 
may be calculated as 

Figure 6.13 again shows the output response as a function of time. At times tl 
and f?,  the magnitude of the excess concentration is e-' of its peak value. If the time 
difference between f l  and rz is not too large, e- ' l " ,~  and ( 4 7 r ~ , t ) ' / ~  do not change 
appreciably during this time; then the equation 

C (d - i * p ~ o r ) Z  = 4Dpf (6.80) 

is satisfied at both t = rr  and t = tz. If we set t = tr and t = t2 in Equation (6.80) 
and add the two resulting equations, we may show that the diffusion coefficient is 
given by 

where 

At = t i  -!I (6.82) 

The area S under the curve shown in Figure 6.13 is proportional to the number 
of excess holes that have not recombined with majority canier electrons. We may 
write 

where K is a constant. By varying the electric field, the area under the curve will 
change. A plot of In ( S )  as a function of (d /~ , ,Eo)  will yield a straight line whose 
slope is ( l / r , ,~ ) ,  so the minority carrier lifetime can also be determined from this 
experiment. 

The Haynes-Shockley experiment is elegant in the sense that the three basic 
processes of drift, diffusion, and recornbindtion are allobserved in a single experiment. 

Figure 6.13 I Tne output excess-carriel 
pulse versus lime to determine the 
diffusion coefficient. 
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The determination of mobility is straightforward and can yield accurate values. The 
determination of the diffusion coefficient and lifetime is more complicated and may; 
lead to some inaccuracies. 

6.4 1 QUASI-FERMI ENERGY LEVELS 
The thermal-equilibrium electron and hole concentrations are functions of the Femi 
energy level. We can write 

E r  - E,ri 
= ni exp (6.84a) 

and 

where EF and EF, are the Fcrrni energy and intrinsic Fermi energy, respectively, and 
ni is the intrinsic carrier concentration. Figure 6.14a shows the energy-band diagram 
for an n-type semiconductor in which EF > EF,.  For this case, we may note from 
Equations (6.84a) and (6.84b) that I I ~ ,  > n, and po c 1 1 ; .  as we would expect. Simi- 
larly, Figure 6.14b shows the energy-band diagram for a p-type semiconductor in 
which EF c E F ~ .  Again we may note from Equations (6.84a) and (6.84b) that 
no c ni and po > n,. as we would expect for the p-type material. These results are 
for thermal equilibrium. 

If excess carriers are created in a semiconductor, we are no longer in thermal 
equilibrium and the Fermi energy is strictly no longer defined. H~~wevcr ,  we may de- 
fine a quasi-Fermi level for electrons and a quasi-Fermi level for holes that apply for 
nonequilibrium. If Sn and S p  are the excess electron and hole concentrations, re- 
spectively, we may write: 

Figure 6.14 1 Thcrmal-equilibrium energy-band diagrems for (0) n-type 
xmicooduct<>r and ( h )  p-type semiconductor. 
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where EF, and EF,, are the quasi-Fermi energy levels for electrons and holes, re- 
spectively. The total electron concentration and the total hole concentration are func- 
tions of the quasi-Fermi levels. 

Objective 1 EXAMPLE 6.6 

To calculate the quasi-Fermi energy levels. 
Consider an n-type semiconductor at T = 300 K with carrier concentrations of no = 
~ m - ~ ,  n, = cm-', and p, = IOS cm-'. In nonequilibrium, assume that the excess 

carrier concentrations are Sn = Sp = 10" cm-'. 

Solution 
The Fermi level for thermal equilibrium can be determined from Equation (684a). We have 

We can use Equation (6.85a) to determinz the quasi-Fermi level for electrons in nonequilih~ 
rium. We can write 

Equation (685b) can be used to calculate the quasi-Fermi level for holes in nonequilibnum. 
We can write 

C o m m e n t  
We may note that the quasi-Fermi level fbr electrons is above E,, while the quasi-Fermi level 
for holes is below E,. 

Figure 6.15a shows the energy-band diagram with the Fermi energy level corre- 
sponding to thermal equilibrium. Figure 6.15b now shows the energy-band diagram 
under the nonequilibrium condition. Since the majority canier electron concentration 
does not change significantly for this low-injection condition, the quasi-Fermi level 
for electrons is not much different from the thermal-equilibrium Fermi level. The 
quasi-Fermi energy level for the minority carrier holes is significantly different from 
the Fermi level and illustrates the fact that we have deviated from thermal equilib- 
rium significantly. Since the electron concentration has increased, the quad-Fermi 
level for electrons has moved slightly closer to the conduction band. The hole 
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(a) (b) 

Figure 6.15 1 (a) Thennal-equilibrium energy-band diagram for Nd = lo'' cm-' and 
n ,  = 10"' cm-'. (b) Quasi-Fermi levels for electrons and holes if 10" cm-'excess 
carriers are present. 

concentration has increased significantly so that the quasi-Fermi level for holes has 
moved much closer to the valence band. We will consider the quasi-Fermi energy 
levels again when we discuss forward-biased pn junctions. 

( TEST YOUR UNDERSTANDING 

E6.10 Silicon at 7 = 300 K is doped at impurity concentrations of N, = 10'' cm-' and 
N, = 0. Excess cdmers are generated such that the steady-state values are 
Sn = S p  = 5 x 10 '%m3.  ( a )  Calculate the thermal equilibrium Fermi level with 
respect to E F , .  (b) Determine Ern and E,, with respect to E F , .  
[ h a  ~69z.0 = "lz - "3 ;\a 9 8 ~ ~ 0  = ''3 - "$3 (9)  
: h a  t ~ ~ f ' 0  = '$3  - Q (D) 'suv] 

E6.11 Impurity concentrationsot' N,  = cm ' and No = 6 x 10" cm-' are added to 
silicon at T = 3Ki K. Excess carriers are generated in the material such that the 
steady-state concentrations are 6n = Sp = 2 x 10" cm-'. (a) Find the thermal 
equilibrium Fermi level with respect to E,, . (b) Calculate EF,, and E > ,  with respect 
to E,, . POEC.O = "3 - '"3 i2a 09~z.o  = ''3 - "'3 (9)  
: h a  P6ZE'O = ' 3  - "3 (0) 'suVl 

Y 6 . 5  I EXCESS-CARRIER LIFETIME 
The rate at which excess electrons and holes recombine is an imponant characteris- 
tic of the semiconductor and influences many of the device characteristics, as we will 
see in later chapters. We considered recombination briefly at the beginning of this 
chapter and argued that the recombination rate is inversely proportional to the mean 
carrier lifetime. We have assumed up to this point that the mean carrier lifetime is 
simply a parameter of the semiconductor material. 

We have been considering an ideal semiconductor in which electronic energy 
states do not exist within the forbidden-energy bandgap. This ideal effect is present 
in a perfect single-crystal material with an ideal periodic-potential function. In a real 



sem~conductor material, defects occur within the crystal and disrupt the perfect 
periodic-potential function. If the density of these defects is not too great, the defects 
will create discrete electronic energy states within the forbidden-energy band. These 
allowed energy states may be the dominant effect in determining the mean carrier 
lifetime. The mean carrier lifetime may be determined from the Shockley-Read-Hall 
theory of recombination. 

6.5.1 Shockley-Read-Hall Theory of Recombination 

An allowed energy state, also called a trap, within the forbidden bandgap may act as 
a recombination centel; capturing both electrons and holes with almost equal proba- 
bility. This equal probability of capture means that the capture cross sections for elec- 
trons and holes are approximately equal. The Shockley-Read-Hall theory of recom- 
bination assumes that a single recombination center, or trap, exists at an energy E, 
within the bandgap. There are four basic processes, shown in Figure 6.16, that may 
occur at this single trap. We will assume that the trap is an acceptor-type trap; that is, 
it is negatively charged when it contains an electron and is neutral when it does not 
contain an electron. 

The four basic processes are as follows: 
L 

Process 1: The capture of an electron from the conduction band by an initially 
neutral empty trap. 

Procesl I Process 2 

b . ." . . . . E,. 
. .F 

Elrnroti capture Elccrn,i~ rmr>ixotl 

Prmess 3 Process 4 

E' ' i: + . , =* -1 ._/. - ,. . .  I- T i  . * .,, 
Hulc capture Hole srnl\ i~oo 

Figure 6.16 1 The four basic trapping and emission processes for the case of an 
acceptor-type trap. 
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Process 2: The inverse of process 1-the emission of an electron that is 
initially occupying a trap level back into the conduction band. 
Process 3: The capture of a hole from the valence band by a trap containing an 
electron. (Or we may consider the process to be the emission of an electron 
from the trap into the valence band.) 
Process 4: The inverse of process 3-the emission of a hole from a neutral trap 
into the valence band. (Or we may consider this process to be the capture of an 
electron from the valence band.) 

In process 1, the rate at which electrons from the conduction band are captured 
by the traps is proportional to the density of electrons in the conduction band and 
proportional to the density of empty trap states. We can then write the electron cap- 
ture rate as 

Rcn = C n N , ( I  - fh(E,))n (6.86) I 
where 

R,, = capture rate (#/cm3-s) 
C, = constant proportional to electron-capture cross section 
N,  = total concentration of trapping centers 
n = electron concentration in the conduction band 

fF(Er) = Fermi function at the trap energy 

The Fermi function at the trap energy is given by 

which is the probability that a trap will contain an electron. The function 1 
(1 - fF(E,) )  is then the probability that the trap is empty. In Equation (6.87), we 
have assumed that the degeneracy factor is one, which is the usual approximation 
made in this analysis. However, if a degeneracy factor is included, it will eventually 
be absorbed in other constants later in the analysis. 

For process 2, the rate at which electrons are emitted from filled traps back into 
the conduction band is proportional to the number of filled traps, so that 

where 

R,, = emission rate (#/cm3-s) 
En = constant 

fF(E,) = probability that the trap is occupied 

In thermal equilibrium, the rate of electron capture from the conduction band 
and the rate of electron emission back into the conduction band must be equal. Then 

Re,, = R,, (6.89) 



so that 

E,N,fro(E,) = C,,N,(I - .fro(Et))nn (6.90) 

where f ~ o  denotes the thermal-equilibrium Fermi function. Note that, in thermal 
equilibrium, the value of the electron concentration in the capture rate term is the 
equilibrium value no. Using the Boltrmann approximation for the Fermi function, 
we can find En in terms of C ,  as 

where n '  is defined as 

The parameter n' is equivalent to an electron concentration that would exist in the 
conduction band if the trap energy E, coincided with the Fermi energy EF .  

In nonequilibrium, excess electrons exist, so that the net rate at which electrons 
are captured from the conduction band is given by 

Rn = R,,, - Re,, (6.93) 

which is just the difference between the capture rate and the emission rate. Combin- 
ing Equations (6.86) and (6.88) with (6.93) gives 

We may note that, in this equation, the electron concentration n is the total con- 
centration, which includes the excess electron concentration. The remaining con- 
stants and terms in Equation (6.94) are the same as defined previously and the Fermi 
energy in the Fermi probability function needs to be replaced by the quasi-Fermi en- 
ergy for electrons. The constants En and C, are related by Equation (6.91). so the net 
recombination rate can be written as 

If we consider processes 3 and 4 in the recombination theory, the net rate at 
which holes are captured from the valence band is given by 

where C, is a constant proportional to the hole capture rate, and p' is given by 

In a semiconductor in which the trap density is not too large, the excess electron 
and hole concentrations are equal and the recombination rates of electrons and holes 
are equal. If we set Equation (6.95) equal to Equation (6.96) and solve for the Fermi 
function, we obtain 
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We may note 
Equation (6.95) or (6.96) gives 

R,, = R, = C,,C,N, (np - nj) 
C,,(n + n') + C,ip + p') 

Equation (6.99) is the recombination rate of electrons and holes due to the recombi 
nation center at E = E,. If we consider thermal equilibrium, then np = nope = n; 
so that R,, = R,, = 0. Equation (6.99). then, is the recombination rate of excess elec 
trons and holes. 

Since R in Equation (6.99) is the recombination rate of the excess carriers, wl 
may write 

where S n  is the excess-carrier concentration and r is the lifetime of the excess carries. I 
6.5.2 Limits of Extrinsic Doping and Low Injection I 
We simplified the ambipolar transport equation, Equation (6.39), from a nonlinear 
differential equation to a linear differential equation by applying limits of extrinsic 
doping and low injection. We may apply these same limits to the recombination rate 
equation. 

Consider an n-type semiconductor under low injection. Then 

no >> p o %  nu >> 817% no >> n'. nu >> p' 

where Sp is the excess minority carrier hole concentration. The assumptions of 1 
no >> n' and no >> p' imply that the trap level energy is near midgap so that n' and ! 
p' are not too different from the intrinsic carrier concentration. With these assump- 
tions, Equation (6.99) reduces to i 

R = C,, N,6p (6 101) 

The recombination rate of excess carriers in the n-type semiconductor is a function 
of the parameter C,,, which is related to the minority carrier hole capture cross sec- 
tion. The recombination rate, then, is a function of the minority carrier parameter in 
the same way that the ambipolar transport parameters reduced to their minority car- 
rier values. 

The recombination rate is related to the mean carrier lifetime. Comparing Equa- 
tions (6.100) and (6.101), we may write 

where 



6.5 Excess-Carrler Lifetime 

d where ~~0 is defined as the excess minority carrier hole lifetime. If the trap con- 
ntration increases, the probability of excess canier recombination increases; thus 
e excess minority canier lifetime decreases. 

Similarly, if we have a strongly extrinsic p-type material under low injection, we 
assume that 

PO >> no, PO >> an,  PO >> n ' .  PO >> P' 

e lifetime then becomes that of the excess minority carrier electron lifetime, or 

1 
TIZO = - (6.104) 

C,, N ,  

Again note that for the n-type material, the lifetime is a function of Cp, which 
is related to the capture rate of the minority carrier hole. And for the p-type material, 
the lifetime is a function of C,,  which is related to the capture rate of the minority 
cdrrier electron. The excess-carrier lifetime for an extrinsic material under low injec- 
tion reduces to that of the minority carrier. 

Objective I EXAMPLE 6.7 

To determine the excess-canier lifetime in an intrinsic semiconductor. 
If we substitute the definitions of encess-carrier lifetimes from Equations (6.103) and 

16.104) into Equation (6.99). the recumbination rate can be written as 

F R = ("P -":I (6.105) 
r,dn + n') + r,,o(p + p') 

onsider an intrinsic semiconductor containing excess carriers. Then n = n, +Sn and 
P = n, + 6n. Also assume that n' = p' = n j .  

I Solution 
Equatlon (6 105) now become* 

2n,Sn + (6n)" 
R = 

(2n, + Sn)(rpe + GO) 
If we also assume very low injection, co that 6n << 211,. then we can wrlte I 6n 

Sn 
R=- - - - 

+ r - 
where r is the excess carrier lifetime. We see that r = r,,,, + rno in the intrinsic material 

I Comment 
The excess-canier lifetime increases as we change from an extrinsic to an intrinsic 
semiconductor. 

Intuitively, we can see that the number of majority carriers that are available for 
recombining with excess minority carriers decreases as the extrinsic semiconductor 
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becomes intrinsic. Since there are fewer carriers available for recombining in the in- 
trinsic material, the mean lifetime of an excess carrier increases. 

TEST YOUR UNDERSTANDING 

E6.12 Consider silicon at 7 = 300 K doped at concentrations of N, = 10" cm-' and 
N, = 0. Assume that n' = p' = n, in the excess carrier recombination rate equation 
and assume parameter values of r,,, = roll = 5 x lo-' s. Calculate the recornbina- I 
tion rate of excess carriers if Sn = Sp = 10'' cm-'. (,-"-"3 rliOl X E8'1 '"JV) 

"6.6 1 SURFACE EFFECTS 
In all previous discussions. we have implicitly assumed the semiconductors were in- 
finite in extent; thus, we were not concerned with any boundary conditions at a semi- 
conductor surface. In any real application of semiconductors, the material is not infi- 
nitely large and therefore surfaces do exist between the semiconductor and an adjacent 
medium. 

6.6.1 Surface States 

When a semiconductor is abruptly terminated, the perfect periodic nature of the ideal- 
ized single-crystal lattice ends abruptly at the surface. The disruption of the periodic- 
potential function results in allowed electronic energy states within the energy 
bandgap. In the previous section, we argued that simple defects in the semiconductor 
would create discrete energy states within the handgap. The abrupt termination of the 
periodic potential at the surface results in a distribution of allowed energy states 
within the bandgap, shown schematically in Figure 6.17 along with the discrete en- 
ergy states in the bulk semiconductor. 

The Shockley-Read-Hall recombination theory shows that the excess minority 
carrier lifetime is inversely proportional to the density of trap states. We may argue 

i Electron 
energy 

Surface 

Figure 6.17 1 Distribution of surface 
states within the forbidden handgap. 



6.8 Surface Effects 

Sultace Distance .r + 

Figure 6.18 1 Steady-state excess hole 
conccntration versus distance from a 
semiconductor surface. 

that, since the density of traps at the surface is larger than in the bulk, the excess mi- 
nority carrier lifetime at the surface will he smaller than the corresponding lifetime 
in the bulk material. If we consider an extrinsic n-type semiconductor, for example, 
the recombination rate of excess carriers in the bulk. given by Equation (6.102), is 

where 611~ is the concentration of excess minority carrier holes in the bulk material. 
We may write a similar expression for the recombination rate of excess carriers at the 
surface as 

where Sp, is the excess minority carrier hole concentration at the surface and r,,", is 
the excess minority carrier hole lifetime at the surface. 

Assume that excess carriers are being generated at a constant rate throughout the 
entire semiconductor material. We showed that, in steady state, the generation rate is 
equal to the recombination rate for the case of a homogeneous, infinite semiconduc- 
tor. Using this argument, the recombination rates at the surface and in the hulk mate- 
rial must be equal. Since rI,o.$ < ?,,a, then the excess minority carrierconcentration at 
the surface is smaller than the excess minority carrier concentration in the bulk re- 
gion, or Sp, < 6/78. Figure 6.18 shows an example of the excess-canier concenna- 
tion plotted as a function of distance from the semiconductor surface. 

Objective 1 EXAMPLE 6.8 

To detrrminr the steady-state excess-carrier concentration ah a filnction of distance from the 
surface of a semiconductor. 

Consider Figure 6.18, i n  which the surface is at x = 0. Assume that in the n-type semi- 
conductor &p8 = 10'' cm-' and r,,,] = 1 0 - 9  in the bulk, and r,,, = lo-' s at the surface. 
A~sume zero applied electric field and let D,, = 10 cmvs. 



CHAPTER 6 Noneaulibnum Excess Carriers in Semiconductors 

Solution 
From Equations (6.106) and (6.107 j, we have 

so that 

From Equation (6.56). we can write 

The generation rate can be determined from the steady-state conditions in the bulk, or 1 
sp, lo1" g' = - = - = 10'0 cm-3.s-' 
I,,,, 10-f- 

The solution to Equation (6.107) is of the form 1 
As x - +oo, Sp(x) = Sp, = g'rDo = 1014 cm-'. which implies lhat A = 0. At .r = 0. we 

have 

so that B = -9 x 10". The entire solution for the minority cdrrier hole concentration as a 
function of distance from the surface is 

Ap(x) = 10'4(1 - 0.9r-"ILn) 

where 

~ , = m = J ( m = 3 1 . 6 / . ~ m  

Comment 
The excess carrier concentration is smaller at the surface than in the bulk. 

6.6.2 Surface Recornhination Velocity i 
A gradient in the ercess-carrier concentration exists near the surface as shown in Fig- 
ure 6.18; excess carriers from the bulk region diffuse toward the surface where they 
recombine. This diffusion toward the surface can be described by the equation 

where each side of the equation is evaluated at the surface. The parameter i? is the 
unit outward vector normal to the surface. Using the geometry of Figure 6.18, 



d(6p)ldx is a positive quantity and G is negative, so that the parameters is a posi- 
tive quantity. 

Adimensional analysis of Equation (6.110) shows that the parameters has units 
/ of cdsec ,  or velocity. The parameters is called the surface recornbination velocity 

If the excess concentrations at the surface and in the bulk region were equal, then the 
gradient term would be zero and the surface recombination velocity would be zero. 
As the excess concentration at the surface becomes smaller, the gradient term be- 
comes larger, and the surface recombination velocity increases. The surface recom- 
bination velocity gives some indication of the surface characteristics as compared 
with the bulk region. 

Equation (6.1 10) may be used as a boundary condition to the general solution 
1 given by Equation (6.109) in Example 6.8. Using Figure 6.18, we have that G = 1 ,  

and Equation (6.110) becomes 

I 
We have argued that the coefficient A is zero in Equation (6.109). Then, from Equa- 
tion (6.109), we can write that 

Sp,,, = Sp(0) = g'r,," + B (6.112a) 

B - -- (6.1 12b) 

Substituting Equations (6.112a) and (6.112b) into Equation (6.111) and solving for 
the coefficient B, we obtain 

[ The excess minority canier hole concentration can then be written as 

Objective I EXAMP1.E 6.9 

To determine the steady-state excess concentration versus distance from the surface of a semi 
conductor as a function of surface recombination velocity. 

Consider, initially, the case when the surface recombination velocity is Lero, or s = 0. 

Solution 
Substituting r = 0 into Equation (6.114). we obtain 

S P ( X )  = sirip" 

Now consider thc casc whcn the surface recombination velocity is infinite, ur s = oo. 
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Solution 
Substituting s = oo into Equation (6.114). we obtain 

Comment 1 
1 

For the case when s = 0, the surface has no effect and the excess minority carrier concentra- 
tion at the surface is the same as in the bulk. In the other extreme when s = no, the excess mi- 
nority carrier hole concentration at the surface is zero. 

An infinite surface recombination velocity implies that the excess minority car- 
rier concentration and lifetime at the surface are zero. 

1 
EXAMPLE 6.10 1 Objective 

To determine the value of surface recombinaion velocity corresponding to the parameten 
given in Example 6.8. 

Frtlm Example 6.8, we have that g'rPo = 10IJ c m 3 ,  D, = 10 cm2/s, L,, = 31.6 pm, . 
and 6p(0) = 10" cm-'. I 

Solution 
Writing Equation (6.114) at the surface, we have 

Solving for the surface recombination velocity, we find that 

which becomes i 

Comment 
This example shows that a sutiace recombination velocity of approximately s = 3 x LO4 cm/s 
could seriously degrade the performance of semiconductor devices, such as solar cells, since 
these devices tend to be fabricated close to a surface. 

In the above example, the surface influences the excess-carrier concentration to 
the extent that, even at a distance of L, = 31.6 pm from the surface, the excess- 
carrier concentration is only two-thirds of the value in the bulk. We will see in later 
chapters that device performance is dependent in large part on the properties of 
excess carriers. 



Glossary of Important Terms 

6.7 1 SUMMARY 
I The processes of excess electron and hole generation and recombination were 

discussed. The excess carrier generation rate and recombination rate were defined. 
I Excess electrons and holes do not move independently of each other, but move together. 

This common movement is called ambipolar transport. 
I The ambipolar transport equation was derived and limits of low injection and extrinsic 

doping were applied to the coefficients. Under these conditions, the excess electrons 
and holes diffuse and drift together with the characteristics uf the minority carrier, a 
result that is fundamental to the behavior of semiconductor devices 

I The conceot of excess canier lifetime was develooed. 
I Examples of excess carrier hehavior as a function of time, as a function of space, and as 

afunction of both time and space were examined. 
I The quasi-Fermi level for electrons and the quasi-Fermi level for holes were defined. 

These parameters characterize the total electron and hole concentrations in a semicon- 
ductor in nanequilibrium. 
The Shockley-Read-Hall theory of recombination was considered. Expressions for the 
excess minority carrier lifetime were developed. 

@ The effect of a semiconductor surface influences the behavior of excess electrons and 
holes. The surface recombination velocity was defined. 

GLOSSARY OF IMPORTANT TERMS 
ambipolar diffusion coefficient The effective diffusion coefficient of excess camers. 

amhipolar mohility The effective mobility of excess camers. 

amhipolar transport The process whereby excess electrons and holes diffuse, drift, and re- 
cumbine with the same effective diffusion coefficient, mobility, and lifetime. 

amhipolar transport equation The equation describing the behavior of excess carriers as a 
function of time and space coordinates. 

carrier generation The process of elevating electrons from the valence band into the con- 
duction band, creating an electron-hole pair. 

carrier recombination The process whereby an electron "falls" into an empty state in the 
valence hand (a hole) so that an electron-hole pair are annihilated. 

excess carriers The term describing both excess electrons and excess holes. 

excess electrons The concentration of electrons in the conduction band over and above the 
thermal-equilibrium concentration. 

excess holes The concentration of holes in the valence band over and above the thermal- 
equilibrium concentration. 

excess minority carrier lifetime The average time that an excess minority carrier exists be- 
fore it recombines. 

generation rate The rate (#/cm'-s) at which electron-hole pairs are created. 

low-level injection The condition jn which the excess-carrier concentration is much smaller 
than the thermal-equilibrium majority carrier concentration. 

minority carrier dinusion length The average distance a minority carrier diffuses before 
recombining: a parameter equal to & where D and r are the minority canier diffusion 
coefficient and lifetime, respectively. 
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quasi-Fermi level The quasi-Fermi level for electrons and the quasi-Fermi level for holes 
relate the nonequilibrium electron and hole concentrations, respectively, to the intrinsic 
carrier concentration and the intrinsic Fer~ni level. 

recombination rate The rate (#/cm3s) at which electron-hole pairs recombine. 
surface recornhination velocity A pammetcr that relates the gradient of the excess carrier 

concentration at a surface to the surface concentration of excess carriers. 

surface States The electronic energy states that exist within the bandgap at a semiconductor 
surface. 

CHECKPOINT 
After studying this chapter, the reader should have the ability to: 

Describe the concept of excess generation and recombination. 
Describe the concept of an cxcess carrier lifetime. 

Describe huw the an~bipolar transport equation is derived. 
\ Describe how the time-depmdent diffusion equations for holes and electrons are derived. 

Understand the consequence of the cuefiicients in the ambipolar transport equation 
reducing to the minority carrier values under low injection and extrinsic semiconductors. 4 
Apply the ambipolar transport equation to various problems. 
Understand the conceot of the dielectric relaxation time constant. 
Calculate the quasi-Fermi levels lor electrons and holes. 
Calculate the cxcess carrier recombination rate for a given concentration of excess 
carriers. 
Understand the effect of a surface o n  the excess carrier concmtrations. I 

REVIEW QUESTIONS 
1. Why are the electron gencration ratc and recombinatian rate equal in thermal 

equilibrium'? 

2. Explain how the density of holes, for example, can change as a result of a change in the 
flux of panicles. 

3. Why is the general ambipolar transport equation nonlinear? 

4. Explain qualitatively why a pulse of excess electrons and hales would move together in 
the presence of an applied clectric field. 

5. Explain qualitatively why the excess carrier lifetime reduces to that of the minority 
carrier under low injection. 

6. What is the timc dependence of the density of excess carriers when the generation rate 
becomes zero? 

7. In the presence of an external force, why doesn't the dcnsity of excess carriers continue 
to increase with time? 

8. When a concentration of one type of excess carricr is suddenly created in a semicon- 
ductor, what is the mechanism by which the net charge density quickly becomes zero? 

9. State the definition of the quasi-Fermi level for electrons. Repeat for holes. 

10. Why, in general. is the concentration of excess carriers less at the surface af a semi- 
conductor than in the bulk? 



PROBLEMS 
(Note: Use the semiconductor parameters listed in Appendix B if they are not specilically 
given in a problem. Assume T = 300 K.)  

Section 6.1 Carrier Generation and Recombination 

6.1 Consider a semiconductor in which ri,, = 10'' cm-' and n ,  = 10"' cm-'. Assume 
that the excess-carrier lifetime is I O P  s. Determine the electron-hole recombination 
rate if the excess-hole concentration is Sp = 5 x l o r 3  cm-'. 

6.2 A seiniconductor, in thern~dl equilibrium, has a hole concentration of = 1016 cm-3 
and an intrinsic concentration of n, = 10" cm-'. The minority camer lifetime is 
2 x 10 ' s. ( a )  Dcterrnine the thermal-equilibrium recombination rate of electrons. 
(b) Determinc the change in the recombination rate of electrons if an excess electron 
concentration of Sn = 10" cm-> exists. 

6.3 An n-type silicon sample contains a donor concentration of Nd = I O l b  cm-'. The 
minority carrier hole lifetime is found to be r,,~ = 20 ps .  (a)  What is the lifetime of 
the majority carrier electrons? (h)  Determine the thermal equilibrium generation rate 
for electrons and holes in this material. ( c )  Detcrtnine the thermal equilibrium 
recombination rate for electrons and holes in this material. 

6.4 (a) A sample of semiconductor has n cnjss-sectional area of 1 cm' and a thickness of 
0.1 cm. Determine the number of electron-hole pairs that are generated per unit 
volume per unit time by the uniform absorption of I watt of light at a wavelength of 
6300 A. Assume each photon creates one electron-hole pair. (b) If the excess minority 
carrier lifetime i s  I0 hrs, what is the steady-state excess carrier concentration? 

Section 6.2 Mathematical Analysis of Excess Carriers 

6.5 Derive Equation (6.27) from Equations (6.18) and (6.20). 

6.6 Consider a one-dimensional hole flux as shown in Figure 6.4. If the generation rate of 
holes in this differential volume is g, = 10" cm '-s-' and the recombination rate is 
2 x 10'"m-'-s'. what must be the gradient in the particle current density to main- 
tain a steddy-state hole concentrdtiun? 

6.7 Repeat Problem 6.6 if the generation rate becomes Lero. 

Section 6.3 Ambipolar Transport 

6.8 Starting with the continuity equations given by Equations (6.29) and (6.30). derive the 
ambipolar transport equation given by Equation (6.39). 

6.9 A sample of Ge at T = 300 K has a uniform donor concentration of 2 x 10'' ~ m - ~ .  
The excess carrier lifetime is found to be r,,,, = 24 us .  Determine the ambipolar 
diffusion coefficient and the ambipolar mobility. What are the electron and hole 
lifetimes? 

6.10 Assume that an n-type semiconductor is uniformly illuminated, producing a uniform 
excess generation rate g'. Show that in steady state the change in thc semiconductar 
conductivity is given by 
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6.11 Light is incident on a silicon sample starting at r = 0 and generating excess carriers 

uniformly throughout the silicon for r > 0. The generation rate is g' = 5 x 

10" cm-' s ' .  The silicon ( T  = 300 K) is n type with N, = 5 x 10" cm ' and 
N, = 0 .  Letn, = 1.5 x 10"1 cm-',r,,o = 10 ' ~ , a n d r , , ~  = 10 ' s .Also le t  
w, = 1000 cm'N-s and p, = 420 cm'N-s. Determine the conductivity of the silicon 
as a function of time for r > 0. 

6.12 An n-type gallium arsenide semiconductor is doped with Nd = 10" cm-' and 
Nu = 0. The minority carrier lifetime is r , , ~  = 2 x lo-' s. Calculate the steady-state 
increase in conductivity and the steady-state excess carrier recombination rate if a 
uniform generation rate, g' = 2 x 10" cm-'-s I, is incident on the semiconductor 

6.13 A silicon sample at T = 300 K is n type with Nd = 5 x 10" cm-' and Nu = 0. The 
sample has a length of 0. I cm and a cross-sectional area of 10-%m2. A voltage of 
5 V is applied between the ends of the sample. Fort < 0. the sample has been 
illuminated with light. producing an excess-carrier generation rate of g' = 5 x 
10" c m  '-s-' uniformly throughout the entire silicon. The minority carrier lifetime 
is r,,,, = 3 x LO-' s. At t = 0, the light is turned off. Derive the expression for the 
current in the sample as a function of timz r ? 0. (Neglect surface effects.) 

6.14 Consider a homogeneous gallium arsenide semiconductor at T = 300 K with 
N,, = 10j6 cm-' and N,, = 0. A light source is turned on at r = 0 producing a uni- 
form generation rate of g' = 10'' cm-'-s-'. The electric lield i, zero. ( a )  Derive the 
expression for the excess-carrier concentration and excess carrier recombination rate 
as a function of time. (b )  If the maximum, steady-state, excess-carrier concentration is 
to be 1 x 10j4 cm-'. determine the maximum value of the minority carrier lifetime. 
( c )  Determine the times at which the excess minority carrier concentration will be 
equal to (i) three-fourths, (ii) ane-half, and (iii) one-fourth of the steady-state value. 

6.15 In a silicon semiconductor material at T = 300 K, the doping concentrations are N,, = 
10" cm- '  and No = 0. The equilibrium recombination rate is RPo = 10" cm-'-s-'. 
A uniform generation rate pn~duces an excess-uarrier concentration of 6n = 6p = 
10'"m-'. (0) By what factor does the total recombination rate increase? ( h )  What is 
the excess-carrier lifetime? 

6.16 Consider a silicun material doped with 3 x 1016 cm-' donor atoms. At t = 0. a light 
source is turned on, prnducing a unifurm generation rate of g' = 2 x 10'" cm ' - s - '  
At t = lo-' s, the light source is turned off. Determine the excess minority carrier 
concentration as a function o f t  for 0 5 r 5 m. Let r,,,, = 10-' s. Plot the excess 
minority carrier concentration as a function of time. 

6.17 A semiconductor has the following properties: 

D, = 25 cm'ls r,,,) = s 

D,, = 10 cm'ls r,,,, = LO-' s 

The semiconductor is a homogeneous. p-type ( N , ,  = 10" cm-') material in thermal 
equilibrium for r 5 0. At r = 0, an external source is turned on which produces excess 
carriers uniformly at the rate of g' = lo2" c m - ' - s l .  At r = 2 x 1 0 - 5 .  the external 
source is turned off. ( a )  Derive the expression for the excess-electron concentretion as 
a function of time for 0 5 r 5 m. (h )  Determine the value of the excess-electron 
concentration at ( i )  r = 0, (ii) r = 2 x 10 9, and (iii) r = m. ( c )  Plot the excess- 
electron concentration as a function of time. 

6.18 Consider a bar of p-type silicon material that is homogeneously doped to a value of 
3 x 10'' cm-' at T = 300 K. The applied electric field is zero. A light source is 



Problems 

Figure 6.19 1 Figure for Problems 6.18 
and 6.20. 

incident nn the end of thc semiconductor as shown in Figure 6.19. The excess-carrier 
concentration generated at r = 0 is Sp(0) = Sn(0) = 10" cm-'. Assume the follow- 
ing parameters (neglect surface effects): 

u,, = 1200 cm2N-s r,,,, = 5 x lo-' s 

p,, = 400 crn2/V-s I,,,, = 1 x lo-' s 

( a )  Calculate the steady-state cxcess electron and hole concentrations as a function of 
distance into the semiconductor. (b) Calculate the electmn diffusion current density as 
a function n i x .  

6.19 The r = 0 end of an N,, = I x 10" ern-' doped semi-infinite ( x  > 0 )  bar of silicon 
maintained at T = 300 K is attached tu a "minority carrier digester" which makes 
n, = O at x = O (n ,  is the minority carrier electron concentration in a p-type 
semiconductor). The electric field is zero. (a) Determine the thermal-equilibrium 
values of rr , ,o  and p,,,>. (h) What is the excess minority carrier concentration at x = (I? 
(c) Derive the expression for the steady-state excess minority carrier concentration as 
a function of x .  

6.20 In a p-type silicon semiconductor, excess carriers are being generated at the cnd of the 
semiconductor bar at .r = 0 as shown in Figure 6.19. Thc doping concentration is 
N, = 5 x 1016 cm-' and Nd = 0. The steady-state excess-carrier concentration at 
x = 0 is 10" cm-'. (Neglect surface effects.) The applied electric field is zero. 
Assume that r,,o = r,,, = 8 x 10.' s. ( a )  Calculate SII, and the electron and hole 
diffusion current densities at x = 0. (b) Repeat part (a) for .r = L,, 

6.21 Consider an n-type silicon sample. Excess carriers are generated at x = 0 such as 
shown in Figure 6.6. A constant electric field Ell is applied in the +r direction. Show 
that the steady-state excess carrier concentration is given by 

8pI.r) = Aexp(s-x) x > 0 and 8p(x)  = Aexp(s+x) x < 0 

whcrc 

and 

- 6.22 Plot the excess carrier concentration Sp(r)  vcrsus .t from Problem 6.21 for ( a )  Eo = 0 -- 
and ( h )  &, = 10 Vlcm. ps - - *6.23 Consider the semiconductor deserihed in Problem 6.18. Assume a constant electric 
field 6, is applied in the +r direction. ( a )  Derive the expression for the steady-state 
excess-electn~n concentration. (Assume the solution is of the form r - " ' . )  (h) Plot 6n 
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Figure 6.20 I Figure for Problem 6.25 

versusx for (i)  Eo = 0 and (ii)  El, = 12 Vlcm (c) Explain the gcncral characteristics 
of the two curves plotted in pan (b). 

6.24 Assume that a p-type semiconductor is in thermal equilibrium fo r t  < 0 and has an 
infinite minority carrier lifetime. Also assume that the semiconductor is uniformly 
illuminated, resulting in a uniform generation rate, g '(r) .  which is given by 

g'(f) = G; fo r0  < t < T 

g'(r) = 0 for r < 0 and r > T 

where Gb is a constant. Find the excess minority carrier concentration as a function of 
time. 

*6.25 Consider the n-type semiconductor shown in Figure h.20. Illumination produces a 
constant excess-cmier generation rate, G,. in the region L < x < +L. Assume that 
the minority canier lifetime is infinite and assume that the excess minority camer 
hole concentration is zero at x = 3 L  and at x = +3L. Find the steadv-state excess 
minority carrier concentration versus .r, for the case of low injection and for zero 
applied electric tield. 

6.26 An n-type germanium sample is used in the Haynes-Shockley experiment. The length 
of the sample is 1 cm and the applied voltage is VI = 2.5 V The contacts A and B are 
seoarated bv 0.75 cm. The oeak of the oulse arrives at contact B 160 us after carrier 
injection at contact A. The width of the pulse is Ar = 75.5 us .  Determine the hole 
mobility and diffitsion coefficient. Compare the results with the Einstein relation. 

6.27 Consider the function f ( x ,  r) = (4nDr)- ' I2  exp(-x2/4Dr).  (a) Show that this 
function is a solution to the differential equation D(a2 f l a x 2 )  = a,f/at. (b)  Show that 
the integral of the function f (x, 1 )  over r from -m to +m is unity for all values of 
time. ( r )  Show that this function approaches a S function as t approaches zero. 

6.28 The basic equation in the Haynes-Shockley cxpcriment is given by Equation (6.70). 
(a) Plot 6p(x, r) versus .r for various values o f t  and for Eo = 0 as well as for !& # 0. 
( b )  Plot 6p(x, r) versus r for various values of .r and for Eo = 0 as well as for !& # 0. 

Section 6.4 Quasi-Fermi Energy Levels 

6.29 An n-type silicon sample with N,, = 1016 cm-' is steadily illuminated such that 
g' = lo2'  c m - i - s ' .  If r," = r,,, = s, calculate the position of the quasi-Fermi 
levels for electrons and hales with respect to the intrinsic level (assume that n, = 
1.5 x 10'' cm-I). Plot these levels on an energy-hand diagram. 



r 
Problems 

6.30 Consider a p-type silicon semiconductor at T = 300 K doped at N,, = 5 x 10" cm-'. 
( a )  Determine the position of the Fermi level with respect to the intrinsic Fermi level. 
(b) Excess cal~iers are generated such that the excess-carrier concentration is 10 per- 
cent of the thermal-equilibrium n~ajority canier conceno-ation. Determine the quasi- 
Fermi levels with respect to the intrinsic Fermi level. (c) Plot the Fermi level and 
quasi-Fermi levels with respect to the intrinsic level. 

6.31 Consider nn n-type gallium arsenide semiconductor at T = 300 K doped at Nd = 
5 x 10'' cm-'. ( a )  Determine E * ,  - EF if the excess-carrier concentration is 0.1 N,,. 
(b) Determine EF,  - E F , .  

6.32 Ap-type gallium arsenide semiconductor at T = 300 K is doped at N ,  = 10'' cm-'. 
The cxcess-carrier concentration varies linearly from 10" cm-' to rero over a 
distance of 50 {rm. Plot the position of the quasi-Fermi levels with respcct ta the 
intrinsic Fermi level versus dislance. 

6.33 Consider p-typc silicon at T = 300 K duped to N,, = 5 x 10'' cm-'. Assume excess 
carriers arc present and assume that EF - E,, = (0.0l)kT. ( a )  Does this condition 
correspond to low injection? Why or why not? ib) Determine EF, - E F ,  

6.34 An n-type silicon sample is doped with donors at a concentration of Nd = 1016 c~n-'. - 
Excess carriers are generated such that the excess hole ~.uncenuation is given by :a - 
6p(xl = 10"exp (-1/l0-~) cm-'. Plot the function E F ,  - E F ,  versusx over the 
m n g e 0 c r  5 4 x  lo-'. 

6.35 For a p-type silicon material doped at N,, = 10'%nlr'. plot E,,, - E ,  versus Sn 
over the range 0 5 ,711 5 10'' cm-'. Use a log scale for fin. Qi < 

Section 6.5 Excess Carrier Lifetime 

6.36 Considcr Equation (6.99) and the definitions of r,," and r , , ~  hy Equations (6.103) and 
(6.104). Let n' = p' = 1 1 , .  Assume that in a particular region of a semicmductor. 
n = y = 0. (a) Determine the recomhination rate K .  (h) Explain what this result 
means physically. 

6.37 Again consider Equation (6.99) and the definitions oTr,,,, and i,,,, given by 
Equations (6.103) and (6.104). Let r , , ~  = lo-' s and r,,,, = 5 x 10.' s. Also let n '  = 

p' = n; = 10"' cm-'. Assume very low injection so that Sn << n, .  Calculate K / S I I  
for a semiconductor which is (o) n-type ( , I , ,  >> po), (h) intrinsic (no = pi, = n , ) ,  and 

( c )  P-type (hr >> ~ 2 u ) -  

Section 6.6 Surface Effects 

*6.38 Consider an n-type semiconductor as shown in Figure 6.21. doped at N ,  = 10" cm-' 
and with a uniform excrss-carrier generation rate equal tog '  = 10" cm '-s-'. 
Assume that D, = 10 cm2/s and rDo = lo-' s. The electric field is rero. 

~ i g u ~  6.21 I Figure for Problem 6.38. 
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Figure 6.22 I Figure for Problem 6.39. Figure 6.23 1 Figure for Problem 6.40. 

Illumination 

Figure 6.24 1 Figure for Problem 6.41. 3 

(a) Determine the steady-state excess minority carrier concentration versus x if 
the surface recombination velocity at x = 0 is (i)  s = 0. (ii) s = 2000 cmls, and 
(iii) s = ca. (b) Calculate the excess minority carrier concentration at x = 0 for 
(i) s = 0. (ii) s = 2000 c d s ,  and (iii) s = oo. 

*6.39 (a) Consider the p-type semiconductor shown in Figure 6.22 with the following 
parameters: N ,  = 5 x I O l h  ~ m - ~ .  D, = 25 cm2/s, and r,," = 5 x 10 ' s. The surface 
recombination velocities at the two surfaces are shown. The electric field is zero. The 
semiconductor is illuminated at x = 0 with an excess-canier generation rate equal to 
8' = 2 x 10" ~ m - ~ - s - ' .  Determine the excess minority carrier electron concentration 
versus x in steady state. (b) Repeat put (a) for r,o = m. 

*6.40 Consider the n-type semiconductor shown in Figure 6.23. Assume that D, = I0 cm2/s 
and r,," = w. The elecvic field is zero. Assumc that a flux of excess electrons and 
holes is incident at .r = 0. Let the flux of each canier type be I0l9 carriers1cm'-s. 
Determine the minority carrier hole current versus x if the surface recombination 
velocity is (a) s ( W )  = w a n d  (b )  s(W) = 2000cmls. 

*6.41 A p-type semiconductor is shown in Figure 6.24. The surface recombination velocities 
are shown. The semiconductor is uniformly illuminated for - W < x < 0 producing a 
constant excess-canier generation rate Gb. Determine the steady-state excess-camer 
concentration versus x if the minority carrier lifetime is infinite and if the electric field 
is zero. 

6.42 Plot Sp(x) versus x for various values of s using Equation (6.1 13). Choose reasonable 
parameter values. 

Summary and Review 

*6.43 Consider an n-type semiconductor as shown in Figure 6.21. The material is doped at 
Nd = 3 x 10lh cm-) and N, = 0.Assume that D, = 12cm2/s and I , , ~  = 2 x lo-' S. 
The electric field is zero. "Design" the surface recombination velocity so that the 
minority carrier diffusion current density at the surface is no grealer than J ,  = 
0 . 1 8  Mcm' with a uniform excess-carrier generation rate cqual to g' = 

3 x 10" ccm3-s-' . 



f Reading List 

6.44 Consider a semiconductor with excess carriers present. From the definition of carrier 
lifetimes and recombination rates, determine the average time that an electron stays in 
the conduction band and the average time that a hole stays in the valence band. Discuss 
these relations for (a) an intrinsic semiconductor and (h)  an n-type semiconductor. 

6.45 Design a gallium arsenide photoconductor that is 5 um thick. Assume that r.,, = 
rpo = IO-'s and Nd = 5 x 1O"cm '. With an excitation of g' = lo2' cm-'-s-' 

i a photocurrent of at least 1 UA is desired with an applied voltage of I V. 
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The pn Junction 

P R E V I E W  

u p to this point in the text, we have been considering the properties of the 
semiconductor material. We calculated electron and hole concentrations in 
thermal equilibrium and determined the position of the Fermi level. We then 

considered the nonequilibrium condition in which excess electrons and holes are pre- 
sent in the semiconductor. We now wish to consider the situation in which a p-type 
and an n-type semiconductor are brought into contact with one another to form a 
pn junction. 

Most semiconductor devices contain at least one junction between p-type and 
n-type semiconductor regions. Semiconductor device characteristics and operation 
are intimately connected to these pn junctions, so considerable attention is devoted 
initially to this basic device. The pn junction diode itself provides characteristics that 
are used in rectifiers and switching circuits. In addition, the analysis of the pn junction 
device establishes some basic terminology and concepts that are used in the discus- 
sion of other semiconductor devices. The fundamental analysis techniques used for 
the pnjunction will also be applicd to other devices. Understanding the physics of the 
pn junction is, therefore, an important step in the study of semiconductor devices. 

The electrostatics of the pn junction is considered in this chapter and the current- 
voltage characteristics of the pn junction diode are developed in the next chapter. 

7.1 1 BASIC STRUCTURE OF THE pn JUNCTION 
Figure 7. l a  schematically shows the pn junction. It is important to realize that the en- 
tire semiconductor is a single-crystal material in which one region is doped with ac- 
ccptor impurity atoms to form the p region and the adjacent region is doped with 
donor atoms to form the n region. The interface separating the n and p regions is 
referred to as the mrtullurgicul junction. 
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Figure 7.1 I (a) Simplified geometry of 
apn junction; (b) doping profile of an 
ideal uniformly doped pn junction. 
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Figure 7.2 1 The space charge region, the electric field, and the 
forces acting on the charged carriers. 

The impurity doping concentrations in the p and n regions are shown in Fig- 
ure 7.lb. For simplicity, we will consider a step junction in which the doping con- 
centration is uniform in each region and there is an abrupt change in doping at the 
junction. Initially, at the metallurgical junction, there is a very large density gradient 
in both the electron and hole concentrations. Majority carrier electrons in the n re- 
gion will begin diffusing into the p region and majority camer holes in the p region 
will begin diffusing into the n region. If we assume there are no external connections 
to the semiconductor, then this diffusion process cannot continue indefinitely. As 
electrons diffuse from the n region, positively charged donor atoms are left behind. 
Similarly, as holes diffuse from the p region, they uncover negatively charged ac- 
ceptor atoms. The net positive and negative charges in the n and p regions induce an 
electric field in the region near the metallurgical junction, in the direction from the 
positive to the negative charge, or from the n to the p region. 

The net positively and negatively charged regions are shown in Figure 7.2. 
These two regions are referred to as the space charge region. Essentially all electrons 
and holes are swept out of the space charge region by the electric field. Since the 
space charge region is depleted of any mobile charge, this region is also referred to 
as thedepletion region: these two terms will be used interchangeably. Density gradi- 
ents still exist in the majority canier concentrations at each edge of the space charge 
region. We can think of a density gradient as producing a "diffusion force" that acts 
on the majority carriers. These diffusion forces, acting on the electrons and holes at 
the edges of the space charge region, are shown in the figure. The electric field in the 

&ace charge region produces another force on the electrons and holes which is in the 
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opposite direction to the diffusion force for each type of particle. In thermal equilib- 
rium, the diffusion force and the E-field force exactly balance each other. 

7.2 1 ZERO APPLIED BIAS 
We have considered the basic pn junction structure and discussed briefly how the 
space charge region is formed. In this section we will examine the properties of the 
step junction in thermal equilibrium, where no currents exist and no external cxcita- 
tion is applied. We will determine the space charge region width, electric field, and 
potential through the depletion region. 

7.2.1 Built-in Potential Barrier 

If we assume that no voltage is applied across the pn junction, then the junction is in 
thermal equilibrium-the Fenni energy level is constant throughout the entire sys- 
tem. Figure 7.3 shows the energy-band diagram for the pn junction in thermal equi- 
libriurn. The conduction and valance band energies must bend as we go through the 
space charge region, since the relative position of the conduction and valence hands 
with respect to the Fermi energy changes between p and n regions. 

Electrons in the conduction band of the n region see a potential barrier in trying 
to move into the conduction hand of the p region. This potential barrier is referred to 
as the built-in potenriul harrier and is denoted by VI,~. The built-in potential barrier 1 
maintains equilibrium hetween majority carrier electrons in then region and minority 
carrier electrons in the p region, and also between majority carrier holes i n  the 
p region and minority carrier holes in then region. This potential difference across the 

i 
junction callnot be measured with a voltmeter because new potential barriers will be 
formed between the probes and the semiconductor that will cancel Vh,. The potential 
Vhi maintains equilibrium, so no current is produced by this voltage. 

The intrinsic Fermi level is equidistant from the conduction hand edge through 
the junction, thus the built-in potential banier can be determined as the difference 

Figure 7.3 1 Energy-band diagram of a pn junction in 
thermal equilibrium. 
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between the intrinsic Fermi levels in the p and n regions. We can define the potentials 
$F, and @P, as shown in Figure 7.3, so we have 

v6, = I @ F I Z ~  + @ + P I  (7.1) 

In then region, the electron concentration in the conduction band is given by 

I - (E,  - E F )  

which can al\o be wrltten in the form 

no = n, exp (7.3) 

where n; and EF, are the intrinsic carrier concentration and the intrinsic Fermi en- 
respectively. We may define the potential @F, in the n region as 

P@F,, = Etr - E F  (7.4) 

Equation (7.3) may then be written as 

Taking the natural log of both sides of Equation (7.5). setting nu = N,,, and solving 
for the potential, we obtain 

Similarly, in the p region, the hole concentration is given by 

p~ = No = n; exp (7.7) 

where N,, is the acceptor concentration. We can define the potential #+,, in the p re- 
gion as 

P ~ J F , ,  = EF; - E F  (7.8) 

Combining Equations (7.7) and (7.8), we find that 

Finally, the built-in potential bamer for the step junction is found by substitut- 
ing Equations (7.6) and (7.9) into Equation (7.1), which yields 

where V, = k T / e  and is defined as the thermal voltage. 
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At this time, we should note a subtle but important point concerning notation. 
Previously in the discussion of a semiconductor material, N d  and N,, denoted donor, 
and acceptor impurity concentrations in the same region, thereby forming a compen- 
sated semiconductor. From this point on in the text, Nd and No will denote the net 
donor and acceptor concentrations in the individual n and p regions, respectively. If 
the p region, for example, is a compensated material, then N ,  will represent the dif- 
ference between the actual acceptor and donor impurity concentrations. The parame- 
ter Nd is defined in a similar manner for the n region. 

EXAMPLE 7.1 ( Objective 1 
To calculate the built-in potential barrier in a pn junction. 

Consider a silicon pn junction at T = 300 K with doping densities No = 1 x 10'' cm-' 
and Nd = 1 x 10'' cm-'. Assume that n, = 1.5 x 10" cm-3 

I 
Solution 

The built-in potential barrier is determined from Equation (7.10) as 

If we change the acceptor doping from N,, = 1 x 10'' c m 3  to N ,  = 1 x 1016 c m ' ,  but keep 
all other parameter values constant, then the built-in potential barrier become, Vi,, = 0.635 V 

m Comment 
The built-in potential battier changes only slightly as the doping concentrations change by 
orders of magnitude because of the logarithmic dependence. 

TEST YOUR UNDERSTANDING 

E7.1 Calculate the built-in potential barrier in a silicon pn junction at T = 300 K for 
(u) N, = 5 x 10" cm-', N,  = 10'%m-3 and (b )  Arc, = 10'' cm-'. 
Nd = 2 x 1016 c m 3 .  [A EST0 (Y) 'A 96L'O (0) 'SUV] 

E7.2 Repeat E7.1 for a GaAs pn junclion. [A Z 1'1 (4) 'A 9Z'I (0) SuVl 

7.2.2 Electric Field 

An electric field is created in the depletion region by the separation of positive and 
negative space charge densities. Figure 7.4 shows the volume charge density distrib- 
ution in the pn junction assuming uniform doping and assuming an abrupt junction 
approximation. We will assume that the space charge region abruptly ends in the 
n region at x = +x, and abruptly ends in the p region at x = x , ,  (x, is a positive 
quantity). 



Figure 7.41 The space charge density in 
a uniformly doped pn junction assuming 
the abmpt junction approximation. 

The electric field is determined from Poisson's equation which, for a one- 
dimensional analysis, is 

where $(x) is the electric potential, E(x) is the electric field, p(x) is the volume 
charge density, and F, is the permittivity of the semiconductor. From Figure 7.4, the 
charge densities are 

p(x)  = -eN, -x, c: x < 0 (7.12a) 

and 

p (x )=eNd O c x c x ,  (7.12b) 

The electric field in the p region is found by integrating Equation (7.11). We 
have that 

x + C I  (7.13) 

where C, is a constant of integration. The electric field is assumed to be zero in the 
neutral p region for x < -x, since the currents are zero in thermal equilibrium. As 
there are no surface charge densities within the pn junction structure. the electric field 
is a continuous function. The constant of integration is determined by setting E = 0 
at x = -x,. The electric field in the p region is then given by 

Tn the n region, the electric field is determined from 
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where C2 is again a constant of integration. The constant C2 is determined by setting 
E = 0 at x = x,,, since the E-field is assumed to be zero in then region and is a con- 
tinuous function. Then 

The electric field is also continuous at the metallurgical junction, or at x = 0. Setting 
Equations (7.14) and (7.16) equal to each other at x = 0 gives 

Equation (7.17) states that the number of negative charges per unit area in the p re- 
gion is equal to the number of positive charges per unit area in the n region. 

Figure 7.5 is a plot of the electric field in the depletion region. The electric field 
direction is from the n to the p region, or in the negative .Y direction for this geome- 
try. For the uniformly doped pn junction, the E-field is a linear function of distance 
through the junction, and the maximum (magnitude) electric field occurs at the met- 
allurgical junction. An electric field exists in the depletion region even when no volt- 
age is applied between the p and n regions. 

The potential in the junction is found by integrating the electric field. In the 
p region then, we have 

where C; is again a constant of integration. The potential difference through the 
pn junction is the important parameter, rather than the ahsolute potential, so we may 
arbitrarily set the potential equal to zero at x = x , , .  The constant of integration is 

Figure 7.5 1 Electric field in the space 
charge region of a uniformly doped pn 
junction. 



then found as 

7 . 2  Zero Applied Bias 

(7.20) 

so that the potential in the p region can now be written as 

The potential in then region is determined by integrating the electric field in the 
n region, or 

Then 

where C; is another constant of integration. The potential is a continuous function, 
so setting Equation (7.21) equal to Equation (7.23) at the metallurgical junction, or at 
x = 0, gives 

The potential in then region can thus be written as 

Figure 7.6 is a plot of the potential through the junction and shows the quadratic 
dependence on distance. The magnitude of the potential at x = x. is equal to the 

Figure 7.6 1 Electnc potential through the space charge 
reglon of a un~formly doped pnluncuon. 
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bu~lt-in potential barrier. Then from Equation (7.251, we have 

e 
Vb, = I4lx = x , , i  = - + N,X,;) 

26, 

The potential energy of an electron is given by E = -e@,  which means that the 
electron potential energy also varies as a quadratic function of distance through the 
space charge region. The quadratic dependence on distance was shown in the energy- 
band diagram of Figure 7.3, although we did not explicitly know the shape of the curve 
at that time. 

7.2.3 Space Charge Width 

We can determine the distance that the space charge region extends into the p and 
n regions from the metallurgical junction. This distance is known as the space charge 
width. From Equation (7.17). we may write, for example, 

Then, substituting Equation (7.27) into Equation (7.26) and solving forx,. we obtain 

Equation (7.28) give5 the space charge width, or the width of the depletion  region,^, 
cxtending into the n-type region for the case of zero applied voltage. 

Similarly, if we solve for x, from Equation (7.17) and substitute into Equation 
(7.26), we find 

where x, is the width of the depletion region extending into the p region for the case 
of zero applied voltage. 

The total depletion or space charge width W is the sum of the two components, or 

W = x,, + x, (7.30) 

Using Equations (7.28) and (7.29), we obtain 

The built-in potential harrier can he determined from Equation (7.10), and then the 
total space charge region width is obtained using Equation (7.31). 



7.3 Reverse Applied Bias 

Objective I EXAMPLE 7.2 

To calculate the space charge width and electric field in a pn junction. 
Consider a silicon pn junction at T = 300 K with doping concentrations of N,, = 

10" c m '  and N,, = l o t 5  cm-l. 

Solut ion 
In Example 7.1. we determined the built-in potential barrier as Vh, = 0.635 V. From Equa. 
lion (7.311, the space charge width is 

Using Equatians (7.28) and (7.29). we can find r,, = 0.864 prn, and x, = 0.086 um.  
The peak electric field at the metallurgical junctian, using Equation (7.16) for exam 

ple. is 

e N d x , ,  -(1.6 x 10-'9)(10")(0.864 x I V 4 j  
- Em,, = - - = 1 . 3 4  x 10' Vlcm 

5 
SS (1 1.7)(8.85 x 10- '4j  

i C o m m e n t  
The peak electric field ~n the spacc charge region of a pn junction is quite large. We must 
keep in mind. however, that there is no mobile charge in this region; hence there will be no 
drift current. We may also note, from this example, that the width of each space charge region 
is a reciprocal function of the doping concentration: The depletion region will extend further 
into the lower-dooed region. 

TEST YOUR UNDERSTANDING I 
E7.3 A silicon pn junction at T = 300 K with zero applied bias has doping concenvations 

of Nd = 5 x 10'%m-3 and N, = 5 x 10" cm-'. Deteminex,, x,, W, and E,,l. 
(IlIJ/,$ X 81.E = IxD"'XI '1112, O[ X ZS'P = M '1115 1-0[ X [ 1.P = 'X 

'"3 9-,)[ X (1.P = "X "u,,) 

E7.4 Repeat E7.3 for a GaAs pn junction. ("JlA b01 x 98C = IXC'"31 
'"3 ,-01 x 91.9 = '"3 ,&J[ x 09,s = "X'WJ g-O1 x 09,s = ?'x .SUV) 

7.3 1 REVERSE APPLIED BIAS 
If we apply a potential between the p and n regions, we will n o  longer be  in an equi- 
librium condition-the Fermi energy level will no  longer he constant through the 
system. Figure 7.7 shows the energy-band diagram of the pn junction for the case 
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P n 

Figure 7.7 1 Energy-band diagram ot'a pn junction under 
reverse bias. 

when a positive voltage is applied to the n region with respect to the p region. As the 
positive potential is downward, the Fermi level on then side is below the Fermi level 
on the p side. The difference between the two is equal to the applied voltage in units 
of energy. 

The total potential barrier, indicated by V,,,,, has increased. The applied poten- 
tial is the reverse-bias condition. The total potential harrier is now given by 

vto,,~ = 1b~~l + l@fpl + VR (7.32) 

where VR is the magnitude of the applied reverse-bias voltage. Equation (7.32) can 
he rewritten as 

\'to,:,, = Vbi t VE (7.33) 1 

where Vh, is the same built-in potential bamer we had defined in thermal 
equilibrium. i 
7.3.1 Space Charge Width and Electric Field I 

Figure 7.8 shows a pn junction with an applied reverse-bias voltage V~ .Also  indicated 
in the figure are the electric field in the space charge region and the electric field E,,. 
induced by the applied voltage. The electric fields in the neutral p and n regions are es- 
sentially zero, or at least very small, which means that the magnitude of the electric 
field in the space charge region must increase above the thermal-equilibrium value 
due to the applied voltage. The electric field originates on positive charge and t e n i -  
nates on negative charge; this means that the number ofpositive and negative charges 
must increase if the electric field increases. For given impurity dopingconcentrations, 
the number of positive and negative charges in the depletion region can be increased 
only if the space charge width W increases. The space charge width W increases, 
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Figure 7.8 1 A pn junction, with an applied revsrse-bias 
voltage, showing the directions of the electric field induced 
by V, and the space charge electric field. 

therefore, with an increasing reverse-bias voltage V R .  We are assuming that the elec- 
tnc field in the hulk n and p regions is zero. This assumption will become clearer in the 
next chapter when we discuss the current-voltage characteristics. 

In all of the previous equations, the built-in potential barrier can be replaced by 
the total potential barrier. The total space charge widrh can he written from Equa- 
tion (7.31) as 

showing that the total space charge widrh increases as we apply a rever.se-bias volt- 
age. By substituting the total potential barrier V,,,,, into Equations (7.28) and (7.29), 
the space charge widths in the n and p regions, respectively, can be found as a func- 
tion of applied reverse-bills voltage. 

Objective I EXAMPLE 7.3 

Tocalculate the width of the space charge region in apn  junction when a reverse-bias voltage 
is applied. 

Again consider a silicon pn junction at T = 100K with doping concentrations of 
N ,  = 10" cm-' and Nd = 10" c m ' .  Assume that ,L, = 1.5 x 10"' cm-' and let VR = 5 V. 

I Solution 
The built-in potential barrier was calculated in Example 7.1 for this case and is Vi,, = 0.635 V. 
The space charge width is determined from Equation (7.34). We have 
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Comment 
The space charge width has increased from 0.951 pnl at Lero bias to 2.83 {rm at a reverse bias 
of 5 V. 

The magnitude of the electric field in the depletion region increases with an ap 
plied reverse-bias voltage. The electric field is still given by Equations (7.14) ilnd 

(7.16) and is still a linear function of distance through the space charge region. Since 
x,  and x ,  increase with reverse-bias voltage. the magnitude of the electric field also 
increases. The maximum electric field still occurs at the tnetallurgical junction. 

The maximum electric field at the metallurgical junction, from Equations (7.1 
and (7.16), is 

-eNdn,, -eN,x,, 
- E,",, = ------ - -- (7.35 

<$ G I  

rier, Vb, + V R ,  then 
1 If we use either Equation (7.28) or (7.29) in conjunction with the total potential bar- 

We can show that 

where W is the total spdce charge width 

DESIGN 
EXAMPLE 7.4 

( Objective 

To design a pn junction to meet maximum electric tield and voltage specifications. 
- 'b, 

Consider a silicon pn junction at T = 300 K with a p-type doping concentratio) 

e N, = 10'' cm-'. Determine the n-type doping concentration such that the maximum elm 
field is IEm,,l = 3 x 105 Vlcm at a reverse-bias voltage of VR = 25 V. 

Solution 
The maximum electric field is given by Equation (7.36). Neglecting Va; compared to VR 

can write 
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which yields 

Nd = 1.18 x 10'' cm-3 

Conclusion 
A smaller value of Nd results in a smaller value of IE,,, for a given reverse-bias voltage. The 
value of Nd determined in this example, then, is the maximum value that will meet the speci- 
fications. 

TEST YOUR UNDERSTANDING I 
E7.5 (a )  A silicon pn junction at 7 = 300 K is reverse-biased at VR = 8 V. The doping 

concentrations are N ,  = 5 x loL6 cm-3 and Nd = 5 x lo'' ~ r n - ~ .  Determine 
x,, x,, W, and IE,,,l. (b)  Repeat pan (a) for a reverse bias voltage of VR = 12 V. 
[U13/A 8 1  X PE.1 = 1'*-31 'UJ3+-01 X 06.1 = M 'mS 1-01 X EL.1 = "X 

'U13t.01 X EL'[ = "X(q) :lUJ/i\sO1 X 11.1 = 1""ZJ 'UJQt.O1 X LS.1 = M 

'IUJ i-O1 x ~f = "Y %33 *-01 x E ~ I  = "x (n) 'SUV] 
E7.6 The maximum electric field in a reverse-biased GaAs pn junction at 7 = 300 K is to 

be Em,, = 2.5 x 10' Vlcm. The doping concentrations are Nd = 5 x 10'' cm-' and 
No = 8 x cm-?. Determine the reverse-hias voltage that will produce this maxi- 
mum electric field. (A S'ZL 'UV) 

7.3.2 Junction Capacitance 

Since we have a separation of  positive and negative charges in the depletion region, 
a capacitance is associated with the pn junction. Figure 7.9 shows the charge densi- 
ties in the depletion region for applied reverse-bias voltages of V R  and VR + ~ V R .  An 
increase in the reverse-bias voltage ~ V R  will uncover additional positive charges in 
then region and additional negative charges in the p region. The junction capacitance 
is defined as 

dQ'  = eNd dx,  = eN,, dx,] (7.39) 

The differential charge dQ' is in units of C/cm2 s o  that the capacitance C' 1s in units 
of farads per square centimeter ( ~ l c r n ~ j ,  or capacitance per unit area. 

For the total potential barrier, Equation (7.28) may be written as 

The junction capacitance can be written as 
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I 
I- With applied V R  + iiVH I 

I 

Figure 7.9 1 Differential change in the space charge width with 
a differential change in reverse-bias voltaee for a unifomlv 
doped pn junction. 

s o  that 

Exactly the same capacitance expression is obtained by considering the space charge 
region extending into the p region x,,. The junction capacitance is also referred 10% 

the depletion layer capacitance. 

EXAMPLE 7.5 1 Objective 

To calculate the junction capacitance of a pn junction. 
Consider the same pn junction as that in Example 7.3. Again assume that Vn = 5 V. 

Solution 
The junction capacitance is found from Equatiun (7.42) as 
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If the cross-sectional area of the pn junction is, for example, A = 10-%m2, then the total 
junction capacitance is 

C = C' . A = 0.366 x 1 0 ~ ~ "  F = 0.366 pF 
it 
I Comment 
lk value ofjunction capacitance is usually in the pF, or smaller, range. 

If we compare Equation (7.34) for the total depletion width W of the space 
charge region under reverse bias and Equation (7.42) for the junction capacitance C', 
we find that we can write 

Equation (7.43) is the same as the capacitance per unit area of a parallel plate capac- 
itor. Considering Figure 7.9, we may have come to this same conclusion earlier. Keep 
in mind that the space charge width is a function of the reverse bias voltage so that 
the junction capacitance is also a function of the reverse bias voltage applied to the 
pn junction. 

73.3 One-Sided Junctions 

Consider a special pn junction called the one-sided junction. If, for example, 
N, >> Nd. this junction is referred to as a pCn junction. The total space charge width, 
from Equation (7.34). reduces to 

Con\~dering the expresqions for x,, and x,, we have for the ptn junction 

x,, << x,  (7.45) 

and 

W % x,, (7.46) 

Aln~ost the entire space charge layer extends into the low-doped region of the junc- 
tion. This effect can be seen in Figure 7.10. 

The junction capacitance of the p+n junction reduces to 

Thedepletion layercapacitance ofaone-sidedjunction is a function of the dopingcon- 
centration in the low-doped region. Equation (7.47) may be manipulated to give 
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Figure 7.10 1 Space charge density of a Figure 7.11 1 (I/c')' versus V R  ofa 
one-sided p+n junction. uniformly doped pn junction. I 
which shows that the inverse capacitance squared is a linear function of applied 
reverse-bias voltage. 

Figure 7.11 shows a plot of Equation (7.48). The built-in potential of the junc- 
tion can be determined by extrapolating the curve to the point where = 0. 
The slope of the curve is inversely proportional to the doping concentration of the 
low-doped region in the junction; thus, this doping concentration can be experimen- 
tally determined. The assumptions used in the derivation of this capacitance include 
uniform doping in both semiconductor regions, the abrupt junction approximation, 
and a planar junction. 

EXAMPLE 7.6 1 Objective 

To determine the impurity doping concentrations in a p+n junction given the parameters from 
Figure 7.1 1. 

Assume a silicon p+n junction at T = 300 K with n, = 1.5 x 10'O cm-'. Assume that 
the intercept of the curve in Figure 7.11 gives Vbr = 0.855 V and that the slope is 
1.32 x 10'5(~/cm2)-2 ( V ) ' .  

Solution 
The slope of the curve in Figure 7.11 is given by 2 / e t , N d ,  SO we may write 



1 the expression for Vb, . \c>hich is 

N N,, kT N,, N,, 
v b ,  = V, ln (+) = In 

we can solve for Nu as 

n? (1.5 x 10'"')' N --exp - = 
'i - N d  ( 2  1 9.15 x I O l 5  exp (E) 0.0259 

'ch yields I 
I Comment 
The results of this example show that Nu >> NJ; therefore the assumption of a one-sided 
junction was valid. 

A one-sided pn junction is useful for experimentally determining the doping 
concentrations and built-in potential. 

TEST YOUR UNDERSTANDING I 
E7.7 A silicon pn junction at T = 300 K has doping concentrations of Nd = 3 x 10J6 cm-' 

and N,, = 8 x 10" cm-'. and has a cross-sectional area of A = 5 x lo-' cm2. Deter- 
mine thejunction capacitance at (a) Vn = 2 V and (b) V, = 5 V .  
[cld 8LPO (4)  Ild P69'O (0) "V1 

E7.8 The experimentally measured junction capacitance of a one-sided silicon ntp junc- 
tion biased at V,  = 4 V at T = 300 K is C = l .I0 pF. The built-in potential barrier 
is found to be V,,, = 0.782 V .  The cross-sectional area is A = lo-' cm2. Find the 
doping concenlrations. (,-w3 rlfll X L I P =  'N 'C-UIJ slfll X L = ''N 'SUV) 

*7.4 1 NONUNIFORMLY DOPED JUNCTIONS 
In the pn junctions considered so far, we have assumed that each semiconductor re- 
gion has been unifornlly doped. In actual pn junction structures, this is not always 
true. In some electronic applications, specific nonuniform doping profiles are used to 
obtain special pn junction capacitance characteristics. 

7.4.1 Linearly Graded Junctions 

ff we start with a uniformly duped n-type semiconductor, for example, and diffuse 
acceptor atoms through the surface, the impurity concentrations will tend to be like 
those shown in Figure 7.12. The point x = x' on the figure corresponds to the 
metallurgical junction. The depletion region extends into the p and n regions from 
the metallurgical junction as we have discussed previously. The net p-type doping 
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Figure 7.12 1 Impurity concentrations of 
a pn junction with a nonunifurmly doped 
p region. 

p (Clcm') 

p region n reg 

Figure 7.13 1 Space charge dl 
linearly graded pn junclian. 

concentration near the metallurgical junction may be approximated as a linear fu 
tion of distance from the metallurgical junction. 
the net n-type doping concentration is also a linear function of 
into the n region from the merallurgical junction. This effective doping profile 
referred to as a linearly graded junction. 

Figure 7.13 shows the space charge density 
early graded junction. For convenience, the metallurgical junction is placed atx = 
The space charge density can he written as 

p(x)  = eax 

where a is the gradient of the net impurity concentration. 
The electric field and potential in the space charge region 

from Poisson's equation. We can write 

so that the electric field can be found by integration as 

can be detennin 

(7. 

(7. I 
The electric field in the linearly graded junction is a quadratic function of distan 
rdther than the linear function found in the uniformly doped junction. The maximu 
electric field again occurs at the metallurgical junction. We !nay note that the electri 
field is Zen, at both x = +xo and at x = -xi,. The electric field in a nonunifoml 

setting E = 0 in the bulk regions is still a good approximation. 
The potential is again found by integrating the electric field as 

1 
doped semiconductor is not exactly zero, but the magnitude of this field is small, so 
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If we arbitrarily set 4 = 0 at I = -so, then the potential through the junction is 

(7.53) 

The magnitude of the potential at x = +.ro will equal the built-in potential barrier for 
this function. We then have that 

Another expression for the built-in potential harrier for a linearly graded junc- 
tion can be approximated from the expression used for a uniformly doped junction. 
We can write 

where N~(so) and No(-xi)) are the doping concentrations at the edges of the space 
charge region. We can relate these doping concentrations to the gradient, so that 

and 

N,, (-xu) = axu (7.56b) 

Then the built-in potential barrier for the linearly graded junction becomes 

L 2 

vb; = V, ~n (7) (7.57) 

There may be situations in which the doping gradient is not the same on either side 
of the junction, but we will not consider that condition here. 

If a reverse-bias voltage is applied to the junction, the potential barrier increases. 
The built-in potential barrier Vb; in the above equations is then replaced by the total 
potential harrier Vh, + V H .  Solving for so from Equation (7.54) and using the total 
potential bamer, we obtain 

The junction capacitance per unit area can be determined by the same method as 
we used for the uniformly doped junction. Figure 7.14 shows the differential charge 
dQ' which is uncovered as a differential voltage ~ V R  is applied. The junction capaci- 
tance is then 
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Figure 7.14 1 Differential change in space charge width with 
a differential change in reverse-bias voltage for a linearly 
graded pn junction. 

Using Equation (7.58), we obtain1 

We may note that C' is proportional to (Vhi + V R ) - ' / ~  for the linearly graded 
junction as colnpared to C'a(Vh, + v ~ ) - ~ ' ~  for the uniformly doped junction. In the 
linearly graded junction, the capacitance is less dependent on reverse-bias voltage 
than in the uniformly doped junction. 

7.4.2 Hyperabrupt Junctions 

The uniformly doped junction and linearly graded junction are not the only possible 
doping profiles. Figure 7.15 shows a generalized one-sided p+n junction where the 
generalized n-type doping concentration for x > 0 is given by 

The case of In = 0 corresponds to the uniformly doped junction and m = + I  corre- 
sponds to the linearly graded junction just discussed. The cases of m = +2 and 
m = +3 shown would approximate a feirly low-doped epitaxial n-type layer grown 
on a much more heavily doped n+ substrate layer. When the value of m is negative, we 
have what is referred to as a hyperabrupt junction. In this case, the n-type doping is 
larger near the metallurgical junction than in the bulk semiconductor. Equation (7.61) 
is used to approximate the n-type doping over a small region near x = xu and does not 
hold at x = 0 when m is ne~dtive.  

'In a more exact analysis, Vb, in Equation (7.60) is replaced by a gradtcnt vultage. However. this 
analysis is beyond the scope of this text. 
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n-type 
doping 
protilcs 

Figure 7.15 I Generalized doping profiles of a one-sided 
n+n iunction. . . 
(From S:e 1141.j 

C 
The iunction caoacitance can be derived usine the same analvsis method as be- 

h e n  m is negative, the capacitance becomes a very strong function of reverse-bias 
Soltaee, a desired characteristic in vuructor diodes. The term \,armtor comes from - 
the words vuriable reuctor and means a device whose reactance can be varied in a 
controlled manner with bias voltage. 

If a varactor diode and an inductance are in parallel, the resonant frequency of 
the LC circuit is 

The capacitance of the diode, from Equation (7.62). can be written in the form 

In a circuit application. we would, in general, like to have the resonant frequency be 

C linear function of reverse-bias voltage VR, SO we need 

C R V-' (7.65) 
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From Equation (7.64). the pxamete r  m required is found from 

I -- - 2 (7.66a 
m + 2 

or 
3 

m = -- 
2 

(7.66 

A specific doping profile will yield the desired capacitance characteristic. 1 
7.5 1 SUMMARY 
H A uniformly doped pn junction was initially considered. in which one region of a 

semiconductor is uniformly duped with acceptor impurities and the adjacent region is 
uniformly doped with donor impurities. This type of junction is called a homojunction. 

H A space charge region, or depletion region, is formed on either side of the metallurgical 
junction separating the n and p regions. This region is essentially depleted of any ! 
mobile electrons or holes. A net positive charge density, due to the positively charged 
donor impurity ions, exists in the n region and a net negative charge density, due to the 
negatively charged acceptor impurity ions, exists in the p region. 

H An electric field exists in the depletion region due to the net space charge density. The 
direction of the electric field is from the n region to the p region. 

H A potential difference exists across the space-chargc region. Under zero applied bias, 
this potential difference. known as the built-in potential bal~ier, maintains thermal 
equilibrium and holds back majority carrier electrons in the n-region and majority 
carrier holes in the p region. 

H An applied reverse bias voltage (n region positive with respect to the p region) increases 1 
the potential barrier. ir~creaqes the space charge width, and increases the magnitude of 
the electric field. 

H As the reverse bias voltage changes, the amount of charge in the depletion region 
changes. Thir change in charge with voltage defines the junction capacitance. 

H The linearly graded junction represents a nonuniformly doped pn junction. Expressions I 
for the electric field, built-in potential harrier, and junction capacitance were derived. 
The functional relationships differ from those of the uniformly doped junction. 

H Specific doping pn,files can be used to obtain specific capacitance characteristics. A 
hyperabrupt junction is one in which the doping decreases away from the metallurgical 
junction. This type ofjunction is advantageous in varactor diodes that are used in 
resonant circuits. 

GLOSSARY OF IMPORTANT TERMS 
abrupt.iunction approximation The assumption that there is an abrupt discontinuity in space 

charge density between the space charge region and neutral semiconductor region. 

built-in potential harrier The electrostatic potential difference between the p and n reginns 
of a pn junction in thcrmal equilibrium. 

depletion layer capacitance Another term for junction capacitance. 

depletion region Another term for space charge region. 



hyperabrupt junction A pn junction in which the doping concentration on one side de- 
creases away from the metallurgical junction to achieve n specific capacitance-voltage 
characteristic. 

junction capacitance The capacitance of the pn junction under reverse bias. 

linearly graded,junction A pn junction in which the doping concentrations on either side of 
the metallurgical junction are approximated by a linear distribution. 

metallurgical junclion The interface between the p- and n-doped regions of a pn junction. 

une-sided junction A pn junction in which one side of the junction is much more heavily 
doped than the adjacent side. 

reverse bias The condition in which a positive voltage is applicd to the n rcgion with respect 
to the p region of a pn junction so that the potential barrier between the two regions in- 
creases above the thcrmal-equilibrium built-in potential barrier. 

space charge region The region on either side of the metallurgical junction in which there 
is a net charge density due to ionized donors in the n-region and ionized acceptors in the p 
region. 

space charge width The width of the space charge region, a function of doping concentra- 
tions and applied voltage. 

raractor diode A diode whose reactance can be varied in a controlled manner with bias 
voltage. 

CHECKPOINT 
After studying this chapter, the reader should have the ability to: 

Describe why and how the space charge region is formed. 
Draw the energy band diagram of a zero-biased and reverse-biased pn junction. 
Define and derive the expression of the built-in potential barrier voltage. 
Derive the expression for the electric tield in space charge region of the pn junction. 
Describe what happens to the parameters of the space charge regiun when a reverse bias 
voltage is applied. 
Define and explain the junction capacitance. 
Describe the characteristics and properties of a one-sided pn junction. 
Describe how a linearly graded junction is formed. 
Define a hyperabrupt junction. 

REVIEW QUESTIONS 
Define the built-in potential voltage and describe how it maintains thermal equilibrium. 

Why is an electric field formed in the space charge region? Why is the electric field a 
linear function of distance in a uniformly doped pn junction? 

Where does the maximum electric tield occur in the space charge region? 

Why is the space charge width larger in the lower doped side of a pn junction? 

What is the functional dependence of the space charge width on reverse bias voltage? 

Why does the space charge width increase with reverse bias voltage? 

Why does a capacitance exist in a reverse-biased pn junction? Why dues the capacitance 
decrease with increasing reverse bias voltage? 
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8. What is a one-sided pn junction? What parameters can be determined in a one-sided 
pn junction? 

9. What is a linearly graded junction? 

10. What is a hyperabrupt junction and what is one advantage or characteristic of such a 
junction'? 

PROBLEMS 

Section 7.2 Zero Applied Bias 

7.1 ( a )  Calculate V,,, in a silicon pn junction at T = 300 Kfor  (0) Nd = 10" cm-' 
and N,, = (i)  lo", (ii) 10'" ((iii) 10", (iv) 10'' cm-'. (b) Repeat part ( a )  for 
N,, = 101* cm-'. 

7.2 Calculate the built-in potential harrier, Vi., , for Si. Ge, and GnAs pn junctions if they 
cach have the following dopant concentrations at T = 300 K: 

(0) N,, = lO"  cm ' N,, = IO" cm-' 

(h) Nd = 5 x 10'",, = 5 x 10Ih 

(c)  N,, = 1017 N,, = 10" 

- - ~. j = ~  7.3 ( a )  Plat the buill-in potential barrier for a symmetrical (N, = Nd) silicon pn junction 
at T = 300 K over the range 10" 5 N ,  = Nd 5 l o f 9  cm-? (b) Rcpeat pan ( a )  for a - 

G GaAs pn junction. 
- - - 7.4 Consider a uniformly doped GaAs pn junction with doping concentrations of N, = 

5 x 10'' c m '  and Nd = 5 x 10'' cm-l. Plot the built-in potential barrier voltage. 
V!,,. versus temperature for 200 5 T 5 500 K. 

7.5 An abrupt silicon pn junction at rero bias has dopantconccntriitions of N,, = 10" cm-' 
and N,, = 5 x 10" cm-'. T = 300 K. (a) Calculate the Fer~ni level on each side of the 
junction with respect to the intrinsic Fermi level. (h) Sketch the equilibrium energy- 
band diagram for thc junction and determine Vi,, from the diagram and the results of 
pan (a) .  (c)  Calculate V,>, using Equation (7.10). and compare the resulls to pan lb). 
id)  Determiner,, , r,,, and the peakelectric field for thisjunction. 

7.6 Repent problem 7.5 for the case when the doping concentratinns are N, = Nn = 

2 x 1016 cm-? 

7.7 A silicon abrupt juncdon in thermal equilibrium at T = 300K is doped such that 
E,. - Ei  = 0.21 eV in then region and Ei - E, = 0.18 eV in the p region. 
(0) Draw the energy band diagram of the pn junction. (b) Determine the impurity 
doping concentrations in each region. ( c )  Dctermine Vb,.  

7.8 Consider the uniformly doped GaAs junction at T = 300 K .  At 7em bias, only 
20 percent of the total space charge region is to he in the p region. The built-in 
potential barrier is Vh, = 1.20 V. For L ~ K I  bias, determine (a)  N,, . (h)  N,,. (c) x,, 

( d l  I,,, and (el E,,,,. 
7.9 Consider the impurity doping profile shown in Figure 7.16 in a silicon pn junction. 

For rero applied voltage, ( a )  determine Vb, ,  (b)  calculate x,, and x,~. ( c )  sketch the 
thermal cquilihrium energy band diagram, and (d) plot the electric field versus 
distance through the junction. 



Figure 7.16 I Figure for Prr~blern 7.9. Figure 7.17 I Figure for P~ohleln 7.12. 

*7.10 A uniformly doped silicon pn junction is doped lo levels of N,, = 5 x IOli cm-' and 
N, = 1016 c m ' .  The measured built-in potential barrier is V!,, = 0.40 V. Determine 
the temperature at which this result occurs. (You may have to use trial and error to 
solve thir problem.) 

7.11 Consider a uniformly doped silicon pn junction with duping concentrations N, = 
5 x 10'' cm-' and Nd = 10'' cm-'. (a) Calculate Vh, at T = 300 K. (b )  Determine 
the temperature at which Vi,, decreascs by I percent. 

7.12 An "isotype" step junction is one in which the same impurity type doping changes 
from one concentration value to another value. An n-n isotype doping profile is shown 
in Figure 7.17. (a) Sketch the thermal equilibrium cnergy band diagram of the isotype 
junction. (b )  Using the energy band diagram. determine thc built-in potential barrier. 
(c) Discuss the charge distribution through the junction. 

7.13 A paniculitr type of junction is an n region adjacent to an intrinsic region. This 
junction can he n~odeled as an n-type region to a lightly doped p-type rcgion. Assume 
the doping concentmtions in silicon at T = 300K are Nd = 10'%cm ' and N,, = 
10" cm-'. For zero applied bias. determine (0 )  Vb, ,  (b) x,,. ( c )  I , .  and (d) E ,,,, I .  
Sketch the electric field versus distance through the junction. 

7.14 We are assuming an abrupt depletion approximation for the space charge region. That 
is, no free carriers exist within the depletion region and the semiconductor abruptly 
changes to a neutral region outside the space charge region. Thi? approximation is 
adequate for most applications. but the abrupt transition does not exist. The space 
charge region changes over a distance of a few Debye lengths, where the Debye 
length in then rcgion is given by 

Calculate L D  and find the ratio of L,,/.r,, for the following conditions. The p-type 
doping concentration is No = 8 x 10" cm-' and the n-type doping concentration is 
( a )  N,, = 8 x 1 0 ' 4 c m ~ ' ,  (b )  Nd = 2.2 x 101hcm-3 a n d  ( c )  N, = 8 x 10'' c rK3 .  

7.15 Examine how the electric field versus distance through a uniformly doped pn - - - 
junction varies as the doping concentrations vary. For example, consider N,j = IOIX .-b 
cm-' and let l o t 4  5 Nn 5 10IR cm-'. then consider Nd = lo1' em-' and let 

- 
/ -~ 
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10'" NN, 5 1 0 ' ~  cm-'. and finally consider N,, = 1016 cm-' and let 10" 5 N, 5 
10" cm-'. What can be said about the results for N ,  ? 100N,1 or Nd ? IOON,? 
Assume rem applied bias. 

Section 7.3 Reverse Applied Bias 
4 

7.16 An abrupt silicon pnjunction has dopant concentrations of N,, = 2 x 1016 cm-' and 
Nd = 2 x l o f 5  cm-> at T = 300 K. Calculate ( a )  V,,, ( h )  W at VR = 0 and 
V, = 8 V, and (c) the maximum electric field in the space charge region at V R  = 0 
and C'R = 8 V. 

7.17 Consider the junction described in Problem 7.1 1. The junction has a cross-sectional 
area of lo-' cm' and has an applied revcrse-bias voltage of VR = 5 V. Calculate 
( a )  V , , ,  ( h )  x,,. r,,. W .  (c) Em,, . and i d )  the total junction capacitance. 

7.18 An ideal one-sided silicon ntp junction has uniform doping on both sides of the 
abrupt junction. The doping relation is Nsi = SON,, . The built-in potential barrier is 
V,,, = 0.752V. The maximum electric field in the junction is Em,, = 1.14 x 10' Vlcm 
for a reverse-bias voltage of 10 V. T = 300 K. Determine ( o )  N.,, Nd ( h )  r, for 
V ,  = 10, and ( r )  C; for VK = 10. 

7.19 A silicon nip junction is biased at V ,  = IOV. Determine thc percent change in 
(a) junction capacitance and ( 6 )  built-in potential if the doping in the p region 
increases by a factor of 2. 

7.20 Consider two p-n silicon junctions at T = 300 K reverse biased at VR = 5 V. The 
impurily doping concentrations in junction A are N, = 10'"m-' and 
Nd = 10'' cm-'. and those in junction B are N,, = 10'' cm-' and Nd = 10'' cm-I. 
Calculate the ratio of the following parameters for junction A to junction B: ( a )  W. 

( b )  IE,,,, and ( c )  C;. 
7.21 ( a )  The peak electric field in a reverse-biased silicon pn junction is 

1E,,I = 3 x 10' Vlcm. The doping concentrations are N, = 4 x 10" cm-' and 
N, = 4 x 10" cm-'. Find the magnitude of the reverse-bias voltage. ( b )  Repeat 
pan (a) f<>r N, = 4 x 101%m' and N,, = 4 x lo1' c m  . (r) Repeat part (n)  for 
Nc1 = N ,  = 4 x lo" cm-3 

7.22 Consider a uniformly doped GaAs pn junction at T = 300 K. The junction capaci~ 
lance at zero bias is C, (0) and the junction capacitance with a 10-V reverse-bias 
voltage is C,(10). The ratio of the capacitances is 

Alsa under reverse bias, the space charge width into the p region is 0.2 of the total 
space charge width. Determine (a)  V,,, and ( h )  N,,, Nd. 

7.23 GeAs pn junction at T = 300 K has impurity doping concentratians of N,, = 101%cm3 
and N,, = 5 x 10'' cm-'. For a particular device application, the ratio ofjunction 
capacitances at two values of reverse bias voltage must he C: ( V , , ) / C , ! ( V R ~ )  = 3 where 
the reverse bias voltage VR,  = 1 V. Determine V R ~ .  

7.24 An abrupt silicon pn junction at T = 300 K is uniformly doped with N,, = lo1* c K 3  
and N,, = 10" cm-'. The pn junction area is 6 x 10 "m2. An inductance of 2.2 
millihenry is placed in parallel with the pn junction. Calculate the resonant frequency 
of the circuit for reverse-bias voltages of ( a )  V ,  = 1 V and ( b )  VR = 10 V. 



Figure 7.18 1 Figure for Proble~n 7.27. Figure 7.19 1 Figurc for Problem 7.28 

I 
7.25 A uniformly doped silicon p+n junction at I = 300 K is to bc designed such that at a - 

reverse-bias voltage of VR = I0 V, the maxirirum electric field is limited to s& 
Em,, = lo6 Vlcm. Determine the maxi~nu~n doping concentration in the n region. - e 

7.26 A silicon pn junction is to be designed which meets the following specifications at - - 
T = 300 K. At a reverse-bias voltage of 1.2 V. 10 percent of the total spncc charge Fa> 
region is to be in then region and the total junction capacitance is to be 3.5 x 1 0 "  F 2 e 

with a cross-sectional area of 5.5 x 10-"nr'. Detennine ( a )  N,,, ( b )  N,,, and ( c )  V,, . 
7.27 A silicon pn junction at T = 300 K has the doping profile shown in Figure 7.18. 

Calculate (a) V,,, . ( b )  r,, and .;, at zero bias. and ( c )  thc applied bias required so that 
r,, = 30 urn. 

7.28 Consider a silicon pn junction with the doping profile shown in Figure 7.19. 
T = 300 K. ( a )  Calculate the applied reverse-bias voltage required so that the space 
charge region extends entirely through the p region. ( h )  Determine the space charge 
width into the nt-region with the reverse-bias voltage calculated in pan ( a ) .  
(c) Calculate the peak electric field for this applied voltage. 

7.29 (a) A silicon p+n junction has doping concentrations of N,, = 10'' ~ m - ~  and 
N ,  = 5 x IOt5 cm-'. The cross-sectional area of the junction is A = 5 x lo-' cm2. 
Calculate the junction capacitance for ( i )  Vn = 0. (if) VK = 3V,  and ( i i i )  VR = 6 V. 
Plot 1/C2 versus V R .  Show that the slope uf the curve can be used to find Nd and that 
the intersection with the voltage axis yields Vh;. ( b )  Repeat part ( a )  if the n-type 
doping concentration changes to N,, = 6 x 10" c m ' .  

7.30 The total junction capacitance of a one-sided silicon pn junction at T = 300 K is 
measured at Vn = 50 mV and found tu be 1.3 pF. The junction area is IO-' cm2 and 
V,,, = 0.95 V. ( a )  Find the impurity doping concentration of the low-doped side of the 
junction. ( b )  Find the impurity doping concentration of the higher-doped region. 

7.31 Examine how the capacitance C' and the function ( l / C ' )  vary with reverse-bias -- 
voltage VK as the doping concentrations change. In particular, consider these plots 
versus N,, for N,, ? 100Nd and versus Nd for N,, > 100N,, 

a - 
*7.32 A pnjunction has the doping profile shown in Figure 7.20. Assume that x, > xu for 

all reverse-bias voltages. ( a )  What is the built-in potential across the junction? ( b )  For 
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Figure 7.20 1 Figure for Pn,blem 7.32. 

C I 
Figure 7.21 1 Figure for Problem 7.33. 

the abrupt junction appmximation, cketch the charge density through the junction. 
(c) Derive the expression for the electric field through the space charge region. 

*7.33 A silicon PIN junction has the doping profile shown in Figure 7.21. Thc "I" corre- 
sponds to an ideal intrinsic region in which there is no impurity doping concentration. 
A reverse-hias voltage is applied to the PIN junction so that the total depletion width 
extends from -2 wm to +2 Um. (a) Using Poisson's equation, calculale the magni- 
tude of the electric field at x = 0. ( h )  Sketch the electric field through the PIN junc- 
tion. (c) Calculate the reverse-bias voltage that must be applied. 

Section 7.4 Nonuniformly Doped Junctions 
I 

7.34 Consider a linearly graded junction. (a)  Starting with Equation (7.49). derive the 
expression for the electric field given in Equation (7.51). (b) Derive the expression 
for the potential through the space charge region given hy Equation (7.53). 

7.35 Thc built-in potential barrier of a linearly graded silicon pn junction at T = 300 K is 
Vb; = 0.70 V The junction capacitance measured at Vn = 3.5 V is C' = 7.2 x 

i 
~ l c m ' .  Find the gradient, a ,  of the net impurity cancentration. 

Summary and Review 
- 7.36 Anne-sided p+n silicon diode at 7 = 300 K is doped at No = 10" cm-'. Dcsign the 

junction so that C, = 0.95 pF at VK = 3.5 V. Calculate the junction capacitance when 
v, = 1.5 v. 

7.37 A one-sided p t n  junction with a cross-sectional area of lo-' cm2 has a measured 
built-in potential of Vb, = 0.8 Va t  T = 300 K. A plot of (l/C,)' versus VR is linear 
for VR < I V and is essentially constant for Vn > 1 V. The capacitance is C, = 
0.082 pF at VR = 1 V Determine the doping concentrations on either side af the 
metallurgical junction that will produce this capacitance characteristic. 

*7.38 Silicon, at T = 300 K, is doped at Ndl = lo1' cm-' f0r.r < 0 and Nii2 = 5 x 
1016 cm-' for I > 0 to form an n - n step junction. (0) Sketch the energy-band 

I 
diagram. (h) Dcrive an expression for Vb, .  (c) Sketch the charge density, electric held, 
and potential through the junction. Id )  Explain where the charge density came from 
and is located. 

*7.39 A diffused silicon pn junction has a linearly graded junction on the p side with 
a = ? x LOt9 cm-\ and a unifonn doping of 10" cm-' on the n side. (a) If the 
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depletion width on the p side is 0.7 u m  at zem bias, find the total depletion width, 
built-in potcnlial, and (maximurn electric field at zero bias. (b)  Plot the potential 
function through the junction. 
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C H A P T E R  

The pn Junction Diode 

P R E V I E W  

I n the last chapter, we discussed the electrostatics of the pn junction in thermal 
equilibrium and under reverse bias. We determined the built-in potential harrier 
ar thermal equilibrium and calculated the electric field in the space charge region. 

We also considered the junction capacitance. In this chapter, we will consider the pn 
junction with a forward-bias voltage applied and will determine thc current-voltage 
characteristics. The potential barrier of the pn junction is lowered when a forward- 
bias voltage is applied, allowing electrons and holes to flow across the space charge 
region. When holes flow from the p region across the space charge region into the 
n region, they become excess minority carrier holes and are subject to the excess 
minority carrier diffusion, drift, and recombination processes discussed in Chapter 6. 
Likewise, when electrons from the n region flow across the space charge region into 
the p region, they become excess minority carrier electrons and are subject to these 
same processes. 

When semiconductor devices with pn junctions are used in linear amplifiers, for 
example, time-varying signals are superimposed on the dc currents and voltages. A 
small sinusoidal voltage superimposed on a dc voltage applied across a pn junction 
will generate a small-signal sinusoidal current. The ratio of the sinusoidal current to 
voltage yields the small-signal admittance of the pn junction. The admittance of a 
forward-biased pn junction contains both conductance and capacitance terms. The 
capacitance, called a diffusion capacitance, differs from the junction capacitance dis- 
cussed in the last chapter. Using the admittance function, the small-signal equivalent 
circuit of the pn junction will be developed. 

The last three topics considered in this chapter are junction breakdown, switch- 
ing transients. and the tunnel diode. When a sufficiently large reverse-bias voltage is 
applied across a pn junction, breakdown can occur, producing a large reverse-bias 
current in the junction, which can cause heating effects and catastrophic failure of the 
diode. Zener diodes, however, are designed to operate in the breakdown region. 
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Breakdown puts limits on the amount of voltage that can he applied across a pn junc- 
tion. When a pn junction is switched from one conducting state to the other, tran- 
sients in the diode current and voltage occur. The switching time of the pn junction 
will he discussed here, and again in later chapters which deal with the switching of 
transistors.. 

8.1 1 pn JUNCTION CURRENT 
When a forward-bias voltage is applied to a pn junction, a current will he induced in 
the device. We initially consider a qualitative discussion of how charges flow in the 
pn junction and then consider the mathematical derivation of the current-voltage 
relationship. 

8.1.1 Qualitative Description of Charge Flow in a pn Junction 

We can qualitatively understand the mechanism of the current in a pn junction by 
again considering the energy hand diagrams. Figure 8.La shows the energy band di- 
agram of a pn junction in thermal equilibrium that was developed in the last chapter. 
We argued that the potential barrier seen by the electrons, for example, holds hack 
the large concentration of electrons in the n region and keeps them from flowing into 
the p region. Similarly, the potential harrier seen by the holes holds hack the large 

Electron &+(""' flow - v"' 

I I +  

E + L E i" E 6,' -..-, f - . . - . . , F,, I 
I I 

I 

1 r.. - EF,, Hole flow 
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concentration of holes in the p region and keeps them from flowing into then regiori. 
The potential barrier, then, maintains thermal equilibrium. 

Figure 8. l b shows the energy band diagram of a reverse-biased pn junction. Tk 
potential of the n region is positive with respect to the p region so the Fermi energy 
in the n region is lower than that in the p region. The total potential harrier is r an  
larger than for the zero-bias case. We argued in the last chapter that the incrc. 
potential barrier continues to hold back the electrons and holes so that there ih  \ 1 ) 1 1  
essentially no charge flow and hence essentially no current. 

Figure 8. lc now shows the energy band diagram for the case when a posiliie 
voltage is applied to the p region with respect to the n region. The Fermi level in the 
p region is now lower than that in the n region. The total potential barrier is now 
reduced. The smaller potential barrier means that the electric held in the depleiion 
region is also reduced. The smaller electric field means that the electrons and holes 
are no longer held hack in then and p regions, respectively. There will be a diRurion 
of holes from the p region across the space-charge region where they now will How 

I 
into the n region. Similarly, there will he  a diffusion of electrons from the n region 
across the space-charge region where they will flow into the p region. The flow of 
charge generates a current through the pn junction. 

i 
The injection of holes into the n region means that these holes are minority car- 

riers. Likewise, the injection of electrons into the p-region means thar these electrons 
are minority caniers. The behavior of these minority carriers is described by the am- 
bipolar transport equations that were discussed in Chapter 6. There will be diffusion 
as well as recombination of excess carriers in these regions. The diffusion of carriers 
implies that there will be diffusion currents. The mathematical derivation of the 

I 
pn junction current-voltage relationship is considered in the next section. 

8.1.2 Ideal Current-Voltage Relationship 

The ideal current-voltage relationship of a pn junction is derived on the basis offour 

They are: 

I 
assumptions. (The last assumption has three parts, but each part deals with current.) 

1. The abrupr depletion layer approximation applies. The space charge regions 
have abrupt boundaries and the se~niconductor is neutral outside of the 
depletion region. 

i 
2. The Maxwell-Boltzmann approximation applies to c'drrier statistics. 
3. The concept of low injection applies. 

4,. The total current is a constant throughout the entire pn structure. 

1 
4b. The individual electron and hole currents are continuous functions through the 

pn structure. 
4,. The individual electron and hole currents are constant throughout the depletion I 

region. 

Notation can sometimes appear to be overwhelming in the equations in this 
chapter. Table 8.1 lists some of the various electron and hole concentration terms that 

4 
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Tahle 8.1 I Commonly used terms and notation for this chapter 

Term Meaning 

No Acceptor concentration in the p region of the pn junction 

Nd Donor concentration in then region of the pn junction 

",,a = Nn Thermal equilibrium majority carrier electron concentration in the n region 

PPO = Nu Thermal equilibrium majority carrier hole concentration in the p region 

nPo = n j / N ,  Thermal equilibrium minority carrier electron concentration in the 
p region 

p,, = n ? / N ,  Thermal equilibrium minority carrier hole concentration in then region 

" P  Total minority carrier electron concentration in the p region 

Pn Total minority carrier hole concentration i n  the n region 

n, ( -x0)  Minority carrier electron concentration in the p region at the space- 
charge edge 

Pn 6% ) Minority carrier hole concentration in then region at the space charge 
edge 

An,, = n, - n,a Excess minority carrier electron concentration in the p region 

'I,,, = pn - p.,, Excess minority carrier hole concentration in the n region 

appear. Many terms have already been used in previous chapters but are repeated 
here for convenience. 

8.1.3 Boundary Conditions 

Figure 8.2 shows the conduction-band energy through the pn junction in  thermal 
equilibrium. T h e n  region contains many more electrons in the conduction band than 
the p region; the built-in potential barrier prevents this large density of electrons from 
flowing into the p region. The built-in potential banier maintains equilibrium be- 
tween the carrier distributions on either side of the junction. 

An expression for the built-in potential barrier was derived in the last chapter 
and was given by Equation (7.10) as 

Figure 8.2 1 Conduction-band energy through a pn junction. 
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If we divide the equation by V, = k T / e ,  take the exponential of both sides, an 
then take the reciprocal, we obtain 

If we assume complete ionization, we can write 

where nna is the thermal-equilibrium concentration of majority carrier electrons in 
then region. In the p region, we can write 

where n,,o is the thermal-equilibrium concentration of minority camer electrons. 
Substituting Equations (8.2) and (8.3) into Equation (8.1) yields 

This equation relates the minority carrier electron concentration on the p side of the 
junction to the majority camer electron concentration on the n side of the junction in 
thermal equilibrium. 

If a positive voltage is applied to the p region with respect to the n region, the po- 
tential barrier is reduced. Figure 8.3a shows a pn junction with an applied voltage V,,. 
The electric field in the bulk p and n regions is normally very small. Essentially allof 
the applied voltage is across the junction region. The electric field E,,, induced by the 
applied voltage is in the opposite direction to the thermal equilibriuln space charge 
electric field, so the net electric field in the space charge region is reduced below the 
equilibrium value. The delicate balance between diffusion and the E-field force 

Figure 8.3 1 (a) A pn junction with an applied forward-bias voltage showing the directions of the electric field induced 
by V, and the space charge electric field. (b) Energy-band diagram of the forward-biased pn junction. 



achieved at thermal equilibrium is upset. The electric field force that prevented ma- 
jority carriers from crossing the space charge region is reduced; majority carrier elec- 
trons from the n side are now injected across the depletion region into the p material, 
and majority carrier holes from the p side are injected across the depletion region into 
then material. As long as the bias V,, is applied, the injection of carriers across the 
space charge region continues and a current is created in the pn junction. This bias 
condition is known as forward bias; the energy-band diagram of the forward-biased 
pn junction is shown in Figure 8.3b. 

The potential barrier Vb, in Equation (8.4) can be replaced by (Vi,, - V,) when 
the junction is forward biased. Equation (8.4) becomes 

If we assume low injection, the majority carrier electron concentration n,o, for ex- 
ample, does not change significantly. However, the minority carrier concentration, 
n,, can deviate from its thermal-equilibrium value n," by orders of magnitude. Using 
Equation (8.4), we can write Equation (8.5) as 

When a forward-bias voltage is applied to the pn junction, the junction is no longer 
in thermal equilibrium. The left side of Equation (8.6) is the total minority camer elec- 
tron concentration i n  the p region, which is now greater than the thermal equilibrium 
value. The forward-bias voltage lowers the potential bamer so that majority canier 
electrons from the n region are injected across the junction into the p region, thereby 
increasing the minority canier electron concentration. We have produced excess 
minority carrier electrons in the p region. 

i When the electrons are injected into the p region, these excess camers are sub- 
ject to the diffusion and recombination processes we discussed in Chapter 6. Equa- 
tion (8.6). then, is the expression for the minority carrier electron concentration at the 

j edge of the space charge region in the p region. 
Exactly the same process occurs for majority carrier holes in the p region which 

are injected across the space charge region into the n region under a forward-bias 
voltage. We can write that 

where p,, is the concentration of minority carrier holes at the edge of the space charge 
region in the n region. Figure 8.4 shows these results. By applying a fonuard-bias 
voltage, we create excess minority carriers in each region of the pn junction. 
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Figure 8.4 1 Excess minority carrier conccntrations a1 the 
spacc charge edges generated by the furward-bins voltage. 

d 

EXAMPLE 8.1 I Objective 

To calculate the minority carrier hole concentration at the edge of the space charge region of a 
pn junction when a forward bias is applied. 

Consider a silicon pn junction at T = 300 K so that n,  = 1.5 x 10'" cm-'. Assume the 
n-type doping is 1 x loL6 ccmi and assume that a forward bias of 0.60 V is applied to the 
pn junction. Calculate the minority carrier hole concentration at thr edge of the space charge 
region. 

Solution 
From Equation (8.7) we have 

The thermal-equilibrium minority canier hole concentration is 1 
n; (1.5 x - P.u = - - = 2.25 x lo4 cm-' 
Nd 10Ih I 

Comment 1 
The minority carrier concentration can increase by many orders of magnitude when a forward- 
bias voltage is applied. Low injection still applies. however, since the excess-electron concen- 
tration (equal to the excess-hole concentration in order to maintain charge neutrality) is much 
less than the thermal-equilibrium electron concentration. 

TEST YOUR UNDERSTANDING 

E8.1 A silicon pn junction at T = 300 K is doped with impurity concentrations of Nd = 5 x 

1016 cm-i and N ,  = 2 x 10'' cm-'. The junction is forward biasedat V, =0.610 V. 
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Determine the minority carrier concentrations at the space charge edges. 
I ,_ lU . l  , ,OI X 06.1 = ("'.-)"u'~-UJ ,~ ,0(  X z9.1 = ("l')"d 'sUVI . . 

E8.2 The impurity doping concentrations in a silicon pn junction at T = 300 K arc No = 
5 x 10" cmF' and N,, = 5 x 10" ~ m - ~ .  The minority carrier concentmtion at either 
space charge edge is to be no 1;irgcr than I D  percent of the respective majority carrier 

2 concentration. Calculate the !maximum forward bias voltage that can be applied to 
this junction and still ,meet the required specifications. [A 665'0 = (xQ")"A 'SUV] 

E8.3 Repeat E8.2 for a GaAs pn junction with the same doping concentrations. 
[ A  190'1 = (xQu)'> 'SUV] 

The minority c,mier concentrations at the space charge edges, given by Equations 
(8.6) and (8.71, were derived assuming a forward-bias voltage ( V ,  > 0)  was applied 
acrohs the pn junction. However, nothing in the derivation prevents V ,  from being 
negative (reverse bias). If a reverse-bias voltage greater than a few tenths of a volt is 
applied to the pn junction, then we see from Equations (8.6) and (8.7) that the minor- 
ity carrier concentrations at the space charge edge are essentially zero. The mino- 
rity carrier concentrations for the reverse-bias condition drop below the thermal- 
eauilibnum values. 

8.1.4 Minority Carrier Distribution 

We developed, in Chapter 6, the ambipolar transport equation for excess minority 
carrier holes in an n region. This equation, in one dimension, is 

where 6p,, = p,, - p,,o is the excess minority carrier hole concentration and is the 
difference between the total and thermal equilibrium minority carrier concentrations. k The amblpolar transport equation describes the behavior of excess carriers as a func- 
tion of time and spatial coordinates. 

In Chapter 5, we calculated drift current densities in a semiconductor. We deter- 
mined that relatively large currents could bc created with fairly small electric fields. 
As a first approximation, we will assume th;lr the electric field is zero in both the ncu- 
tral p and n regions. In the n region forx  > x,, , we have that E = 0 and g' = 0. I f  we 
alsoassume steady state so il(Sp,,)/i)! = 0, then Equation (8.8) reduces to 

where ~f = Ll,,r,,,,. For the same set of conditions, the excess minority carrier elec- 
tron concentration in the p region is determined from 
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The boundary conditions for the total minority carrier concentrations are 

P. (4 = PJZO exp - (2)  (8.111 

np(-xi,) = ni,o exp (g) (8.11- 

pr,(x + +W! = Pl,o (8.11~ 

np(x + - ~ j  = n , , ~  (8.116 

As minority carriers diffuse from the space charge edge into the neutral semiconduo 
tor regions, they will recomhine with majority caniers. We will assume that 
lengths M',, and W,, shown in Figure 8.3a are very long, meaning in particular t 
W, >> L, and W,, >> L,. The excess minority canier concentrations must approa 
zero at distances far from the space charge region. The structure is referred to as 
long pn junction. 

The general solution to Equation (8.9) is 

6p,,(x) = p,,(x) - pno = .4eXIL" + B P - " ' ~ ~  (J > x,) 

and the general solution to Equation (8.10) is I 
Applying the boundary conditions from Equations (8 .11~)  and (8.1 Id), the 

ficients A and D must be zero. The coefficients B and C may be determined from th 

centrations are then found to be, for (x > x,), 
boundary conditions given by Equations (8.1 la)  and (8.11b). The excess carrier con- 

Sp.(x) = p.(x) - pno = p,,o [ exp ) - - I ] exp (''',') -- I (8.14) 

and, for (x 5 -x,j, 1 

The minority carrier concentrations decay exponentially with distance away from the 
junction to their thermal-equilibrium values. Figure 8.5 shows these results. Again, 
we have assumed that both the n-region and the p-region lengths are long compared 
to the minority carrier diffusion lengths. 

To review, a forward-bias voltage lowers the built-in potential barrier of a pn 
junction so that electrons from the n region are injected across the space charge re- 
gion, creating excess minority carriers in the p region. These excess electrons begin 
diffusing into the bulk p region where they can recombine with majority carrier 
holes. The excess minority canier electron concentration then decreases with 

? 
Sn,(x) = np(x) - n,,~ = n , ~  [ exp (I:) - - I ] exp ("2 -- ') I 

(8.15) 
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distance from the junction. The same discussion applies to holes injected across the 
space charge region into the n region. 

8.1.5 Ideal pn Junction Current 

The approach we use to determine the current in a pn junction is based on the three 
parts of the fourth assumption stated earlier in this section. The total current in the 
junction is the sum of the individual electron and hole currents which are constant 
through the depletion region. Since the electron and hole currents are continuous func- 
tions through the pn junction, the total pn junction current will be the minority carrier 
holediffusion current at x = x, plus the minority carrier electron diffusion current at 
.r = -x,. The gradients in the minority carrier concentrations, as shown in Figure 8.5, 
produce diffusion currents, and since we are assuming the electric field to be zero at 
the space charge edges, we can neglect any minority carrier drift current component. 
This approach in determining the pn junction current is shown in Figure 8.6. 

t Figure 8.5 1 Steady-state minority carrier concentrations in a 
pn junction under forward bias. 

Current + 
density 

Figure 8.6 1 Electron and hole current densities through the 
space charge region of a pn junction. 
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We can calculate the minority camer hole diffusion current density at x = 
from the relation 

J,(x.) = - e o p L  $:' I v=J" 
(8.1 

Since we are assuming uniformly doped regions, the thermal-equilibrium cani I 
concentration is constant, so the hole diffusion current density may be written as 

Jp(xn) = -eDp 

Talung the derivative of Equation (8.14) and substituting into Equation (8.17). w 
obtain 

The hole current density for this forward-bias condition is in the +x direction, whic 
is from the p to the n region. 

Similarly, we may calculate the electron diffusion current density at x = -xA 
This may be written as 

Using Equation (8.15). we obtain 

-1 (8 

The electron current density is also in the +x direction. 
An assumption we made at the beginning was that the individual electron and 

hole currents were continuous functions and constant through the space charge region 
The total current is the sum of the electron and hole currents and is constant throu 
the entire junction. Figure 8.6 again shows a plot of the magnitudes of these cumen 

The total current density in the pn junction is then 
3 

P O  eDnn,o][ ( )  ] 
J = JP(xtz) + J,(-x,) = +- exp - - 1 

L" 
(8.21), 

Equation (8.21) is the ideal current-voltage relationship of a pn junction. 
We may define a parameter J, as 

eD,p,o eD,,n,o 
(8.2 I 
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Figure 8.7 1 Ideal I-Vchamcteristic of a pn junction diode 

so that Equadon (8.21) may he written as 

: Equation (8.23), known as the ideal-diode equation, gives a good description of the 
current-voltage characteristics of the pn junction over a wide range of currents and 
voltages. Although Equation (8.23) was derived assuming a forward-bias voltage 

i (Vy z O), there is nothing to prevent V, from being negative (reverse bias). Equation 
(8.23) is plotted in Figure 8.7 as a function of forward-bias voltage V,. If the voltage 
V, becomes negative (reverse bias) by a few k T / e  V, then the reverse-bias current 

1 density becomes independent of the reverse-bias voltage. The parameter J, is then 
; referred to as the reverse saturation current density. The current-voltage characteris- 1 tics of the pn junction diode are obviously not bilateral. 

I Objective I EXAMPLE 8.2 

I Todetermine the ideal reverse saturation current density in a silicon pn junction at T = 100 K. 

I 
Consider the following parameters in a silicon pn junction: 

N,, = N ,  = 10'%m-3 n, = 1 . 5  x 10"' cm-' 

D,, = 25 cm2/s 7,,, = T,,o = 5 lo-' 

D,, = 10 cm2/s t, = 11.7 

I Solution 
The ideel reverse saturation current density is given by 
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which may be rewritten as 

Substituting the parameters, we obtain J, = 4.15 x 10-" Alcm2 

Comment 
Thc ideal reverse-hias saturation current density is very small. If the pn junction  cross^ 

sectional area were A = lo-' cm2, for example, then the ideal reverse-bias diode current 
would be I, = 4.15 x lo-" A. 

Figure 8.8 1 Ideal 1-V 
characteri~tic o l  a 
pn junction diode with 
the current plotted on 
a log scale. 

If the forwdrd-bias voltage in Equetion (8.23) is positive by more than a few 
kTlevolts,  then the (-I) term in Equation (8.23) becomes negligible. Figure 8.8 
shows the forward-bias current-voltage characteristic when the current is plotted on 
a log scale. Ideally, this plot yields a straight line when V, is greater than a few 
kTlevolts.  The forward-bias current is an  exponential function of the forward-bias 
voltage. 

DESIGN 1 Objective 
EXAMPLE 8.3 

To design a pn junction diode to produce particular electron and hole current densities at a 
given forwad-bias voltage. 

Consider a silicon pn junction diode at T = 3M) K. Design the diode such that J. = 
G 

20 ~ l c m '  and J ,  = 5 Alcm' at V ,  = 0.65 V .  Assume the remaining semiconductor parameters 
are as given in Example 8.2. 



t 
I Solution 

8.1 pn Junctlon Current 

The electron diffusion current density is given by Equation (8.20) as 

C o m m e n t  
f The relative magnitude of the electron and hole current densities through a diode can be var- 

ied by changing the doping concentrations in the device. 

TEST YOUR UNDERSTANDING 

E8.4 Asilicon pn junction at T = 300 K has the following paameters: N, = 5 x 1016 cm-> 
Nd = 1 x 10" ~ r n - ~ ,  D,, = 25 cm21s, D,, = 10 cmvs, i,,, = 5  x lo-' s, and 
iDo = I x lo-' s. The cross-sectional area is A = 10.' crn'and the foward-bias volt- ! age is V,, = 0.625 V. Calculate the (0) minority electron diffusion current at the space 
charge edge, (b) minority hole diffusion current at the space charge edge, and (c) total 
current in the pn junction diode. [v" PZ'I ("1 'Vm 60.1 (4) 'Vm K I ' O  (") ' ~ u v ]  

E8.5 Repeat E8.4 for a GaAs pn junction diode biased at V ,  = 1.10 V. 
[vm SYI ( 3 )  'vm V V I  (v) ' v w  POZ'O ("1 'SUV] 

8.1.6 Summary of Physics 

We have been considering the case of a forward-bias voltage being applied t o  a pn 
junction. The forward-bias voltage lowers the potential barrier s o  that electrons and 

L 
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holes are injected across the space charge region. The injected carriers become rnin $ ity carriers which then diffuse from thejunction and rccombine with majority canie 
We calculated the minority carrier diffusion current densities at the edge of the 

space charge region. We can reconsider Equations (8.14) and (8.15) and dele 
the minority carrier diffusion current densities as a function of distance 
p- and n-regions. These results are 

e D P "  [ ( ] ( . x , , ~ ;  X )  Jp(x) = - exp - - I exp - (X > x,) (8.24) 
LP 

and 

eDnnf l  [ ( 1 ] ( ) (X 5 x ; . )  (8.25) J,(x) = -- exp - - 1 exp - 
L,, 

The minority carrier diffusion current densities decay exponentially in each 
region. However, the total current through the pn junction is constant. The difference 
between total current and minority carrier diffusion current is a majority carrier cur- 
rent. Figure 8.9 shows the various current components through thc pn structure. The 
drift of majority carrier holes in the p region far from the junction, for example, is to 
supply holes that are being injected across the space charge region into the n region 
and also to supply holes that are lost by recombination with excess minority canier 
electrons. The same discussion applies to the drift of electrons in the n region. 

We have seen that excess caniers are created in a forward-biased pn junction. 
From the results of the ambipolar transport theory derived in Chapter 6, the behavior 
of the excess carriers is determined by the minority carrier parameters for low injec- 
tion. In determining the current-voltage relationship of the pn junction, we consider 
the Row of minority carriers since we know the behavior and characteristics of the% 

Current f 
density ! 

Ma;ocity carner 
hole current 

Electron diffusion 
current 

-*,, * = 0 x,, 

Majority carrier 
elecwon cumnl 

Hole diffusion 
current 

Figure 8.9 1 Ideal electron and hole current components through a pn junction under 
forward bias. 
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particles. It may seem strange, at times, that we concern ourselves s o  much with 
lniinority carriers rather than with the vast number of majority camers ,  but the reason 
for this can he found in the results derived from the ambipolar transport theory. 

TEST YOUR UNDERSTANDING 

E8.6 Consider the silicon pn junction diode described in E X 4  Calculate the electron and 
hole currents at (a )  x = r,,, (b) x = x,, + L , ,  and (c )  x = x, + IOL, (see Figure 8.9). 
10 % "i ' V u  PPZI = "I ( J )  :Vw 100.0 = "/ ' V u  €08.0 = '7 (q) 
I v m  60.1 = 9 'vm .O = "1 (D) 'wv] 

The fact that w e  now have drift current densities in the p and n regions implies 
that the electric field in these regions is not zero as  we had originally assumed. We 
can calculate the electric field in the neutral regions and determine the validity of our  
rero-field approximation. 

Objective I EXAMPLE 8.4 

To calculate the electric field required to produce a given majority carrier drift current. 
Consider a silicon pn junction at T = 300 K with the parameters given in Example 8.2 

and with an applied forward-hias voltage V,, = 0.65 V. 

I Solution 
The total forward-hias current density is given by 

We determined the reverse saturation current density i n  Example 8.2, so we can write 

J = ( 4 . l 5 x  lo-") 

total current far from the junction in the n-region will he majority carrier electron drift 
current. SO we can write C 

C J = J,, - e&,, NdE 

The doping concentration is Nd = IOlh  ern-'. and. if we assume &, = 1350 cm2/V-s, then the 
electrtc field muqt he 

I Comment 
I We assumed. in the derivation of the current-voltage equation, that the electric field in the neu- 
I 
' ha1 p and n regions was rero. Although the electric field is not rero, this example shows that 
the magnitude is very small-thus the approximation of zero electric field is very good. 
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8.1.7 Temperature Effects 

The ideal reverse saturation current density J,, given by Equation (8.22), is a functic 
of the thermal-equilibrium minority camer concentrations npo and p,o. These mina 
ity canier concentrations are proportional to ni, which is a very strong function I 
temperature. For a silicon pn junction, the ideal reverse saturation current density w 
increase by approximately a factor of four for every 10°C increase in temperature. 

The forward-bias current-voltage relation was given by Equation (8.23). Th 
relation includes J, as well as the exp ( e V , / k T )  factor, making the forward-bi 
current-voltage relation a function of temperature also. As tcmperature increases, le 
forward-bias voltage is required to obtain the same diode current. If the voltage is he 
constant, the diode current will increase as temperature increases. The change in fc 
ward-bias current with temperature is less sensitive than the reverse saturation curre1 

EXAMPLE 8.5 ( Objective 

To determine the change in the forward-bias voltage on s pn junction with a change in tel 
perature. 

Consider a silicon pn junction initially biased at 0.60 V at T = 300 K. Assume the tel 
perature increases to T = 310 K. Calculate the change in the forward-bias voltage required 
maintain a constant current through the junction. 

Solution 
The forward-bias current can be written as follows: 

J cr enp 2 exp - (G) (3 
If the temperature changes, we may take the ratio of the diode currents at the two temper;ltur< 
This ratio is 

If current is to be held constant, then J ,  = J2 and we must have 

Let T, = 300K. T? = 310 K, E ,  = 1.12 eV, and Vo,  = 0.60 V. Then, solving for V,?, , 
obtain V,? = 0.5827 V. 

Comment 
The change in the forward-bias voltage i s  -17.3 mV for a 10°C temperature change. 

8.1.8 The "Short" Diode 

We assumed in the previous analysis that both p and n regions were long compar 
with the minority carrier diffusion lengths. In many pn junction structures, one regi 
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I -5, 0 r,, 

Figure 8.10 i Geometry of a "shon" 
diode. 

may. in fact. he shon colnpared with the minority carrier diffusion length. Figure 8.10 
shows one such example: the length W,, is assumed to be much smaller than the mi- 
nority carrier hole diffusion length, L,. 

The steady-state excess lninority carrier hole concentration in then region is de- 
termined from Equation (8.9), which was given as 

The original houndary condition at ,r = x,, still applies, given by Equation (8.1la) as 

A second boundary condition needs to be determined. In many cases we will as- 
sume that an ohmic contact exists at x = (x,, + W , , ) ,  implying an infinite surface- 
recombination velocity and therefore an excess minority carrier concentration of 
zero. The second boundary condition is then written as 

p,,(x = x,, + w,,) = P,,u (8.26) 

The general solution to Equation (8.9) is again given by Equation (8.12). which 
was 

3. fip,(x) = p,(.c) - p , , ~  = ~ e " " ~ ~  + B ~ - * / ~ I .  (x ? x,,) 

In this case, because of the finite length of the n region, both terms of the general so- 
lution must be retaincd. Applying the boundary conditions of Equations (8 . l lh)  and 
(8.261, the excess minority carrier concentration is given by 

sinh [(x,, + W,, - x ) l L , l  
(8.27) 

sinh [ W , , / L p ]  

Equation (8.27) is the general solution for the excess minority carrier hole concentra- 
tion in then region of aforward-biased pnjunction. If W,, >> L, the assumption for the 
long diode, Equation (8.27) reduces to the previous result given by Equation (8.14). If 
W, << L,. we can approximate the hyperbolic sine terms by 

sinh ( x n + Y x )  L - (".+W, x 

LP 
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and 

sinh (2) (t) 
Then Equation (8.27) becomes 

.r,, + w,, - a- 
J,J.(x) = P?," [exp (%) - I ]  ( w,, 

The minority carrier concentration becomes a linear function of distance 
The minority carrier hole diffusion current density is given by 

so that in the short n region, we have 

The minority carrier hole diffusion current density now contains the length W,, i r  
denominator. rather than the diffusion length L,,. The diffusion current density is la 
for a short diode than for a long diode since W,, << L , .  In addition, since the min~ 
canier concentration is approximately a linear function of distance through the I 

gion, the rninoriry carrier diffusion current density is a constant. This constant cut 
implies that there is no recombination of minority carriers i n  the short region. 1 

I TEST YOUR UNDERSTANDING I 
E8.7 Consider the silicon pn junction diode described in ER.4. The p region is long and the 1 

n region is short with W,, = 2 &m. (a) Calculate the electron and hole currcnts in the 
depletion region. (h )  Why has thc hole current increased compared to that found in E8.4? 
[paseamu! seq 1ua!ps~2 h!suap aloq aql ( q )  :vm p p . ~  = "1 .VLU ~ S I O  = "I ("1 suv] ( 

8.2 1 SMALL-SIGNAL MODEL OF THE , 
pn JUNCTION I 

We have been considering the dc characteristics of the pn junclion diode. When semi- 
conductor devices with pn junctions are used in linear amplifier circuits, for example, 
sinusoidal signals are superimposed on the dc currents and voltages, so that the 
small-signal characteristics of the pn junction become important. 

8.2.1 Diffusion Resistance 

The ideal current-voltage relationship of the pn junction diode was given by Equa- 
tion (8.23), where J and J,  are current densities. If we multiply both sides of the 
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Figure 8.11 I Curve showing the concept of the 
small-signal diffusion resistance. 

equation by the junction cross-sectional area, we have 

where ID is the diode current and I, is the diode reverse saturation current. 
Assume that the diode is forward-biased with a dc voltage Vo producing a dc 

diode current fog. If we now superimposes small, low-frequency sinusoidal voltage 
as shown in Figure 8.11, then a small sinusoidal current will be produced, superim- 
posed on the dc current. The ratio of sinusoidal current to sinusoidal voltage is called 
the incremental conductance. In the limit of a very small sinusoidal current and 
voltage, the small-signal incremental conductance is just the slope of the dc current- 
voltage curve, or 

The reciprocal of the incremental conductance is the incremental resistance, defined as 

where l o p  is the dc quiescent diode current. 
If we assume that the diode is biased sufficiently far in the fonvard-bias region, 

then the (-1) term can be neglected and the incremental conductance becomes 
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The small-signal incremental resistance is then the reciprocal function, or 

The incremental resistance decreases as the bias current increases, and is inversely 
proportional to the slope of the I-V characteristic as shown in Figure 8.1 1. The in- 
cremental resistance is also known as the diffusion resistunce. 

8.2.2 Small-Signal Admittance 

In the last chapter, we considered the pn junction capacitance as a 
reverse-bias voltage. When the pn junction diode is forward-hiased, 
tance becomes a factor in the diode admittance. The small-signal admittance, or i 
pedance, of the pn junction under forward bias is derived using the minority 
diffusion current relations we have already considered. 

Qualitative Analysis Before we delve into the mathematical analysis, we can qua1 
itatively understand the physical processes that lead to a diffusion capacitance, whi 
is one component of the junction admittance. Figure 8.12a schematically shows 4 
pn junction forward biased with a dc voltage. A small ac voltage is also superimposed 
on the dc voltage so that the total forward-biased voltage can he written 4 
V, = Vdc + C sin at. 

As the voltage across the junction changes, the number of holes injected acro 
the space charge region into the n region also changes. Figure 8.12h shows the hol 
concentration at the space charge edge as a function of time. At t = to, the ac vol 

P n 

Holes 
Time 

(a) 
A 

"d, v,, = i, srn wr (b) i = o  

Figure 8.12 I (a) A pn junction with an ac voltage superimposed on a forward-biased 
dc value; (b) the hole concentration versus time at the space charge edge; (c) the 
hole concentration versus distance in then region at three different times. 
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is zero so that the concentration of holes at .x = 0 is just given by p,,(O) = 
/I,,o exp (Vd,/ V , ) ,  which is what we have seen previously. 

Now, as the ac voltage increases during its positive half cycle, the concentration 
of holes at x = 0 will increase and reach a peak value at t = t l ,  which corresponds 
to the peak value of the ac voltage. When the ac voltage is on its negative half cycle, 
the total voltage across the junction decreases so that the concentration of holes at 
.r = 0 decreases. The concentration reaches a minimum value at t = r 2 ,  which corre- 
sponds to the time that the ac voltage reaches its maximum negative value. The mi- 
nority carrier hole concentration at .r = 0 ,  then, has an ac component superimposed 
on the dc value as indicated in Figure 8.12b. 

As previously discussed, the holes at the space charge edge (x = 0 )  diffuse into 
the n region where they recombine with the majority canier electrons. We will as- 
sume that the period of the ac voltage is large compared to the time it takes carriers 
to diffuse into the n region. The hole concentration as a function of distance into the 
n region can then be treated as a steady-state distribution. Figure 8 . 1 2 ~  shows the 
steady-state hole concentrations at three different times. At t = t<,, the ac voltage is 
zero, so the r = ri1 curve corresponds to the hole distribution established by the dc 
voltage. The r = curve corresponds to the distribution established when the ac 
voltage has reached its peak positive value, and the r = t? curve corresponds to the 
distribution established when the ac voltage has reached its maximum negative 
value. The shaded areas represents the charge A Q that is alternately charged and dis- 
charged during the ac voltage cycle. 

Exactly the same process is occurri~~g in the p region with the electron concentra- 
tion. The mechanism of charging and discharging of holes in then region and electrons 
in the p region leads to a capacitance. This capacitance is called d~ffirsion cu[~ucitunce. 
The physical mechanism of this diffusion capacitance is different from that of the 
junction capacitance discussed in the last chapter. We will show that the magnitude of 
the diffusion capacitance in a forward-biased pn junction is usually substantially 
larger than the junction capacitance. 

Mathematical Analysis The minority carrier distribution in the pn junction will 
he derived for the case when a small sinusoidal voltage is superimposed on the dc 
junction voltage. We can then determine small signal, or ac, diffusion currents from 
these minority carrier functions. Figure 8.13 shows the minority carrier distribution 
i n  a pn junction when a forward-biased dc voltage is applied. The origin, .x = 0 ,  
is set at the edge of the space charge region on the n-side for convenience. 
The minority carrier hole concentration at x -- 0 is given by Equation (8.7) as 
11,,(0) = p,," exp ( e V , , / k T ) ,  where V,, is the applied voltage across the junction. 

Now let 

V,, = V,, + I ! ,  (1) (8.36) 

where KI is the dc quiescent bias voltage and v l ( t )  is the ac signal voltage which is 
superimposed on this dc level. We may now write 
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P 

If we assume that the time-varying voltage ul(t) is a sinusoidal signal, we can 
write Equation (8.40) as 

I 
I 
I 
I 

I 

I 

where PI is the phasor of the applied sinusoidal voltage. Equation (8.41) will he used 

i! 
n 

,,- P, , (O)  = P,," exp 

- PliO 

as the boundary condition in the solution of the time-dependent diffusion equation 
for the minority canier holes in the n region. 

In the neutral n region (x > O), the electric field is assumed to be zero, thus the 
behavior of the excess minority carrier holes is determined from the equation 

i = 0 

Figure 8.13 1 The dc characteristics of a forward-biased 
pn junction used in the small-signal admittance calculations. 

Equation (8.37) may he written as 

p,,(O, t) = pd, exp - 
(e::)) where 

pdc = P,,O exp - (2)  
If we assume that lv l ( t )  << ( k T / e )  = V,. then the exponential term in Equa-, 
tion (8.38) may be expanded into a Taylor series retaining only the linear terms, 
the minority carrier hole concentration at x = 0 can he written as 

(8. 1 

where Sp, is the excess hole concentration in the n region. We are assuming that the 
ac signal voltage ul ( r )  is sinusoidal. We then expect the steady-state solution for 6p,  
to he of the form of a sinusoidal solution superimposed on the dc solution, or 
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where 8po[x) is the dc excess carrier concentration and pl ( .r)  is the magnitude of the 
ac component of the excess carrier concentration. The expression for 6po(x) is the 
same as that given in Equation (8.14). 

Substituting Equation (8.43) into the differential Equation (8.42) we obtain 

D , [ a ' ( J ~ ~ ( x ) l  a ' ~ ( x ) ~ , . ~ ,  - O Y ( . ~ ) + P I ( X ) ~ " , "  
ax? + 7 I = jwp l  ( x )  e""' (8.44) 

T ~ o  

We !nay rewrite this equation, combining the time-dependent and time-independent 
terms, as 

If the ac component, 111 ( x ) ,  is zero, then the first bracketed term is just the differen- 
tiill Equation (8.10). which is identically zero. Then we have. from the second brack- 
eted term. 

p t i n g  that L ,  = D,,rl,il. Equation (8.46) may be rewritten in the f h n  

where 

The general solution to Equation (8.48) is 

One boundary condition is that p l  (x --t +m) = 0, which implies that the coef- 
,ficient K; = 0. Then 

p I ( ~ )  = K1e-',,' (8.51) 

Applying the boundary condition at r = O from Equation (8.41) we obtain 
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The hole diffusion current density can he calculated at x = 0. This will be give 
by 

If we consider u homogeneous semiconductor, the derivative of the hole concentra- 
tion will be just the derivative of the excess hole concentration. Then 

We can write this equation in the form 

J,  = J,II + j,](l j 

where 

J,o = -eD,, 
arapo(xi)/ - Lp exp - - I 

ax ,< = 0 
'""' [ ( )  1 (8.56) 

Equation (8.56) is the dc component of the hole diffusion current density and is ex- 
actly the same as in the ideal I-Vrelation derived previously. 

The sinusoidal component of the diffusion current density is then found from 

where .fp is the current density phasor. Combining Equations (8.57). (8.51), and 
(8.52), we have 

We can write the total ac hole current phasor as 

where A is the cross-sectional area of the pn junction. Substituting the expression for 
C,,, we obtain 

If we define 

then Equation (8.60) becomes 
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We can go through the same type of analysis for the minority carrier electrons in 
the p region. We will obtain 

where 

The total ac current phasor is the sum of fp and f,,. The pn junction admittance 
is the total ac current phasor divided by the ac voltage phasor, or 

There is not a linear, lumped, finite, passive, bilateral network that can be syn- 
thesized to give this admittance function. However, we may make the following 
approximations. Assume that 

These two assumptions imply that the frequency of the ac signal is not too large. 
Then we may write 

Substituting Equations (8.67a) and (8.67b) into the admittance Equation (8.65) 
yields 

If we combine the real and imaginary portions, we get 

Equation (8.69) may be written in the form 

I Y = g d +  JUG (8.70) 



Figure 8.14 1 Minority carrier cuncentration changes with changing 
forward-bias voltage. 

The parameter gd is called the diffusion conductance and is given by 

'D Q 
*<I = ($) (I,," + f)zul = - (8.71) 

v, 

cupacitanc.e and is given by 

I where ir ly  is the dc bias current. Equation (8.71) is exactly thc same conductance as 
we obtained previously in Equation (8.34). The parameter C d  is called the diffusion 

1 
(8.72) 

1 
1 

The physics of the diffusion capacitance may be seen in Figure 8.14. The dc val- 
ues of the minority carrier concentrations are shown along with the changes due to 
the ac component of voltage. The A Q  charge is alternately being charged and dis- 
charged through the junction as the voltage across the junction changes. The change 
in the stored minority carrier charge as a function of the change in voltage is the dif- 
fusion capacitance. One consequence of the approximations wr," << I and wrno << 1 
is that there are no "wiggles" in the minority carrier curves. The sinusoidal frequency 
is low enough so that the exponential curves are maintained at all times. 

I 
EXAMPLE 8.6 I Objective 

To calculate thc small-signal admittance of a pn junction diode. 1 
This example is intended to give an indication of the magnitude of the diffusion capaci- 

tance as compared with the junction capacitance considcred in the last chapter. The diffusion 
resistance will also be calculated. Assume that Nu >> Nd so that p,,n >> n,,,,. This assumption 
implies that I,,,, >> I,,". Lct T = 300 K, r,,, = lo-' s, and I,,,, = I,,u = 1 mA. 



t 
H Solution 

8.2 Small-Signal Model of the pn Junction 

The diffusion capacitance, with these assumptions, is given by 

The diffusion resistance is 

C V, 0.0259 V 
r d = - = -  = 25.9 Q 

' D  Q I mA 

I Comment 
The value of 1.93 nF for the diffusion capacitance of a forward-biased pn junction is 3 to 4 
orders of magnitude larger than the junction capacitance of the reverse-biased pn junctiun, 
s\hich we calculated in Example 7.5. 

The diffusion capacitance tends to dominate the capacitance terms in a forward- 
biased pn junction. The small-signal diffusion resistance can be fairly small if the 
diode current is a fairly large value. As  the diode current decreases, the diffusion 
resistance increases. We will consider the impedance of fonuard-biased pn junctions 
again when we discuss bipolar transistors. 

TEST YOUR UNDERSTANDING I 
E8.8 A silicon pn junction diode at T = 300 K has the Following parameters: N ,  = 8 x 

10'%m-', Nu = 2 x 10" ern-', D,, = 25 cm2/s, D,, = 10 cm2/s, r , , ~  = 5 x 10-' S, 

and rPo = lo-' s. The cross-sectional area is A = 1 0 '  cm2. Determine the diffusion 
resistance and diffusion capacitance if the diode is forward hiased at ( a )  V" = 0.550 V 
and (b) V, = 0.610 V. 
[du 6.02 = P3 '7J 9.1 I = Pl ( q )  :#I 10.1. = p3 '7J  81 1 = ( W )  'SUV] 

E8.9 A GaAs pn junction diode at T = 300 K has the same parameters given in E8.8 except 
thet D,, = 207 cm'ls and D,, = 9.80 cm'ls. Determine the diffusion resistance and 
diffusion capacitance if the diode is forw.~rd biased at (a) V, = 0.970 V and (b) V, = 
1.045 V.  lrlU O'Ll = "3 'U 9'91 = '1 (Y) :JU 0P6'0 = "3 'U EYZ = ''1 (0) "JV1 

! 

1 8.2.3 Equivalent Circuit 

I The small-signal equivalent circuit of the forward-biased pn junction is derived from 
Equation (8.70). This circuit is shown in Figure 8.15a. We need to add the junction ca- 

1 pacitance, which will be in parallel with the diffusion resistance and diffusion capac- 
itance. The last element we add, to complete the equivalent circuit, is a series resis- 
tance. The neutral n and p regions have finite resistances s o  the actual pnjunction will 
include a series resistance. The complete equivalent circuit is given in Figure 8.15b. 

The voltage across the actual junction is V, and the total voltage applied to 
the pn diode is given by V,,,. The junction voltage V, is the voltage in the ideal 
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Figure 8.15 I (a) Small-signal equi\,alent circuit of ideal forward-biased 
pn junction diode; (bi Conlplete snidl-signal equi\,alent circuit of pn 
junctian. 

Figure 8.161 Forward-biased I-V 
characteristics of a pn junction diode 
showing the effect of series resistance. 

current-voltage expression. We can write the expression 

K3pp = + Ir ,  

Figure 8.16 is a plot of the current-voltage chwacteristic from Equation (8.73) show- 
ing the effect of the series resistance. A larger applied voltage is required to achieve 
the same current value when a series resistance is included. In most diodes, the series 
resistance will be negligible. In some semiconductor devices with pn junctions, how- 
ever, the series resistance will be in a feedback loop: in these cases, the resistance is 
multiplied by n gain factor and becomes non-negligible. 
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- 
TEST YOUR UNDERSTANDING I 

EB.10 A silicon pn junction diode at T = 300 K has the same parameters as those described 
in E8.8. The neutral n-region and neutral p-region lengths are 0.01 cm. Estimate the 
scries resistance of the diode (neglect ohrnic contacts). (U 99 = X SuV) 

(8.3 1 GENERATION-RECOMBINATION CURRENTS 
In the der~vatlon of the ideal current-voltage relationship, we neglected any effects . ' . ' .  
occurring w~thln the space charge region. Since other current components are gener- 
ated within the space charge region, the actual I-V characteristics of a pn junction 
diode deviate from the ideal expression. The additional currents are generated from 
the recombination processes discussed in Chapter 6. 

The recombination rate of excess electrons and holes, given by the 
Shockley-Read-Hall recombination theory, was written as 

:The parameters 11 and p are, as usual. the concentrations of electrons and holes, 

.3.1 Reverse-Bias Generation Current 

For a pn junction under reverse bias, we have argued that the mobile electrons and 
holes have essentially been swept out of the space charge region. Accordingly, within 
the space charge region, n == p == 0. The recombination rate from Equation (8.74) L comes 

The negative sign implies a negative recombination rate; hence, we are really 
generating electron-hole pairs within the reverse-biased space charge region. The re- 
combination of excess electrons and holes is the process whereby we are trying to 
reestablish thermal equilibrium. Since the concentration of electrons and holes is es- 
sentially zero within the reverse-biased space charge region. electrons and holes are 
being generated via the trap level to also try to reestablish thermal equilibrium. This 
generation process is schematically shown in Figure 8.17. As the electrons and holes 
are generated. they are swept out of the space charge region by the electric field. The 
llow of charge is in the direction of a reverse-bias current. This reverse-bias generu- 
i ion nrrrent, caused by the generation of electrons and holes in the space charge 
region. is in addition to the ideal reverse-bias saturation current. 

We may calculate the density of the reverse-bias generation current by consider- 
ing Equation (8.75). If we make a simplifying assumption and let the trap level be at 
the intrinsic Fermi level, then from Equations (6.92) and (6.97), we have that n' = ni 
L 
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E 
ti' 

C- EF,, '. - - -______  

Figure 8.17 1 Generation process in a reverse-biased pn 
junction. 

and p' = n , .  Equation (8.75) now becomes 

Using the definitions of lifetimes from Equations (6.101) and (6.104), we 
Equation (8.76) as 

- n ;  
R =  

rl,O + r , , ~  

If we define a new lifetime as the average of rPo and r,,", or 

then the recombination rate can he written as 

n ,  R = - = - G  
2 TO 

The negative recombination rate implies a generation rate, so G is the generation rate; 
of electrons and holes in the space charge region. 

The generation current density may he determined from 

IV 

&.. = E G  d i  

i 
(8.80) 
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where the integral is over the space charge region. If we assume that the generation 
rate is constant thn)ughout the space charge region, then we obtain 

The total reverse-bias current density is the sum of the ideal reverse saturation 
current density and the generation current density, or 

The ideal reverse saturation current density J ,  is independent of the reverse-bias 
voltage. However, .I8,, is a function of the depletion width W. which in turn is a func- 
tion of the reverse-bias voltage. The actual reverse-bias currcnt density, then, is no 
longer independent of the reverse-bias voltage. 

F O b j e c t i v e  I EXAMPLE 8.7 

To determine the relative magnitudes of the ideal reverse saturation current dcnsity and the 
generation current density in a silicon pn junction at T = 300 K. 

Consider the silicon pn junction described in Example 8.2 and Jet r~ = r , , ~  = r,,o = 
5 lo-' s. 

Solution 
The ideal reverse saturation current density was calculated in Example 8.2 and was found to 
be J. = 4.15 x 10." A/cn~'.Thegenerationcurrentdcnsity is again givcnby Equation (8.81) 
as 

and the depletinn width is given hy 

If we assume. for example, that V,,, + VR = 5 V. then using the parameters given i n  
Example 8.2 we find that W = 1.14 x lo-' cm. and then calculate the generation current 
density to he 

J,,, = 2.74 x lo-' ~ c m '  

Comment 
Comparing [he solutions for the two current densitieq, it is obvious that. for the silicon pn junc- 
tion diode at room temperature, the generation current density is approximately fuur orders of 
magnitude larger than the ideal saturation current density. The generation current is the domi- 
nant reverse-bias current in a silicon pn junction diode. 
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I TEST YOUR UNDERSTANDING 

E8.11 A GaAs pn junction diode has the same parameters as described in E8.9. (a) Calcu- 
late the reverse-bias generation current if the diode is reverse biased at VR = 5 V. 
(b )  Determine the ratio of I,, calculated in part (a) to the ideal reverse-saturation 
current IS.  x E6.1 (9) 'V r l . O ~  x EO.1 = "''l (D) 'suv1 

1 
i 

8.3.2 Forward-Bias Recombination Current 

For the reverse-biased pn junction, electrons and holes are essentially completel! 
swept out of the space charge region so that n % p % 0. Under forward bias, how 
ever, electrons and holes are injected across the space charge region, so we do, il 
fact, have some excess carriers in the space charge region. The possibility exists tha 
some of these electrons and holes will recombine within the space charge region ant 
not become pan of the minority carrier distribution. 

The recombination rate of electrons and holes is again given from Equa 
tion (8.74) as 

R =  
CnC,N, (np - n:) 

c,, (n + n' )  + Cp(p + p') 

Dividing both numerator and denominator by C,CpN, and using the definitions o 
T," and T,", we may write the recombination rate as 

Figure 8.18 shows the energy-band diagram of the forward-biased pn junction 
Shown in the figure are the intrinsic Fermi level and the quasi-Fermi levels fa 

Figure 8.18 I Energy-band diagram of a forward-biased pn 
junction including quasi-Fermi levels. 
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electrons and holes. From the results of Chapter 6, we may write the electron con- 
centration as 

and the hole concentration as 

where E F ~ ,  and EF,, are the quasi-Fenni levels for electrons and holes, respectively. 
From Figure 8.18, we may note that 

where V,, is the applied forward-bias voltage. Again, if we assume that the trap level 
is at the intrinsic Fermi level, then n' = p' = ni .  Figure 8.19 shows a plot of the 
relative magnitude of the recombination rate as a function of distance through the 
space charge region. This plot was generated using Equations (8.83), (8.84). (8.85), 
and (8.86). A very sharp peak occurs at the metallurgical junction (x = 0). 

At the center of the space charge region, we have 

e vo 
E,. - E,i = E,j - Fi, = - 

2 
(8.87) 

Relative 
recombination 

rilte t l 

Relative distance through space 
charge region - 

Figure 8.19 1 Relative magnitude of the 
recombination rate through the space 
charge region of a forward-biased pn 
junction. 
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Equations (8.84) and (8.85) then become 

and 

If we assume that n' = 11' = 11, and that r,," = ri,a = ro. then Equation (8.83) 
becomes 

I I ~  [exp (eV,,/kT) - I] 
R,,,,, = 

2r0 lexp(eV,/2kT) + I1  
which is the maximum recombination rate for electrons and holes that occurs at t 
center of the forward-biased pn junction. If we assume that V,, >> kT/e,  we 
neglect the (-I) term in the numerator and the ( + I )  term in the denomina 
Equation (8.90) then becomes 

ni 
R~~~ = - 2r11 exp (") 

The recombination current density may be calculated from # 
1%' 

Jrcc = 1 pi? dx (8.92) 

where again the integral is over the entire space charge region. In this case, however, 
the recombination rate is not a constant through the space charge region. We have 
c;tlculatcd the maximum recombination rate at the center of the space charge region, 
so we may write i 

wherex'is alength overwhich the maximumrecombinatio~~rate iseffective. However, 
since ro may not be a well-defined or known parameter, it is customary to write I 
where W is the space charge width. 

I TEST YOUR UNDERSTANDING 

E8.12 Consider a silicon pn junction diode at T = 300 K with thc same paramrlers given in 
E8.8. The diode is forward biased at V, = 0.50 V. ( a )  Calculate the forward-biased 
recombination currcnt. ( h )  Determine the ratio of I,, calculated in pan ( 0 )  to the 

ideal diffusion current. L;-OI X I Z ' L  (Y) 'V 01 X OE'Z = '"I (") ' (V I  
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Figure 8.20 I Because of recomhinatian, additional holes 
from the p region must be injected into the space charge 
region to establish the minority carrier hole concentration in 
the n region. 

8.3.3 Total Forward-Bias Current 

The total forward-bias current density in the pn junction is the sum of the recombi- 
nation and the ideal diffusion current densities. Figure 8.20 shows a plot of the mi- 
nority carrier hole concentration in the neutral n region. This distribution yields the 
ideal hole diffusion current density and is a function of the minority carrier hole dif- 
fusion length and the applied junction voltage. The distribution is established as a 
result of holes being injected across the space charge region. If, now, some of the in- 
jected holes in the space charge region are lost due to recombination, then additional 
holes must be injected from the p region to make up for this loss. The flow of these 
additional injected carriers, per unit time, results in the recombination current. This 
added component is schematically shown in the figure. 

: The total forward-bias current density is the sum of the recombination and the 1 ideal diffusion current densities, so we can write 

J = J,, + J D  (8.95) 

where J ,  is given by Equation (8.94) and J D  is given by I (8.96) 

The (-1) term in Equation (8.23) has been neglected. The parameter J ,  is the ideal 
reverse saturation current density, and from previous discussion, the value of J,o 
from the recombination current is larger than the value of J,. 
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Figum 8.21 I Ideal diffusion. recornhination, and total 
current in a forward-biased pn junction. 

If we take the natural log of Equations (8.94) and (8.96). we obtain 

r v, Vo In J ,  = In Jro + - = In J,o + - 
2kT 2 V, 

and 

e K, v, In J I ,  = In J ,  + - = In J ,  + - 
k T VI 

Figure 8.21 shows the recombination and diffusion current components plotted o 
log current scale as a function of V,/ V,. The slopes of the two curves are not 
same. Also shown in the figure is the total current density-the sum of the two c 
rent components. We may notice that, at a low current density, the recombinationcur- 
rent dominates, and at a higher current density, the ideal diffusion current dominates. 

In general, the diode current-voltage relationship may he written as 

where the parameter 11 is called the idealie fuclor: For a large forward-bias voltage. 
n = 1 when diffusion dominates, and for low forwdrd-bias voltage, rz 2 when 
recombination dominates. There is a transition region where I < n < 2.  



8.4 Junction Breakdown 

.4 1 JUNCTION BREAKDOWN C 
the ideal pn junction, a reverse-bias voltage will result in a small reverse-bias cur- 

nt through the device. However, the reverse-bias voltage may not increase without 
't; at some particulilr voltage, the reverse-bias current will increase n~pidly. The 
lied voltage at this point is called the hrenkdon,n voltage. 
Two physical mechanisms give rise to the reverse-bias breakdown in a pn junc- 

on: the Zener cffrcr and the urulanchr effect. Zener breakdown occurs in highly 
oped pn junctions through a tunneling mechanism. In a highly doped,junction, the 

conduction and valence bands on opposite sides of the junction are sufficiently close 
during reverse bias that electrons may tunnel directly from the valence band on the 
p side into the conduction band on the n side. This tunneling process is schematically 
shown in Figure 822a.  

The avalanche breakdown process occurs when electrons andlor holes, moving 
across the space charge region, acquire sufficient energy from the electric ficld to cre- 
ate electron-hole pairs by colliding with atomic electrons within the depletion 
region. The avalanche process is schematically shown in Figure 822b. The newly 
created electrons and holes move in opposite directions due to the electric field and 
thereby add to the existing reverse-bias current. In addition, the newly generated 
electrons and/or holcs may acquire sufficient energy to ionize other atoms, leading to 
the avalanche process. For most pn junctions, the predominant breakdown mecha- 
nism will be the avalanche effect. 

If we assume that a reverse-bias electron current I,,,, enters the depletion region 
at .r = 0 as shown in Figure 8.23, the electron cument I,, will increase with distance 
tli~.ough the depletion region due to the avalanche process. At x = W, the electron 

p region n region 

P Space charge region I I 

of electrons of holes 

Figure 8.22 I (a) Zencr breakdown mechanism in a reverse-biased pn junction; (b) avalanche breakdown 
process in a reverse-biascd pn junction. 



CHAPTER 8 The pn Junctlon Dlode 

Space charge region 'I- 7": 

Figure 8.23 1 Electron and hole current 
components through the space charge 
region during avalanche multiplicdtion. 

current may he written as 

where M, is a multiplication factor. The hole current is increasing through the de- I 
pletion region from the n to p region and reaches a maximum value at x = 0. The 
total current is constant through the pn junction in steady state. 

We can write an expression forthe incremental electron current at some point aas I 
dl,(x) = I,,(x)a,, dx + l,,(.x)a, dx (8.100) 

where a,, and a, are the electron and hole ionization rates, respectively. The ioniza- 
tion rates are the number of electron-hole pairs generated per unit length by an elec- 
tron (a,,) or by a hole (up). Equation (8.100) may he written as 

The total current I is given by 

1 = /"(XI + I,,(x) (8.102) 

which is a constant. Solving for I,(x) from Equation (8.102) and substituting into 
Equation (8.101), we obtain 

If we make the assumption that the electron and hole ionization rates are equal so 



then Equation (8.103) may be simplified and integrated through the space charge 
region. We will ohtain 

I W j - I ,  0 = 1 (8.105) 

Using Equation (X.99), Equation (8.105) may bc written as 

Slnce M,,/,,O = I and vnce 1,,(0) = I,,,,. Equat~on (8 106) becomes 

The a\alanche breakdown voltage is defined to be the voltage at which M,, ap- 
proaches intinity. The avalanche breakdown condition is then given by 

(8.108) 

The ioniration rates are strong functions of electric field and, since the electric field is 
notconstant through the space charge region. Equation (8.108) is not easy toevaluate. 

If we consider, for example, a one-sided p+n junction, the maximum electric 
field is given by 

The depletion wldth r,, I \  glbcn approximately a\ 

where VR is the magnitude of the applied reverse-hias volt;~gc. We have neglected the 
built-in potential V,,, . 

If we now dctine V R  to he the hrenkdown voltage V D ,  the rnaxirnuln clcctric 
field. E,,,;,,, will be defined as a critical electric field, E,,,,, at breakdown. Combining 
Equations (8.109) and (8.1 10). wc may write 

1 where N 8  is the semiconductordoping in the low-doped region of the one-sidedjunc- 
tion. The critical clcctric field, plotted in Figure 8.24, is a ?light function of doping. 

We have been considering a uniformly dopcd planar junction. The breakdown 
voltage will decrease for a lincarly graded junction. Figure 8.25 ~ h o w s  a plot of the 
breakdown voltage for a one-sided abrupt junction and a linearly graded junction. If 
we take into account the curvature of adiffuscd junction as well, the breakdown volt- 
age will be further degraded. 
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8.5 Charge Storage and Diode Transients 

For a doping concentration of 4 x 10" cm-', the critical electric field, from Figure 8.24, 
isapproximately 3.7 x 105 Vlcm. Then from Equation (8.1 11) the breakdown voltage is IlOV, 
which cor~elates quite well with the results from Figure 8.25. 

I Conclusion 
As Figure 8.25 showc. the breakdown voltage increases as the doping concentration decreases 
in the low-doped region. 

TEST YOUR UNDERSTANDING 

E8.13 A one-sided, planar, uniformly doped silicon pn junction diode is required to have 
a reverse-bias breakdown voltage of VL3 = 60 V. What is the maximum doping 
concentration in thc low-doped region such that this ~pecitication is met! 
( I . u ~  s ,nl  x 8 = "N 'suv) 

E8.14 Repeat E8.13 for a CaAs diode. ( E-mJ qlOl X S'I % ' N  'Sub') 

Q.5 1 CHARGE STORAGE AND DIODE TRANSIENTS 
The pn junction is typically used as an electrical switch. In forward bias, referred to 
as the 011 state, a relatively large current can be produced by a small applied voltage; 
in reverse bias, referred to as the off state, only a very small current will exist. Of pri- 
mary interest in circuit applications is the speed of the pn junction diode in switching 
states. We will qualitatively discuss the transients that occur and the charge storage 
effects. We will simply state the equations that describe the switching times without 
any mathematical derivations. 

8.5.1 The Turn-off Transient 

Suppose we want to switch a diode from the forward bias on state to the reverse-bias 
off state. Figure 8.26 shows a simple circuit that will switch the applied bias at t = 0. 
Fort < 0, the forward-bias current is 

The minority carrier concentrations in the device, for the applied forward voltage V F ,  
are shown in Figure 8.27a. There is excess minority carrier charge stored in both the 
p and n regions of the diode. The excess minority carrier concentrations at the space 
charge edges are supported by the forward-bias junction voltage V,. When the volt- 
age is switched from the forward- to the reverse-bias state, the excess minority car- 
rier concentrations at the space charge edges can no longer be supported and they 
start to decrease, as shown in Figure 8.27b. 

The collapse of the minority carrier concentrations at the edges of the space 
charge region leads to large concentration gradients and diffusion currents in the 
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Figure 8.26 1 Simple circuit for switching a diode from 1 
forward to reverse bias. 

reverse-bias direction. If we assume, for the moment, that the voltage across t 
diode junction is small compared with V K .  then the reverse-bias current is 
approximately 

The junction capacitances do not allow the junction voltage to change instantaneously. 
If the current IK  were larger than this value, there would be a forward-bias voltage 
across the junction, which would violate our assumption of a reverse-bias current. If 
the current IK  were smaller than this value, there would be a reverse-bias voltage 
across the junction, which means that the junction voltage would have changed in- 
stantaneously. Since the reverse current is limited to the value given by Equation 
(8.113). the reverse-bias density gradient is constant; thus, the minority carrier con- 
centrations at the space charge edge decrease with time as shown i n  Figure 8.27b. 

This reverse current IR will be approximately constant for 0+ 5 r 5 t, ,  where t, 1 

is called the storage time. The storage time is thc lmgth of time required for the 
minority carrier concentrations at the space charge edge to reach the thermal- 
equilibrium values. After this time, the voltage across the junction will begin to 
change. The current characteristic is shown in Figure 8.28. The reverse current is the 
Row of the stored minority carrier charge, which is the difference between the minor- 
ity carrier concentrations at t = 0- and t = w,  as was shown in Figure 8.27h. 

The storage time t ,  can be determined by solving the time-dependent continuity 
equation. If we consider a one-sided p+n junction, the storage time is determined 

4 
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Fownrd hias 
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Forward bias 
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Figure 8.27 1 (a) Steady-state forward-bias minority camer 
concentrations: (b) minority carrier concentrations at various 
times during switching. 

Figure 8.28 1 Current characteristic 
versus time during diode switching. 
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from the equation 
- 

where erf (r) is known as the error function. An approximate solution for 
time can he obtained as 

the 

The recovery phase fo r t  > t, is the time required for the junction to reach it! 

steady-state reverse-bias condition. The remainder of the excess charge is hei 
removed and the space charge width is increasing to the reverse-bias value. I , , ~  
decay time tz is determined from 

The total turn-off time is the sum oft ,  and r r .  
To switch the diode quickly, we need to he able to produce a large reverse tor- 

rent as well as have a small minority carrier lifetime. In the design of diode circu~~,. 
then, the designer must provide a path for the transient reverse-bias current pulsc l o  

order to he able to switch the diode quickly. These same effects will be considered 
when we discuss the switching of bipolar transistors. 

[ TEST YOUR UNDERSTANDING 1 
E8.15 A one-sided ptn silicon diode, that has a forward-bias c u ~ ~ e n t  of I, = 1.75 mA, is 

switched ta reverse bias with an effective reverse-bias voltage of Vn = 2 V and an 
effective series resistance of R x  = 4 kn. The minority carrier hole lifetime is 
lo-' s. (a) Determine the storage time t,. ( b )  Calculate the decay time r?. ( c )  What 
is the turn-off time of the diode? 
[s ,-Or x Z = ( 2 ) ' s  ,-Ol x SZ ' I  ('11 'S L ~ O 1  X 9 C L O  ("1 ''uV1 

8.5.2 The Turn-on Transient 

The turn-on transient occurs when the diode is switched from its "off" state into the 
forward-hias "on" stale. The turn-on can be accomplished by applying a forward- 
bias current pulse. The first stage of turn-on occurs very quickly and is the length of 

thermal-equilibrium value when V,  = 0. During this time, ionized donors and ac 
ceptors are neutralized as the space charge width narrows. 

1 
time required to narrow the space charge width from the reverse-bias value to its' 

The second stage of the turn-on process is the time required to establish th 
minority-carrier distributions. Durinp this time the voltage across the junction is in- 

ity carrier lifetime is small and if the forward-bias current is small. 

1 
creasing toward its steady-state value. A small turn-on time is achieved if the ininar- 

4 



8.6 The Tunnel Diode 

*8.6 1 THE TUNNEL DIODE 
The nrnrlel diode is a pn junction in which both the n and p regions are degenerately 
doped. As we discuss the operation of this device, we will find a region that exhibits 
a negative differential resistance. The tunnel diode was used in oscillator circuits in 
the past, but other types of solid-state devices are now used as high-frequency oscil- 
lators: thus, the tunnel diode is really only of academic interest. Nevertheless, this de- 
vice does demonstrate the phenomenon of tunneling we discussed in Chapter 2. 

Recall the degenerately doped semiconductors we discussed in Chapter 4: the 
Fermi level is in the conduction band of a degenerately doped n-type material and in 
the valence band of a degenerately doped p-type material. Then, even at T = 0 K, 
electrons will exist in the conduction hand of the n-type material, and holes (empty 
states) will exist in the p-type material. 

Figure 8.29 shows the energy-band diagram of a pn junction in thermal equilib- 
rium for the case when both the n and p regions are degenerately doped. The deple- 
tion region width decreases as the doping increases and may be on the order of 
approximately 100 A for the case shown in Figure 8.29. The potential barrier at the 
junction can be approximated by a triangular potential barrier, as is shown in Fig- 
ure 8.30. This potential harrier is similar to the potential barrier used in Chapter 2 to 
illustrate the tunneling phenomenon. The barrier width is small and the electric field 
in the space charge region is quite large; thus, a finite probability exists that an elec- 
tron may tunnel through the forbidden band from one side of the junction to the other. 

We may qualitatively determine the current-voltage characteristics of the 
tunnel diode by considering the simplified energy-band diagrams in Figure 8.31. 

Potential 

p region 

I 
I 
I 

1 I X 

I I 
M 
1 Space I 

charge reglon 

Figure 8.29 I Energy-hand diagram of a pn junction in Figure 8.30 I Triangular potential 
thermal equilihrium in which both the nand p regions ilre harrier approximation of the potential 
degenerately doped. harrier in the tunnel diode. 
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F i g u ~  8.31 1 Simplified enetgy-band diagrams and I-Vcharacteristics of the tunnel 
diode at (a) zero bias; (b) a slight forward bias; (c) a forward bias producing 
maximum tunneling current. 



8.6 The Tunnel Diode 

. ,  . , I 
( 5 )  

Figure 8.31 1 lconcluded) (d) A higher forward bias showing less tunneling current; (e) a 
forward bias for which the diffusion current dominates. 

Figure 8.31a shows the energy-band diagram at zero bias, which produces zero 
current on the 1-Vdiagram. If we assume, for simplicity, that we are near 0 K, then 
all energy states!are filled below EI.  on both sides of the junction. 

Figure 8.31b shows the situation when a small forward-bias voltage is applied to 
the junction. Electrons in the conduction band of the n region are directly opposite to 
empty states in the valence band of the p region. There is a finite probability that some 
of these electrons will tunnel directly into the empty states, producing a forward- 
bias tunneling current as shown. With a slightly larger forward-bias voltage, as in 
Figure 8 .31~ .  the maximum number of electrons in the n region will be opposite the 
maximum number of empty states in the p region; this will produce a maximum tun- 

As the forward-bias voltage continues to increase, the number of electrons on 
the n side directly opposite empty states on the p side decreases, as in Figure 8.31d, 
and the tunneling current will decrease. In Figure 8.31e, there are no electrons on the 
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Figure 8.32 1 (a) Simplified energy-band diagram of a tunnel diode with a revene- 
bias voltage: (b) I-Vcharacteristic of a tunnel diode with a reverse-bias voltage. 

n side directly opposite available empty states on the p side. For this forward-bi 
voltage, the tunneling current will be zero and the normal ideal diffusion current 
exist in the device as shown in the I-Vcharacteristics. 

d 
The portion of the curve showing a decrease in current with an increase in volt- 

age is the region of differential negative resistance. The range of voltage and current 
for this region is quite small; thus, any power generated from an oscillator using this 
negative resistance property would also be fairly small. 

A simplified energy-band diagram of the tunnel diode with an applied reverse- 
bias voltage is shown in Figure 8.32a. Electrons in the valence band on the p side are 
directly opposite empty states in the conduction band on the n side, so electrons can 
now tunnel directly from the p region into the n region, resulting in a large reverse- 
bias tunneling current. This tunneling current will exist for any reverse-bias voltage. 
The reverse-bias current will increase monotonically and rapidly with reverse-bias 
voltage as shown in Figure 8.32b. 

8.7 1 SUMMARY 
When a forward-bias voltage is applied across a pn junction (p region positive with 
respect to the n region), the potential barrier is lowered so that holes from the p region 
and electmns from the n region can Row across the junction. 
The boundary conditions relating the minority carrier hole concentration in then region 
at the space charge edge and the minority carrier electron concentration in the p region 
at the space charge edge were derived. 

m The holes that are injected into the n region and the electrons that are injected into the 
p region now become excess minority carriers. The behavior of the excess minority 
carrier is described bv the ambioolar transoon eauation develooed and described i n  
Chapter 6. Solving the ambipolar transpon equation and using the boundary conditions. 
the steady-state minority carrier hole and electron concentrations in the n region and 
p region, respectively, were derived. 



Glossary of Important Terms 

I Gradients exist in the minority carrier hole and electron concentrations so that minority 
carrier diffusion currents exist in the pn junction. These diffusion currents yield the 
ideal current-voltage relationship of the pn junction diode. 

I The small-signal equivalent circuit of the pn junction diode was developed. The twu 
parameters of interest are the diffusion resistance and the diffusion capacitance. 

I Excess caniers are generated in the space charge region of a reverse-biased pn junction. 
These carriers are swept out by the electric field and create the reverse-bias generation 
current that is another component of the reverse-bins diode current. Excess carriers 
recon~bine in the space charge region of a forward-biased pn junction. This recombination 
pmcess creates the forward-bias recombination current that is another component of the 
forward-bias diode current. 

{ I Avalanche hreakdown occurs when a sufficiently large reverse-bias voltage is applied to 
the pn junction. A large reverse-hias currcnt may then be induced in the pn junction. 
The breakdown voltage as a function of the doping levels in the pn junction was I derived. In a one-sided pn jun~.tion, the breakdown voltage is a function of the doping 
concentration in the low-doped region. 
When a pn junction is switched from forward bias to revcrse bias, the stored excess 
minority carrier charge must be removed from the junction. The time required to 
remove this charge is called the storage time and is a limiting fdctor in the switching 
speed of a diode. 

GLOSSARY OF IMPORTANT TERMS 
avalanche breakdown The process whereby a large reverse-bias pn junction current is cre- 

ated due to the generation of electron-holc pairs by the collision of electrons andor holes 
with atomic electrons within the space charge region. 

carrier injection The flow of carriers across the space charge region of a pn junction when 
avoltage is applied. 

critical electric field The peak electric field in the space charge region at breakdown. 

diffusion capacitance The capacitance of a forward-biased pn junction due to minority car- 
rier storage etfccts. 

diffusion conductance The ratio of a low-frequency, small-signal sinusoidal current to volt- 
age in a forward-biased pn junction. 

diffusion resistance The inverse of diffusion conductance. 

lornard bias The condition in which a positive voltage is applied to the p region with re- 
spect to then region of a pn junction so that the potential barrier between the two regions 
is lowered below the thermal-equilibrium value. 

generation current The reverse-bias pn junction current pruduced by thc thermal genera- 
tion of electron-hole pairs within the space charge region. 

"long" diode A pn junction diode in which both the neutral p and n regions are long com- 
pared with the respective minority carrier diffusion lengths. 

recombination current The foru,ard-hias pn junction current produced as a result of the 
How of electrons and holes thdt recombine within the space charge region. 

reverse saturation current The ideal reverse-bias current in a pn junction. 

"short" diode Apn junction diode in which at least one of the neutral p o r n  regions is short 
compaed to the respective minority carrier diffusion length. 
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storage time The time required for the cxcc\\ nc~n(~rity carrier concentrations at thr ira'& 
charge edge to go from their steady-state values to zero when the diade is switchtk. 
forward to revcrse bias. 

CHECKPOINT 
After studying this chapter, the reader should hare the ability to: 

Descrihc thc mechanism of charge How acmss rhc space charge rrgiun of a pn juncrion 
urhcn a fr~nuard-bias volrege is applisd. 
Statr the boundary conditions for thc minority carrier concentmtians ;kt the edge of the 
space charge region. 

I 

Derive the expressions for the steady-statc inlinal-ity carrier cuncentrations in the 
pn junctiun. 
Derivc thc ideal currmt-volvage relationhhip for a pn junction diode. 
Daclibe the characteristics of a "short" diode. 
Descrihe what is meant by diffusion rcsistance and diffusion capacitancc. 
Describe generation and recombinatian currents in a pn junction. 
Describe the avalanche breakdown mechanism in a pn junction. 

i 
Descrihe the turn-oil transient responsc in a pn juncuon. 

REVIEW QUESTIONS 
1. Why does the putmtial barrier decrease in af(~rward-biased pn junction? 

2. Writc the boundary conditions for the e x c e s  minority carriers in a pn junction (a)  under 
forward hias and (b) under reverse bias. 

3. Sketch the steady-state minority carrier concentration\ in a fbrward-biased po junction. 

4. Explain the procedure thiit is used in deriving the ideal current-volt;ige relationship in :i 

pn junction diode. 

5. Sketch the electron and holc currents through a forward-biased pn junction diode. 

6 .  What i \  meant by a "short" diode? 

7. (a)  Explain the physical rnechanisrn of difti~sion capacitance. (b) What i~ diffuqion 
resistance? 

8. Explain the physical mechanism of the ( a )  generation currcnt and (b) recombination 
cllrrellt. 

9. Why docs the breakdown voltage of a pn junction decrease as the doping concentration 
increases'? 

10. Explain what is lnrant by storage time. 

PROBLEMS 

Section 8.1 pn Junction Current 

8.1 ( a )  C o n d e r  an ideal pn junction diode at T = 100 K operating in the forward-bias 
region. Calculate the change in diade voltage that will cause a factor al 10 increase 
in current. ( b )  Repcat part (o )  for a factor of 100 incrcasr in current. 



Calculate the applied reverse-bias voltage at which the ideal reverse current in a pn 
junction diode at T = 300 K reaches 90 percent of its reverse saturation current value. 

An ideal silicon pn junction at T = 300 K is under forward bias. The minority carrier -- :a lifetimes are r,,,, = lo-' sand r,,, = lo-' s. The doping concentration in the n region 
is N, = IOIb cm-2. Plot the ratio of hole current to the total current crossing the 

- 
< -. 

space charge region as the p-region doping concentration varies over the range 
10" 5 N ,  cm i .  (Use a log scale for the doping concentrations.) 

A silictln pn junction diode is to be designed to operate at T = 300 K such that the 
diode current is I = I0  mA at a diode voltage of V ,  = 0.65 V. The ratio of electmn 

than 20 A/cm2. Use the semiconductor parameters given in Example 8.2. 
current to total current is to be 0.10 and the maximum current density is to be no more 

For a silicon pn junction at T = 300 K, assume r,,o = O.lr,,o and w,, = 2 . 4 ~ ~ .  The 
ratio of electron current crossing the depletion region to the total current is defined as 
the electron injection efficiency. Determine the expression for the electron injection 
efficiency as a function of (a) N d / N ,  and (b) the ratio of n-type conductivity to p-type 
conductivity. 

Consider a p'n silicon diode at T = 300 K with doping concentrations of N,, = 
IOIR  cm-' and Nd = 10I6 cm-'. The minority carrier hole diffusion coefficient is 
D, = 12 cm2/s and the minority canier hole lifetime is r,,o = LO-' s.  The cross- 
sectional area is A = 1 0 P  cm'. Calculate the reverse saturation current and the 
diode current at a forward-bias voltage of 0.50 V. 

, ,, ,. ", .. 
95 percent of the current in the depletion region is carried by electrons? 

A silicon pn junction with a cross-sectional area of cm2 has the following prop- 
erties at T = 300 K: 

n region p region 

(a )  Sketch the thermal equilibrium energy-band diagram af the pn junction, including 
the values of the Fermi level with respect ta the intrinsic level on each side of the 
junction. (b) Calculate the reverse saturation current I,? and determine the forward- 
bias current I at a forward-bias voltage of 0.5 V. (c) Determine the ratio of hole 
current to total current at the space charge edge x,, . 
Agermaniumpin diode at T = 300 K has the following parameters: N,, = 10" cm-', 
Nd = 10lh cm-j, D, = 49 cm2/s, D,, = 100 cm21s, rPo = ran = 5 ps, and A = 
10.' cm2. Determine the diode current for (a) a forward-bias voltage of 0.2 V and 
(b) a reverse-bias voltage of 0.2 V. 

An n+p silicon diode at T = 300 K has the following parameters: Nd = 10" cm-', 
N,, = 1016 cm-l, D,, = 25 cm2/s, 0, = lOcm'/s, r,,, = r,o = 1 ps ,  and 
A = lo-' cm2. Determine the diode current for (a) a forward-bias voltage of 0.5 V 
and (b) a reverse-bias voltage of 0.5 V. 
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Figure 8.33 1 Figure for 
Problem 8.11. 

Figurn 8.34 1 Figure for 
Problem 8.12. 1 

8.11 A silicon step junction has uniform impurity doping concentrations of N ,  = 5 x 
10'' cm-' and Nd = 1 x 10" c m  ', and a cross-sectional area of A = lo-' cm2. 
Let I,,,, = 0.4 j ~ s  and r,,,, = 0. I ps .  Consider the geometry in Figure 8.33. Calculate 
(u)  the ideal reverse saturation current due to holes, (b) the ideal reverse saturation 
current due to electrons, ( c )  the hole concentration at x,, if V; = V b j .  and I d )  the 
electron current at x = x,, + L ,  for V,, = V,,, 

8.12 Consider the ideal long silicon pn junction shown in Figure 8.34. 7 = 300 K. The 

! 
n region is doped with 10'" donor atoms per cm' and the p region is doped with 
5 x 10'" acceptor atoms per cm'. The minority carrier lifetimes are r,,,, = 0.05 ws a 
r,,,, = 0.01 11s. The minority carrier diffusion coefficients are D,, = 23 cm'ls and 
D,, = 8 cm'ls. The forward-bias wlltage is V,, = 0.610 V. Calculate (a) the excess 

at .r = 3 x lo-' cm. and (r)  the electron current density at .r = 3 x lo-' cm. 

described in ( a )  Problem 8.9 and (b) Problem 8.10. 

diode is 7 = 300 K. and the doping concentrations are Nd = 10'%cms and N,, = 

I hole concentration as a function of x for x ? 0, (b) the hole diffusion current density 

8.13 The limit of low injection is normally defincd to he when the minority carrier concen- 
tration at the edge of the space charge region in the low-doped region becomes equal 1 
to one-tenth the majority carrier concentration in this region. Determine the \,slue of 
the forward-bias voltage at which the limit of lnw injection is reached fbr  the diode 4 

8.14 The cross-sectional area of a silicon pn junction is LO' cm'. The temperature ofthe 

8 x cm-'. Assume minority carrier lifetimes of r,,,, = s and I,,,, = lo-' s. 
Calculate the total number uf excess electrons in the p region and the total number of 
excess hales in the n regirln for (0) V,, = 0.3 V, (h )  V,, = 0.4 V, and ( c )  V,, = 0.5 V. 

- 3 8.15 Consider two ideal pn junctions at 7 = 300 K. having exactly the same electrical and 
physical parameters except for the handgap energy of the semiconductor materials. 
The tint pn junction has a bandgap energy of 0.525 eV and a forward-bias current of 
10 mA with V ,  = 0.255 V. For the secund pn junction, "design" the handgap energy 
so that a forward-bias voltage of V ,  = 0.32 V will produce acurrent of I0 uA. 

8.16 The reverse-bias saturati<~n current is a function of temperature. (o) Assuming that I, 
varies with temperature only Srwn the intrinsic carrier concentration, show that we 
can write I, = CT' exp (-E,/kT) where Cis  a constant and a hlnction only of the 
diode parameters. (b) Determine the increasc in I, as the ternpcrature increases from 
T = 300 K to T = 400 K for a (i) germanium diode and ( i i )  silicon diode. 

-- 8.17 Assume that the mobilities, diffusion coefficients, and minority carrier lifetime b parameters are independent of temperature (use the T = 300 K valuec). Assume that 
-G r,,, = s, rPo = 10-' s. N,, = 5 x 10" c n ~ i ' ,  and N,, = 5 x 10Ih cm-'. Plot the 

ideal reverse saturation current density from T = 2CU K to I = 500 K for (a) silicon, 



( b )  germanium, and (c)  gallium arsenide ideal pn junctions. (Use a log scale for the 
current density.) 

kl8 An idral uniformly doped silicon pnjunction diode ha? acmss-sectional area of 
lo-'' cm2. The p region is doped with 5 x lo1* acceptor aloms per cm' and then region 
is doped with 10" donor atoms per c d .  Assume that the following parameter values 
are independent of temperature: E, = 1.10 eV, r , , ~  = T,,O = 10-' S. D,, = 25 cm'ls. 
D,, = 10cm'ls. N, = 2.8 x 10" cm-'. and N ,  = 1.04 x I0lY cm-'.Theratioofthe 
forward to reverse current is tu be no less than 10' with forward- and reverse-bias 
voltages of 0.50 V. Also, the reverse saturation current is to be no larger than I @A. 
What is the maximum temperature at which the diode will meet these specifications? 

'8.19 Apin silicon diode is fabricated with a narrow n region as shown in Figure 8.10, 
in which W,, < L,,. Assume the boundary condition of p,, = p.,, at r = x. + W, 
( a )  Deri1.e the expression for the excess hole concentration Sp,, (x) as given by 
Equation (8.27) ib)  Using the resultr of pan (a), show that the current density in 
the diode is given by 

! 8.20 A silicon diode can be used to measure temperature by operating the diode at a fixed 
forward-bias current. The forward-bias voltage is then a function of temperature. At 

/ T = 300 K. the diode voltage is found to be 0.60 V Determine the diode voltage at 

I 
(a )  T = 310 K and ( h )  T = 320 K .  

8.21 A forward-biased silicon diode is to be used as a temperature sensor. The diode is for- =- 

ward biased with a constant current source and I:, is measured as a function of ternpr- 
I ature. ( r i )  Derive an expression for V,, (TI  assuming that DIL  for electruns and holes. 

/ and E, are independent of tcmperature. ( h )  If the diode is biased at I,, = 0.1 mAand if 
1 
1 I, = l 0 I 5  Aat T = 300 K,  plot V,, versus Tfor 2 0 C  i T < 200C.  ( c )  Repeat palt 
1 (h )  if 1 ,  = 1 mA. (d) Determine any changes in the results of pans (a) through ( c )  if 

the change in bandgap energy with temperature is taken into account. 

Section 8.2 Small-Signal Model of the pn Junction 

822 Calculate the small-signal ac admittance of a pn junction biased at V,, = 0.72 V 
and 1rJn = 2.0 mA. Assume the minority carrier lifetime is I p s  in both the n and 
p regions. T = 300 K. 

1.23 Consider a ptn silicon diode at T = 300 K The diode is b w a d  biased at a current of 
1 mA. The hole lifetime in the n region is lo-' s.Neglecting the depletion capacitance, 
calculate the diode impedance at frequencies of 10 kHz, 100 kHz, I MHz, and I0 MHz, 

8.24 Consider a silicon pn junction with parameters as described in Problem 8.8. 
((I) Calculate and plot the depletion capacitance and diffusion capacitance over the 
voltage range -10 5 V,, 5 0.75 V .  ( b )  Determine the voltage at which the two 
capacitances are equal. 

8.25 Consider a ptn silicon diode at T = 300 K .  The slope of the diffusion capacitance 
versus forward-bias current is 2.5 x 10-"lA. Determine the hole lifetime and the 
diffusion capacitance at a forward-bias current of 1 mA. 

8.26 A one-sided nip silicon diode at 7 = 300 K with a cross-sectional area of lo-' cm' 
is operated under forward bias. The doping levels are Nd = 10'' cm-' and 
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N, = 10" cm-', and the minority canier parameters are r,,,, = I 0  s. r,,,, = 10-' s, 
D ,  = 10 cm'h. and P,, = 25 cm'ls. The maximum diffusion capacitance is to be 1 
Determine ( a )  the maximum current through the diode, (b) the maximum forward-bi 
voltage, and (c )  the diffusion resistance. 

d 
8.27 A silicon pn junction diode at T = 300 K has a cross-sectional area of 10~%m'.  

length of the p region is 0.2 cm and the length of the n region is 0.1 cm. The doping 
concentrations are Nd = I0l5 ~ m - ~  and Nu = 10'" cm-'. Determine (a )  approxi- 
mately the series resistance of the diode and (b) the current through the diode that w' 
produce a 0.1 V drop across this series resistance. 

8.28 We want to consider the effect of a series resistance on the forward bias voltage 
required to achieve a particular diode current. (a) Assume the reverse saturation 
current in a diode is I, = 10-"' A at T = 300 K. The resistivity of the n region is 
0.2 0-cm and the resistivity of the p region is 0.1 R-cm. Assume the length of each 
neutral region is lo-' cm and the cross-sectional area is 2 x lo-' cm2. Determine 
the required applied voltage to achieve a current of (i) 1 mA and (ii) 10 mA. 
( h )  Repeat part (a) neglecting the series resistance. 

8.29 The minin~urn mall-signal diffusion resistance of an ideal forward-biased silicon 
pn junction diode at T = 300 K is to be r,  = 48 Q. The reverse saturation current is 

applied to meet this specification. 

diffusion resistance. (b) Repeat pan ( a )  for an applied reverse-bias voltage of 
Vc, = -20 mV, 

1 I, = 2 x 10-" A. Calculate the maximum applied forward-bias voltage that can be 

8.30 (',)An ideal silicon pn junction diode at T = 300 K is forward biased at V, = 
f 2 0  mV. The reverse-saturation current is I, = 10-l3 A. Calculate the small-signal 

1 
Section 8.3 Generation-Recombination Currents 1 
8.31 Consider a reverse-biased gallium arsenide pn junction at T = 300 K. Assume that a 

reverse-bias voltage, VR = 5 V, is applied. Assume parameter values of: N,  = Nd = 
10" cm-', D I )  - - 6 cm21s, D,, = 200 cm'ls, and r,o = r , , ~  = ro = 10@ s. Calculate 
the ideal reverse saturation current density and the reverse-biased generation current 
density. How does the relative value of these two currents compare to those of the 
silicon pn junction? 

*8.32 (a) Consider Example 8.7. Assume that all parameters except n, are independent of 
temperature. Determine the temperature at which J, and J,,, will be equal. What are 
the values of J ,  and J,,, at this temperature? (b) Using the results of Example 8.7, 
calculate the forward-bias voltage at which the ideal diffusion current is equal to the 
recombination current. 

8.33 Consider a GaAs pn diode at T = 300 K with N ,  = N ,  = 10'' cm-' and with a cross- 
sectional area of cm2. The minority carrier mobilities are p, = 3000 cm'1V-s and 
w p  = 200cm'N-s. The lifetimes are r,,, = r,,, = r,, = 10.' s. As a first approxitna- 
tion, assume the electron-hole generation and recombination rates are constant across 
the space charge region. (u)  Calculate the total diode current at a reverse-bias voltage 
of 5 V and at forward-bias voltages of 0.3 V and 0.5 V. (h )  Compare the results af pan 
(0) to an ideal diode at the same applied voltages. 

8.34 Consider the pn junction diode described in Problem 8.33. Plot the diode recombina- 
tion current and the ideal diode current (on a log scale) versus forward bias voltage 
over the range 0.1 5 V,, 5 I .0V.  



Problems 

Figure 8.35 1 Figure for 
Problem 8.38 and 8.39. 

A~il icon pn junction diode at T = 300 K has the following parameters:Na = N,, = 
I O l h  cm-'. i,,,, = T ,,,, = ro = 5 x 10.' s. D,, = IOcm'ls, D,, = 25 cm2/s. and a 
cross-sectional area of lo-' cm2. Plot the diode recombination current and the ideal 
diode current (on a log scale) versus forward bias volr:~ge over the range 0.1 5 
V,, 5 0.6 V. 

Consider a GaAs pn diode at T = 300 K with N,, = N., = 10" cm-' and with a 
cmss-sectional area of 5 x cm'. The minurity carrier niohilitirs are jr, ,  = 
3500 cm'N-s and p,, = 220 cm2/V-s. The rlectron-hole lifetimes are T,,,, = r,,,, = < 

r,, = s. Plot the diode forward-bias current including recombination currcnt 
herween diode volr;!pes of 0.1 5 V ,  _i 1.0 V. Compare this plnt tn that for an ideal 
dirlde. 

Starting with Equation (8.83) and using !he cuitable appri~ximations. show that the max- 
inlunl recombination rate in a forward-biased pn junction is given by Equatian (8.9 1 i. 

Consider. as shown in Figure 8.35, a uniformly doped silicon pn junction at 7 = 300 K 
with impurity doping concentrations of N,  = Nd = 5 x 10'' cm-' and minority 
carrier lifetin~cs of rno = rpo = ro = lo-' s.Areverse-bias voltageof VR = IOV is 
applied. A light source is incident only on the space charge region. pmducing an excess 
carrier generation ratc of g' = 4 x 10'' cm-' s-' . Calculate the generation current 
density. 

Along silicon pn junction diode has the following parameters: N,, = 10'' cm-', 
N,, = 3 x 10'" cm '. i,," = r,,,, = r0 = lo-' s .  D,, = 18 cm'ls. and D,, = 6 cm'/s. 
A light source is incident on the space charge region such as shown in Figure 8.35, 
producing a generation current density of JG = 25 mA/cm2. The diode is open 
circuited. The generation current density forward biases the junction, inducing a 
forward-bias current in the opposite direction to the generation current. A steady-state 
condition is reached when !he generation current density and forward-bias current 
density are equal in magnitude. What is the induced forward-bias voltage at this 
steady-state condition? 

Section 8.4 Junction Breakdown 

8.4U The critical electric field for breakdown in silicon is approximately E,,,, = 4 x 

10' Vlcm Determine the maximum n-type doping concentration in an abrupt p+n 
junction such that the breakdown voltage is 30 V. 
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8.41 Design an abrupt silicon ptn junction diode that has a reverse breakdown voltage 

120 V and has a forward-bias current of 2 mA at V = 0.65 V. Assume that r,,,, = 
lo-' s. and find I',, from Figure 5.3. 

8.42 Consider an abrupt n+p GaAs junction with a p-type doping concentration of N, = 
IOlh cm-'. Determine the breakdown voltage. 

8.43 A symmetrically dnped silicon pn junction has doping concentrations of N,, = N, = 
5 x 10" cm-'. If the peakelectric field in the junction at breakdown is E = 4 x 
lo5 Vlcm. determine thc breakdown voltage of this junction. 

8.44 An abrupt silicon p+n junction has an n-region doping concentration of N,, = 
5 x I0l5 cm-). What must be the minimum n-region width such that avalanche bre 
down occurs before the depletion region reaches an ohmic contact (punchthrough)? 

8.45 A silicon pn junction diode is doped with Nu = Nd = 10" c m .  Zener breakdown 
occurs when the peak electric field reaches 10' Vlcm. Determine the reverse-bias 
breakdown voltage. 

p region to avoid premature breakdown. Assume the p region doping is 10'' cm-'. 
Determine the reverse-bias voltage such that the depletion region remains within 
the p region and does not reach breakdown if the p region width is (0) 75 Wm and 
( b )  150 Wm. For each case, state whether the maximum depletion width or the 
breakdown voltage is reached first. 

from N, = I O I R  c m  ' to N, = 101%m-' over a distance of 2 bm. Estimate the 
breakdown voltage. 

i 
8.46 Adiode will very often have the doping profile shown in Figure 7.19. which is known 

as an n+ppi diode. Under reverse bias, the depletion region must remain within the 

8.47 Consider a silicon pn junction at T = 300 K whose doping profile varies linearly 

Section 8.5 Charge Storage and Diode Transients 

8.48 (u) In switching a pn junction from forward to reverse bias, assume that the ratio of I 
reverse current, I x ,  to forward current, I F ,  is 0.2. Determine the ratio of storage time 
to minority carrier lifetime, t,/r,,n. (b) Repeat part (a) if the ratio of I R  to IF is 1.0. 

8.49 A pn junction is switched from forward to reverse bias. We want to specify that 
t,, = O.2rpo. Determine the required ratio of IR to I,. to achieve this requirement. In 
this case, determine f2/rp0. 

8.50 Consider a diode with a junction capacitance of 18 pF at zero bias and 4.2 pF at a 
reverse bias voltage of VR = I0  V. The minority carrier lifetimes are I F 7  s. The 
diode is switched from a forward bias with a current of 2 mA to a reverse bias voltage 
of 10 V applied through a 10 kQ resistur. Estimate the tum-off time. 

Section 8.7 The Tunnel Diode 

8.51 Consider a silicon pn junction at T = 300 K with doping concentration of N, = 

the space charge width at a forward-bias voltage of V,, = 0.40 V. 

1 
N, = 5 x 10" cm-'. Assuming the abrupt junction approximation is valid, determine 

8.52 Sketch the energy-band diagram of an abrupt pn junction under zero bias in which the 
p region is degenerately doped and 4 = E, in the n region. Sketch [he forward- and 
reverse-bias current-voltage characteristics. This diode is sometimes called a hack- 



Summary and Review 

8.53 (n) Explain physically why the diffusion capacitance is not important in a reverse- 
biased pn junction. (6) Consider a silicon. a gennanium, and gallium arsenide pn 
junction. If the total current density is the same in each diode under forward bids, 
discuss the expected relative values of electron and hole current densities. 

$8.54 Asilicon pn junction diode at T = 300 K is to be designed to have a reverse-bias break- 
down voltage of at least 50 V and to handle a forward-bias current of 10 = 100 mA 
while still operating under low injection. The minority carrier diffusion coefficients and 
lifetimes are D, = 25 cm2/s, 0 ,  = 10 cm2/s, and r,,, = rpu = 5 x lo-' s. The diode 
is to be designed for minimum cross-sectional area. 

*8.55 The donor and acceptor concentrations on either side of a silicon step junction are 
equal. ( a )  Derive an expression for the breakdown voltage in terms of the critical 
electric field and doping concentration. (6) If the breakdown voltage is to be VB = 
50 V. specify the range of allowed doping concentrations. 
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Metal-Semiconductor and 
Semiconductor Heterojunctions 

P R E V I E W  

I n the preceding two chapters, we considered the pn junction and assumed that 
the semiconductor material was the same throughout the entire structure. This 
type of junction is referred to as a homojunction. We developed the electrostat- 

ics of the junction and derived the current-voltage relationship. In this chapter, we 
will consider the metal-semiconductor junction and the semiconductor heterojunc- 
tion, in which the material on each side of the junction is not the same. These junc- 
tions can also produce diodes. 

Selniconductor devices, or integrated circuits, must make contact with the out- 
side world. This contact is made through nonrectifying metal-semiconductor junc- 
tions, or ohmic contacts. An ohmic contact is a low-resistance junction providing 
current conduction in both directions. We will examine the conditions that yield 
metal-semiconductor ohmic contacts.. 

9.1 1 THE SCHOTTKY BARRIER DIODE 
One of the first practical semiconductor devices used in the early 1900s was the 
metal-semiconductor diode. This diode, also called a point contact diode, was made 
by touching a metallic whisker to an exposed setniconductor surface. These metal- 
semicondi~ctor diodes were not easily reproduced or mechanically reliable and were 
replaced by the pn junction i n  the 1950s. However, semiconductor and vacuum tech- 
nology is now used to fabricate reproducible and reliable metal-semiconductor con- 
tacts. In this section, we will consider the metal-semiconductor rectifying contact, or 
Schottky barrier diode. In most cases, the rectifying contacts are madc on n-type 
semiconductors; for this reason we will concentrate on this type of diode. 



9.1 The Schottky Barrier Diode 

9.1.1 Qualitative Characteristics 

The ideal energy-band diagram for a particular metal and n-type semiconductor be- 
fore making contact is shown in Figure 9. la. The vacuum level is used as a reference 
lebel. The parameter @,,, is the metal work function (measured in volts), $T is the 
semiconductor work function, and x is known as the electron affinil)- The work 
functions of various metals are given in Table 9.1 and the electron affinities of sev- 
eral semiconductors are given in Table 9.2. In Figure 9.la, we have assumed that 
4,,, > 4,. The ideal thermal-equilibrium metal-semiconductor energy-band diagram, 
for this situation, is shown in Figure 9.lh. Before contact, the Fermi level in the 
semiconductor was above that in the metal. In order for the Fermi level to become a 
constant through the system in thermal equilibrium, electrons from the semiconduc- 
tor flow into the lower energy states in the metal. Positively charged donor atoms re- 
main i n  the semiconductor, creating a space charge region. 

The parameter 4 ~ "  is the ideal barrier height of the semiconductor contact, the 
potential bamer seen by electrons in the metal trying to move into the semiconductor. 

Figure 9.1 1 (a) Energy-band diagram of a metal and 
semiconductor before contact; (b) ideal energy-hand diagram 
of a metal-n-semiconductor junction for @,,, z $., . 
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Table 9.1 1 Work fitncrionc nf \rime el.-mentq 

Element Wnrk function, +,,, 
Ax. silver 4.26 

b 

Al, aluminum 4.28 
Au, gold 5.1 Table 9.2 1 Electron affinity of some 
Cr, chromium 4.5 scmiconduclars 
Mo, molybdenum 4.6 
Ni, nickel 5.15 Element Electron affinity, x 
Pd, palladium 5.12 Ge, germanium 4.13 
Pt, platinum 5.65 Si, silicon 4.01 
Ti, titanium 4.33 CaAs, gallium arsenide 4.07 
W. tungsten 4.55 AIAs, alurninum arsmide 3.5 

This barrier is known as the Schottb burrier and is given. ideally, by 

lh8o=l*.-i)] 
On the semiconductor side, Vbi is the built-in potential barrier. This barrier, similar to 
the case of the pn junction, is the barrier seen by electrons in the conduction band try- 
ing to move into the metal. The built-in potential barrier is given by 

which makes V,>, a slight function of the semiconductor doping, as was thc case i n  a 
pn junction. 

If we apply a positive voltage to the semiconductor with respect to the metal. the 
semiconductor-to-metal barrier height increases. while @ ~ o  remains constant in this 
idealized case. This bias condition is the reverse bias. If a positive voltage is applied 
to the metal with respect to the semiconductor, the semiconductor-to-metal bdsner 
Vbi is reduced while @so again remains essentially constant. In this situation. elec- 
trons can more easily flow from the semiconductor into the metal since the bal~ier 
has been reduced. This bias condition is the forward bias. The energy-band diagrams 
for the reverse and forward bias are shown in Figures 9.2a and 9.2b, where VR is the 
magnitude of the reverse-bias voltage and K, is the magnitude of the forward-bias 
voltage. 

The energy-band diagrams versus voltage for the metd-semiconductor junction 
shown in Figure 9.2 are very similar to those of the pn junction given in the last chap- 
ter. Because of the simikdrity, we expect the current-voltage characteristics of the 
Schottky barrier junction to be similar to the exponential behavior of the pn junction 
diode. The current mechanism here, however, is due to the flow of majority carrier 
electrons. In forward bias, the barrier seen by the electrons in the semiconductor is 
reduced, so majority carrier electrons How more easily from the semiconductor into 
the metal. The forward-bias current is in the direction from metal to semiconductor; 
it is an exponential function of the forward-bins voltage V,. 



9.1 The Schottky Barrier Diode 

Figure 9.2 I Ideal mergy-band diagram of a mctal-semiconductorjunction (a) under revrrsc bias and (b) ulider 
.: forward bias. 

9.1.2 Ideal Junction Properties 

We can determine the electrostatic properties of the junction in the same way as we 
did for the pn junction. The electric field in the space charge region is determined 

I" mPoisson's equation. We have that 

dE p ( x )  - - - 
dx cs 

(9.3) 

where p(x)  is the space charge volume density and <, is the permittivity of the semi- 
conductor. If we assume that the semiconductor doping is uniform, then by integrat- 

g Equation (9.3, we obtain 

+ C I  (9.4) 

where C, is a constant of integration. The electric field is zero at the space charge 
edge in the semiconductor, so the constant of integration can he found as 

- 
The electric field can then be written as 

which is a linear function of distance, for the uniformly doped semiconductor, and 
reaches a peak value at thc metal-semiconductor interface. Since the E-held is zero 
inside the metal. a negative surface charge must exist i n  the metal at the metal- 
semiconductor junction. 
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The space charge region width, W, may be calculated as we did for the pn junc- 
tion. The result is identical to that of a one-sided p+n junction. For the unifortlrl? 
doped semiconductor, we have 

where VR is the magnitude of the applied reverse-bias voltage. We are again assum- 
ing an abrupt junction approximation. 

EXAMPI.E 9.1 I Objective 

To calculate the ilieorelical harrier height, built-in potential barrier, and maximom elcct~lc 
field in a meVal-semiconductor diode for zero applied bias. 

Consider a contact hetween tungsten and n-type silicon doped to N,, = 10'" c n i  .it 

T =300K. 

Solution 
The metal work function for tungsten (W) from Tttble 9.1 is @,,, = 4.55 V and the elec 
affinity for silicon from Table 9.2 is x = 4.01 V. The barrier height is then 

= @,,, - x = 4.55 - 4.01 = 0.54 V 

where is the ideal Schottky barrier height. We can calculate @,, as 

(2.Xl;,;") = 0.206 V 

Then 

Vb, = @ H o  @ , ,  = 0.54- 0.206 = 0.33 V 

The space charge width at zero bias is - = ["I1" = [2(M .7)(X.X5 x M" 

eNd (1.6 x 10-19)(10~6) 

or 

x,, = 0.207 x cm 

Then the maximum electric field is 

rNds,, (1.6 x 10-1n)(1016)(0.207 x 10-') 
IE,",, = - 

- - 

6, (11.7)(8.85 x 

or finally 

lEnlal = 3.2 x lo4 Vlcm 



9.1 The Schottky Barrier Diode 

r 
I Comment 
The values of space charge width and electric field are very similar to those ohtained for a 
pn junction. 

A junction capacitance can also be determined in the same way as we did for  the 
pn junct~on. We have that 

where C' is the capacitance per unit area. If we  square the reciprocal of  Equa- 
tion (9.8). we  obtain 

We can use Equation (9.9) to  obtain, to  a first approximation, the built-in potential 
barrier !f,, , and the slope of the curve from Equation (9.9) to  yield the seniiconductor 
doping N,!. We can calculate the potential $,, , and then determine the Schottky barrier 

from Equation (9.2). 

i TEST YOUR UNDERSTANDING 

E9.1 Consider an ideal chmmium-lo-n-type silicon Schottky diode at T = 300 K. Assume 
the semicunductor is doped at a cuncentration of N,, = 3 x 10" ~ m - ~ .  Determine the 
(a) ideal Schottky barrier height, (h)  huill-in potential harrier, (c) peak electric ticld 
with an applied reverse-bias voltage of V K  = 5 V, and id) junction capacitance per 
unit area for V, = 5 V. I,'JJ3/cl a-O1 x 889  = ,3 W )  "JJVA x L = '"'"31 1.1) 
'A ESZ.0 = '"A (9) 'A 6V0 = (") 'Sub'] 

E9.2 Repeat E9.1 for an ideal palladium-to-n-type GaAs Schottky diode with the same 

I impurity concentration. [z"3/cl 6-01 X 98'9 = ,3 (P) 'UlVA rO1 X L = ly'1LU31 I J )  
'A 616'0 = "'A (Y) 'A 50'1 = ""@ 1") 'yUV1 

O b j e c t i v e  1 EXAMPLE 9.2 

To calculate thc semiconductor doping and Schottky barrier height from the silicon diode 
/ experimental data shown in Figure 9.3. T = 300 K. 

I Solution 
The intercept of the tungsten-silicon curve is approximately at V,,, = 0.40 V From Equa- 

; tion (Y.Y), we can write 
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I't / I 

Figure 9.3 1 I /C2  versus V ,  for W-Si and W-GaAs 
, , 

Schottky barrier diodes. +. 
(From Sre / 141.) 

Then, horn the figure, we have 

so that 

We can calculate 

so that 

4,,, = Vb, + @, = 0.40 + 0.12 = 0.52 V 

where $,, is the actual Schottky barricr height, 

Comment 
The experimental value of 0.52 V can be compared with the ideal barrier height of @,, = 

054V found in Example 9.1. These results agree iairly well. For other metals, the discrepancy 
between experiment and theory is larger. 



9.1 The Schottkv Barrier Diode 

We can see that the built-in potential barrier of the gallium arsenide Schottky 
/diode is larger than that ofthe silicon diodr  This experimental result is normally oh- 
j served for all types of metal contacts. 

b.1.3 Nonideal Effects on the Barrier Height 

r~everal effects will alter the actual Schottky barrier height from the theoretical value 
given hy Equation (9.1). The first effect we will consider is the Schottky effect, or 
image-force-induced lowering of the potential barrier. 

An electron in a dielectric at a distance I from the metal will create an electric 
'field. The field lines must be perpendicular to the metal surface and will be the same I 
as if an image charge, +e. is located at the same distance from the metal surface, but 
inside the metal. This image effect is shown in Figure 9.4a. The force on the electron, 
due to the coulomb attraction with the image charge, is 

I Metal I Dielectric 

Figure 9.4 1 (a) Image charge and electric field lines at a metal4ielectric interface. (b) Distortion of 
the potential harrier due to image forces with zero electric field and (c) with a constant electric field. 
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The potential can then be found as 

where s' is the integration variable and where we have assumed that the potential is 
zero at x = cw. 

The potential energy of the clectron is e 4 ( . s ) ;  Figure 9.4b is a plot of the 
potential energy assuming that no other electric tields exist. With an electric field 
present in the dielectric, the potential is modified and can be written as V 

The potential energy of the electron, including the effect of a constant electric field, 
is plotted in Figure 9 . 4 ~ .  The p e ~ k  potential barrier is now lowered. This lowerinpof 
the potential barrier is the Schottky effect, or image-force-induced lowering. 

We can find the Schottky barrier lowering, A@, and the position of the maxi- 
mum barrier, x,,,, from the condition that 

We find that 

and 

EXAMPLE 9.3 I Objective 
I 

To calculalr the Schottky barrier lowering and the position nf the maximum barrier height. 
Cansider a gallium arsenide metal-semicunductor contact in which thc electric field in the 

semiconductor is assumed to be E = 6.8 x 10' Vlcm. 

Solution 
The Schottky barrier lowering is gi\*en by Equation (9.15). which i n  this case yields 

(1.6 x 101")(6.8 x lo") 

The position ol the maximum barrier height is 
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Comment 
Although the Schottky bamer lowering may seem like a small value, the barrier height and the 
barrier lowering will appear in exponential terms in the current-voltage relationship. A small 
change in the barrier height can thus have a significant effect on the current in n Schouky har- 
rier diode. 

TEST YOUR UNDERSTANDING 

E9.3 Determine the Schottky barrier lowering and the position of the maximum barrier 
height for the junction described in E9. I .  Use the value of the electric ficld found in 
this exercise. ('f 12 = "'x'Aa E6Z0.0 = @V 'sub') 

E9.4 Repeat E9.3 for the junction described in E9.2. (7 8 6 1  = "'x 'A 81200 = @V 'sub') 

Figure 9.5 shows the measured barrier heights in gallium arsenide and silicon 
Schottky diodes as  a function of metal work functions. There is a monotonic relation 
between the measured hanier  height and the metal work function, but the curves 
do not fit the simple relation given in Equation (9.1). The  barrier height of the 

All  1 ~. 
Mg Al H g W  Pd Pt 

3.0 4.0 5 0 6.0 
Metal work functton, e+,,, (rV) 

Figure 9.5 1 Experimental banier heights as a function of 
metal work functions for GaAs and Si. 
(From Crnwle) and Sie  [Zl.) 
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Figure 9.6 1 Energy-band diagram of a metal-semiconductor 
junction with an interfacial layer and interface states. 

metal-semiconductor junction is determined by both the metal work function and tl 
semiconductor surface or interface st.dtes. 

A more detailed cnergy-band diagram of a metal to n-type semiconductor conta 
in thermal equilibrium is shown in Figure 9.6. We will assume that a narrow interfaci 
layer of insulator exists between the metal and semiconductor. The interfacial layerci 
support a potential difference, hut will be transparent to the flow of electrons betwa 
the metal and semiconductor. The semiconductor also shows a distribution of surfar 
states at the metal-semiconductor interface. We will assume that all states below tl 
surface potential @o are donor states, which will be neutral if the state contains an ele 
tron and positively charged if the slate does not contain an electron. We will also a 
sume that all states above & are acceptor states, which will be neutral if the state do 
not contain an electron and negatively charged if the state contains an electron. 

The diagram in Figure 9.6 shows some acceptor statcs above @I, and below E 
These states will tend to contain electrons and will be negatively charged. We m; 
assume that the surface state density is constant and equal to D,, states/cm2-eV. T 
relation between the surface potential, surface state density, and other semiconduct 
parameters is found to be 

We will consider two limiting cases 

Case 1 Let D;, -t x. In this case, the right side of Equation (9.16) goes to zel 
We then have 

The barrier height is now fixed by the bandgap energy and the potential $0. The b. 
rier height is totally independent of the metal work function and the semiconduc~ 
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electron affinity. The Fermi level becomes "pinned" at the surface, at the surface po- 
tential 40. 

Case 2 Let D,,S -t 0. Equation (9.16) reduces to 

which is the original ideal expression. 
The Schottky barrier height is a function of the electric field in the semiconduc- 

tor through the barrier lowering effect. The barrier height is also a function of the sur- 
face states in the semiconductor. The barrier height, then, is modified from the ideal 
theoretical value. Since the surface state density is not predictable with any degree of 
certainty. the barrier height must be an experimentally determined parameter. 

9.1.4 Current-Voltage Relationship 

The current trarispnlr in a metal-semiconductor junction is due mainly to majority 
carriers as opposed to minority carriers in a pn junction. The basic process in the 
rectifying contact with an n-type semiconductor is by transport of electrons over the 
potential barrier. which can be described by the thermionic emission theory. 

The thermionic emission characteristics arc derived by using the assumptions 
that the barrier height is much larger than k T ,  so that the Maxwell-Boltzmann 
approximation applies and that thermal equilibrium is not affected by this process. 
Figure 9.7 shows the one-dimensional barrier with an applied forward-bias voltage 
V, and shows two electron current density components. The current J,,,,, is the elec- 
tron current density due to the flow of electrons from the selniconductor into the 
metal, and the current J,,,,, is the electron current density due to the flow of elec- 
trons from the metal into the semiconductor. The subscripts of the currents indicate 

: the direction of electron How. The conventional current direction is opposite to elec- 
tron flow. 

The current density J,,,, is a function of the concentration of electrons which 
i have x-directed velocities sufficient to overcome the barrier. We may write 

1 where E; is the minimum energy required for thertnionic emission into the metal, u ,  
is the carrier velocity in the direction of transport, and e is the magnitude of the elec- 

i tronic charge. The incremental electron concentration is given by 

I 
i where g, ( E )  is the density of states in the conduction band and J F i E )  is the 

Fermi-Dirac probability function. Assuming that the Maxwell-Boltrmann approxi- 
mation applies, we may write 
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Figure 9.7 1 Energy-band diagram of a forw~rd-biased 
metal-semiconductor junction including the image 
lowering effect. 

If all of theelectron energy above E, is assumed to be kinetic energy, [hen 

1 
-mzv2 = E - E, 
2 

The net current density in the metal-to-semiconductor junction can be written as 

J =.I,+, - J,+, (9.24 

which is defined to be positive in the direction from the metal to the semiconductor. 
We find that 

where 



f 
9.1 The Schottky Barr~er D~ode 

The parameter A* is called the effective Richardson constant for therrnionic 
emission. 

Equation 19.23) can be written in the usual diode form as 

where 3 , ~  is the reverse-saturation current density and is given by 

We may recall that the Schottky barrier height @n,, change5 because of the image- 
force lowering. We have that @B,, = @HI, - A@. Then we can write Equation (9.26) as 

The change in barrier height, A@. will increase with an increase in the electric field, 
or with an increase in the applied reverse-bias voltage. Figure 9.8 shows a typical 
reverse-bias currcnt-voltage characteristic of a Schottky barrier diode. The reverse- 
bias current increases with reverse-bias voltage because of the barrier lowering effect. 
This figure also shows the Schottky barrier diode going into breakdown. 

Figure 9.8 1 Experimental and theoretical 
reverse-bias currents in a PtSi-Si diode. 
( f i ,m  SIP l141.) 
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EXAMPLE 9.4 ] Objective 

To calculate the effective Richardson constant from the 1-Vcharacteristics. 
Consider the tungsten-silicon diode curve in Figure 9.9 and assume a harrier height of 

#A,,  = 0.67 V. From the figure, .Isr = 6 x 10-' Alcm'. 

H Solution 
We have that 

so that 

Then 

H Comment 
The experimenlally determined value of A' is a very strong funclion of #",, since is in 
exponential term. A small change in 41~,, will change the value of the Richardson cons 
subslantially. 

Q 

Figure 9.9 I Forward-bias current 
dunsity Ji versus V,, for Wi-Si and 
W-GaAs diodcs. 
(From Sre /I411 



# 9.1 The Schottky Barrier Diode 

1 TEST YOUR UNDERSTANDING 1 
E9.5 The Schottky barrier height of a silicon Schottky junction is $R,,  = 0.59V, the e8ective 

Richardson constant is A' = 114 NK'-cm', and the cross-sectional area is A = 
lo-' cm2. For T = 300 K, calculate (a) the ideal reverse-saturation current and (b) the 
diodecurrentfor V,, = 0.30V. Iv'JJ I'PI = 1 ( 9 )  'VL-01 X I E I  = "1 ("1 'SUVI 

We may note that the reverse-saturation current densities of the tungsten-silicon 
and tungsten-gallium arsenide diodes in Figure 9.9 differ by approximately 2 orders 
of magnitude. This 2 order of magnitude difference will be reflected in the effective 
Richardson constant, assuming the harrier heights in the two diodes are essentially 
the same. The definition of the effective Richardson constant, given by Equa- 
tion (9.24), contains the electron effective mass, which differs substantially between 
silicon and gallium arsenide. The fact that the effective mass is in the expression for 
the Richardson constant is a direct result of using the effective density of states func- 
tion in the thermionic emission theory. The net result is that A* and Js7 will vary 
widely between silicon and gallium arsenide. 

9.1.5 Comparison of the Schottky Barrier Diode 
and the pn Junction Diode 

Although the ideal current-voltage relationship of the Schottky banier diode given 
by Equation (9.25) is of the same form as that of the pn junction diode, there are two 
imponant differences between a Schottky diode and a pn junction diode: The first is 
in the magnitudes of the reverse-saturation current densities, and the second is in the 
switching characteristics. 

The reverse-saturation current density of the Schottky barrier diode was given 
by Equation (9.26) and is 

-@B. 

f 
J > T  = A * T ? ~ X ~  ( F )  

The ideal reverse-saturation current density of the pn junction diode can be written as 

The form of the two equations is vastly different, and the current mechanism in the 
two devices is different. The current in a pn junction is determined by the diffusion 
of minority carriers while the current in a Schottky banier diode is determined by 
thermionic emission of majority carriers over a potential barrier. 

Objective 1 EXAMPLE 9.5 

To calculate the reverse-saturation current densities of a Schottky barrier diode and a pn junc- 
tion diode. 

Consider a tungsten banier on silicon with a measured barrier height of em,,, = 0.67 eV. 
The effective Richardson constant is A' = I I4 ~ I K ' - c r n ~ .  Let T = 300K. 

s 
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Solut ion 
If we neglect the barrier lowering effect, we have for the Schottky barrier diode 

e m r , ,  , = A'T' exp ( F )  = (1 14)(300)' e r p  = 5.98 x 10' ~ l c r n '  

Consider a silicon pn junction with the following parameters at T = 300 K. 

N, = lo t8  cm-3 N,, = l0Ih cm-' 

D,, = 10 cm2/s D,, = 25 cm'ls 

7,,, = lo-.' r,,,, = lo-' 

We can then calculate the following parameters: 

L, = 1.0 x 10-' cm L,, = 1.58 x lo-' cm 

p,,, = 2.25 x lo4 cm-' n,,, = 2.25 x 10' cm-' 

The idcal revcrse-saturation cunent density of the pn junction diode can be determined fr 
Equation (9.28) as 

8 Comment 
The idcal reverse-saturation current density of the Schottky barrier junction is orders of 
magnitude larger than that at'the ideal pn junction diode. 

Figure 9.10 I Comparison of forward. 
bias 1-Vcharacteristics between a 
Schottky diode and a pn junction 
diode. 
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Recall that the reverse-bias current in a silicon pn junction diode is dominated 
by the generation current. A typical generation current density is approximately 
lo-' A!cm2. which is still 2 to 3 orders of magnitude less than the reverse- 
saturation current density of the Schottky bamer diode. A generation current also ex- 
ists in the reverse-biased Schottky bamer diode; however, the generation current is 
negligible compared with the J ,T  value. 

Since J,T >> J , .  the forward-bias characteristics of the two types of diodes will 
also be different. Figure 9.10 shows typical I-V characteristics of a Schottky barrier 

!diode and a pn junction diode. The effective turn-on voltage of the Schottky diode is 
less than that of the pn junction diode. 

C 
Objective 1 EXAMPLE 9.6 

;To calculate the forward-bias voltage required to generate a foward-bias current density of 
10 ~lcm'  in a Schottky barrier diode and a pn junction diode. 

Consider diodes with the paramctrrs given in Example9.5. Wecan assume that thepn junc- 
j tion diode will be sufficiently forward biased so that the ideal diffusion current will dominate. 
Let T = 300K. 

I Solution 
For the Schottky barrier diode, we have 

For the pn junction diode, we have 

# Comment 
A comparison of thc two forward-bias voltages shows that the Schottky barrier diode has a 
hun-on voltage that In this case, is approximately 0.37 V smaller than the tom-on voltage of 
the pn junction diode: 

The actual difference between the turn-on voltages will be a function of the bar- 
I rier height of the metal-semiconductor contact and the doping concentrations in the 

pn junction, but the relatively large difference will always be realized. We will con- 
sider one application that utilizes the differcnce in turn-on voltage in the next chap- 
ter, in what is referred to as a Schottky clamped transistor. 
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( TEST YOUR UNDERSTANDING 

E9.6 (0) The rcversr saturation cunents of a pn junction and a Schollky diode arc 10-'- .\ 
and 10 " A, respectively. Determine the required forward-bias voltages in the 
pn junction diode and Schottky diode to produce a current of 100 @ A  i n  cach diodi. 
( b )  Repsat pan (a) for forward bias currents of 1 mA. 
[A RSE'U A 9S9'0 ('4) 'A 86Z'O 'A 96i'O (") 'sUV1 

E9.7 A pn junction diode and a Schottky diode have equal cross-sectional areas and have 
forward-biased currents of 0.5 mA. Thc reverse-saturation current of the Schottky 
diode is 5 x lo-' A. The difference in fonvard-bias voltage between the two diodes 
is 0.30 V Determine the reverse-saturation current of the pn junctioll diode. 
(V z l O 1  X 99'0 'SuV) 

The second major difference between a Schottky banier diode and a pn juncti 
diode is i n  the frequency response, or switching characteristics. In our discussion, 
have considered the current in a Schottky diode as being due to the injection of m ' 
ity carriers over apotential barrier. The energy-band diagram of Figure 9.1. fore 
ple. showed that there can he electrons in the metal directly adjacent toempty sta 
the semicondoctor. IT im electron froln the valence hand of the semiconductor wer 
flow into the metal, this effect would bc equivalent 10 holes being injected into 
semiconductor. This injection of holes would create excess minority carrier hole 
then region. However, calculations as well as measurements have shown that the ra 
of the minority carricr hole current to the totel cutrent is extremely low in most case 

The Schottky harrier diode, then, is a majority carrier device. This fact me 
that there is no diffusion capacitance associated with a forward-hiased Schot 
diode. The elimination of the diffusion capacitance makes the Schottky diod 
higher-frequency device than the pnjunction diode. Also, when switching a Schot 
diode from forward to reverse bias, there is no minority carrier stored charge 
remove, as was the case in the pn junction diode. Since there is no minority cam 
storage time, the Schottky diodes can be used in fast-switching applications. A typ' 
cal switching time fbr a Schottky diode is in the picosecond range, while for - 
pn junction it is normally in the nanosecond range. 

9.2 1 METAL-SEMICONDUCTOR OHMIC CONTACTS j 
Contacts must be made between any hcmiconductor device, or integrated circuit, and 
the outside world. These contacts are made via ohmic contnctv. Ohmic contacts are 
metal-to-semiconductor contacts, but in this cnse they are not rectifying contacts. An 
ohmic contact is a low-resistance junction providing conduction i n  both directions 
between the metal and the semiconductor. Ideally, the current through the ohmic con- 
tact is a linear function of applied voltage, and the applied voltage should be very 
small. Two general types of ohmic c1)ntacts are possible: The first type is the 
nonrectifying banier, and the second is the tunneling barrier. We will define a 
cific contact resistance that is used to characterize ohmic contacts. 



9.2 Metal-Semiconductor Ohmic Contacts 

9.2.1 Ideal Nonrectifying Barriers 

We considered an ideal metal-to-n-type selniconductor contact in Figure 9.1 for the 
case when @,,, > @.>. Figure 9.1 1 shows the same ideal contact for the opposite case 
of @,,, < @.>. In Figure 9.1 l a  we see the energy levels before contact and, in Fig- 
ure 9. I I b. the barrier after contact for thermal equilibriun~. To achieve thermal equi- 
librium in this junction. electrons will Row from the metal into the lower energy 
states in the semiconductor, which makes the surface of the semiconductor more 
n type. The excess electron charge in the n-type semiconductor exists essentially as a 
surface charge density. If a positive voltage is applied to the metal, there is no harrier 
to electrons flowing from ihe semiconductor into the metal. If a positive voltage is 
applied to the semiconductor, the effective barrier height for electrons flowing from 
the metal into the semiconductor will be approximately @H,,  = @,,, which is fairly 
small for a moderately to heavily doped semiconductor. For this bias condition, elec- 
trons can easily flow from the metal into the semiconductor. 

Figure 9.12a shows the energy-hand diagram when a positive voltage is applied 
to the metal with respect to the semiconductor. Electrons can easily flow "downhill" 
from the semiconductor into the metal. Figure 9.12b shows the case when a positive 
voltage is applied to the semiconductor with respect to the metal. Electrons can eas- 
ily Row over the barrier from the metal into the semiconductor. This junction, then, ! is an ohmic contact. 

Figure 9 1 3  shows an ideal nonrectifying contact between a metal and a p-type 
semiconductor. Figure 9.13a shows the energy levels before contact for the case 
when @,,, @,. When contact is made, electrons from the semiconductor will flow 
into the metal to achieve thermal equilibrium, leaving behind more empty states, or 
holes. The excess concentration of holes at the surface makes the surface of the semi- 
conductor more p type. Electrons from the metal can readily move into the empty 
states in the semiconductor. This charge movement corresponds to holes flowing 

Figure 9.11 I Ideal energy-band diagram (a) before contact and (h) after contact for a metal-n-semiconductor junction 
for 4,,, < 4, 
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E ------ 

E ------ 
F 

Figure 9.12 1 Ideal energy-band diagram of a metal-n-semiconductor ohmic crrntact (a) wi 
a positive voltage applied to the metal and (b) with a positive voltage applied to the 
serniconductur. 

I 
I 

I 

Figure 9.13 1 Ideal energy-band diagram (a) before canlact and (b) after contact for a 
metal-p-semiconductor junction for #,,, > #.$ 

from the semiconductor into the metal. We can also visualize holes in the metal flow- 
ing into the semiconductor. This junction is also an ohmic contact. 

The ideal energy hands shown in Figures 9.11 and 9.13 do not take into account 
the effect of surface states. If we assume that acceptor surface states exist in the 
upper half of the semiconductor handgap, then, since all the acceptor states are below 
E,. for the case shown in Figure 9.11h, these surface states will he negatively 
charged, and will alter the energy-band diagram. Similarly, if we assume that donor 
surface states exist in the lower half of the bandgap, then all of the donor states will 
be positively charged for the case shown in Figure 9.13b; the positively charged sur- 
face states will also alter this energy-band diagram. Therefore, if $,, c $.s for the 
metal-n-type se~niconductor contact, and if @,, > @.T for the metal-p-type semicon- 
ductor contact. we may not necessarily form a good ohmic contact. A 
9.2.2 Tunneling Barrier 1 
The space charge width in a rectifying metal-semiconductor contact is inversely pro- 
portional to the square root of the semiconductor doping. The width of the depletion 
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E, 
EI; 

E, 

Figure 9.14 1 Energy-band diagram of 
a heavily doped n-semiconductor-to- 
metal Junction. 

gion decreases as the doping concentration in the semiconductor increases; thus, a s  
thedoping concentration increases, the probability of tunneling through the barrier in- 

,creases. Figure 9.14 shows ajunction in which the metal is in contact with a heavily 
#doped n-type epitaxial layer. 

L Objective I EXAMPLE 9.7 

%calculate the space charge width for a Schottky barrier on a heavily doped semiconductor. 
Consider silicon at T = 300K doped at Nd = 7 x 10" cm '. Assume a Shottky barrier 

with #B,, = 0.67 V. For this case. we can assume that &,, % m u u .  Neglect the barrier lowering 

! 
effect. 

w Solution 
From Equation (9.7). we have lor Lero applied bias 

C (1.6 x 10-19)(7 x 10l8) 

x,, = 1.1 x 1 0 F  cm = 110 dr 
- 

Comment 
In a heavily doped semiconductor. the depletion width is on the order of angstroms, so that 
tunneling is now a distinct possibility. For these types of barrier widths, tunneling may become 
the dominant current mechanism. 

The tunneling current has the form 

where 

I 

The tunneling current increases exponentially with doping concentration 
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9.2.3 Specific Contact Resistance 

A figure of merit of ohmic contacts is the snecific contact resistance. R,. This nai 

I 
- 

eter is defined as the reciprocal of the derivative of current density with 
voltage evaluated at zero bias. We may write 

We want R, to be as small as possible for an ohmic contact. 
For a rectifying contact with a low to moderate semiconductor doping conc 

tratiou, the current-voltage relation was given by Equation (9.23) as 

The thermionic emission current is dominant in this junction. The specific con taa  
resistance for this case is then 

The specific contact resistance decreases rapidly as the barrier height decreases. 
For a metal-semiconductor junction with a high impurity doping concentration, 

the tunneling process will dominate. From Equations (9.29) and (9.30), the specifi 
contact resistance is found to be 

R, a exp 
+ 2 m  48, 

which shows that the specific contact resistance is a very strong function of semi- 
conductor doping. 

Figure 9.15 shows a plot of the theoretical values of R, as a function of semi- 
conductor doping. For doping concentrations greater than approximately 10" cm-l, 
the tunneling process dominates and R, shows the exponential dependence on Nd. 
For lower doping concentrations, the R, values are dependent on the barrier heights 
and become almost independent of the doping. Also shown in the figure are experi- 
mental data for platinum silicide-silicon and aluminum-silicon junctions. 

Equation (9.33) is the specific contact resistance of the tunneling junction, 
which corresponds to the metal-to-o+ contact shown in Figure 9.14. However, the 
n+n junction also has a specific contact resistance, since there is a barrier associated 
with this junction. For a fairly low doped u region, this contact resistance may actu- 
ally dominate the total resistance of the junction. 

The theory of forming ohmic contacts is straightforward. To form a good ohmic 
contact, we need to create a low barrier and use a highly doped semiconductor at the 
surface. However, the actual technology of fabricating good, reliable ohmic contacts 
is not as easy in practice as in theory. It is also more difficult to fabricate good ohmic 



Figure 9.15 1 Theoretical and experimental 
specific contact resistance as n function 
of doping. 
(Fmm S:e 1141) 

contacts on wide-bandgap materials. In general, low barriers are not possible on 
these materials, so a heavily doped semiconductor at the surfice must be used to 
form a tunneling contact. The formation of a tunneling junction requires diffusion, 
ion implantation, or perhaps epitaxial growth. The surface doping concentration in  
the semiconductor may be limited to the impurity solubility, which is approxi- 

I mately 5 x 10" cm-"or n-type GaAs. Nonuniformities in  the surface doping con- 
centration may also prevent the theoretical limit of the specific contact resistance 
from being reached. In practice, a good deal of empirical processing is usually re- 
quired before a good ohmic contact is obtained. 

9.3 1 HETEROJUNCTIONS 
In the discussion of pn junctions in the previous chapters, we assumed that the semi- 
conductor material was homogeneous throughout the entire structure. This type of 
junction is called a homojrmrtion. When two different semiconductor materials are 
used to form a junction, the junction is called a semiconducror heterojunction. 

As with many topics in this text, our goal is to provide the basic concepts con- 
cerning the heterojunction. The complete analysis of heterojunction structures 
involves quantum mechanics and detailed calculations that are beyond the scope of 
this text. The discussion of heterojunctions will, then, be limited to the introduction 
of some basic concepts. 
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9.3.1 Heterojunction Materials 

Since the two materials used to form a heterojunction will have different ene 
bandgaps, the energy band will have a discontinuity at the junction interface. We 
have an abrupt junction in which the semiconductor changes abruptly from a rdno 
bandgap material to a wide-bandgap material. On the other hand, if we have 1 
GaAs-A1,Gal_,As system, for example, the value o fx  niay continuously vary (11, 
distance of several nanometers to form a graded heterojunction. Changing the b:~,,, .  

of .r in the A l , G a l , A s  system allows us to engineer, or design, the bandgap energ!. 
In order to have a useful heterojunction, the lattice constants of the two rnaterl;il\ 

must be well matched. The lattice match is important because any lattice rnism;ilch 
can introduce dislocations resulting in interface states. For example, germanium a114 
gallium arsenide have lattice constants matched to within approximately 0.13 per- 
cent. Germanium-gallium arsenide hetcr~~junctions have been studied quite exten- 
sively. More recently, gallium arsenide-alurninurn gallium arsenide (CiaAs-AIG;lAji 
junctions have been investigated quite thoroughly. since the lattice constants of G a l \  
and thc AlGaAs system vary by no more than 0.14 percent. 

9.3.2 Energy-Band Diagrams 

In the formation of a heterojunction with a narrow-bandgap material and a wide- 
handgap material. the alignment of the bandgap energies is important in deterrnin~ns 
the characteristics of the junction. Figure 9.16 shows three possible situations. In FIS- 
use 9.16a we see the cahc when the forbidden bandgap of the wide-gap matcrinl 
completely overlaps the bz~ndgap of the narrow-gap material. This case, called s r i i ~ < i ~  
dling, applies to most heterojunctions. We will consider only this case here. The otlier 
poshibilities are called staggered and hrokrn gap and are shown in Figures 9 l h h  
and 9 . 1 6 ~ .  

There are four basic types of heterojunction. Those in which the dopant t!l~z 
changes at the junction are called anisoQpe. We can form nP or Np junctions, uhoc 
the capital letter indicates the larger-bandgap material. Heterojuncrions with the hat , '  

dopant type on either side of the junction are called isutype. We can form nN and 
isotype heterojunctions. 

Figure 9.17 shows the energy-band diagrams of isolated n-type and P-t!pe 
materials, with the vacuum level used as a reference. The electron affinity of 111c 

Figure 9.16 I Relation between narrow-bandgap and wide-bandgap energies: (a1 straddling, (b) staggered, and 
(c) bn~ken gap. 



Vacuum level ------ 
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1 Ce E,P CaAs 

Figure 9.17 1 Energy-band diagrams of a narrow-bandgep 
and a wide-bandgap material before contact. 

wide-bandgap material is less than that of the narrow-bandgap material. The differ- 
ence between the two conduction band energies is denoted by AE,, and the differ- 
ence between the two valence band energies is denoted by AE,. From Figure 9.17. 
we can see that 

In the ideal abrupt heterojunction using nondegenerately doped semiconductors, the 
vacuum level is parallel to both conduction bands and valence bands. If the vacuum 
level is continuous, then the same AE, and A E ,  discontinuities will exist at the het- 
erojunction interface. This ideal situation is known as the electron affini9 rule. There 
is still some uncertainty about the applicability of this rule, but it provides a good 
starting point for the discussion of heterojunctions. 

Figure 9.18 shows a general ideal nP heterojunction in thermal equilibrium. In 
order for the Fermi levels in the two materials to become aligned, electrons from the 
narrow-gap n region and holes from the wide-gap P region must flow across the junc- 
tion. As in the case of a homojunction. this flow of charge creates a space charge 

: region in the vicinity of the metallurgical junction. The space charge width into the 
! n-type region is denoted by x,, and the space charge width into the P-type region is 
denoted by x p .  The discontinuitieh in the conduction and valence bands and the 
change in the vacuum level are shown in the figure. 

1 9.3.3 Two-Dimensional Electron Gas 

I Before we consider the electrostatics of the heterojunction, we will discuss a unique 
characteristic of an isotype junction. Figure 9.19 shows the energy-band diagram of 
an nN GaAs-AlGaAs heterojunction in thermal equilibrium. The AlGaAs can he 
moderetely to heavily doped n type, while the GaAs can be more lightly doped or 
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, I 

Figure 9.18 I ldeal mrrgy-hand diagram of an nP 
heterojunction in thermal equilibrium. 

E 
f i r  

I 

Figure 9.19 1 ldeal energy-hand diagram of an nN 
hrteroiunctiun in thermal euuilibrium. 

even intrinsic. As mentioned previously. to achieve thermal equilibrium, electra 
from the wide-bandgap AlGaAs Row into the GIAS. forming an accumulation lay 
of electrons in the potential well adjacent to the interface. One basic quantur 
mechanical result that we have found previously is that the energy of an electron con. 
tained in a potential well is quantized. The phrase fvvo-diinensional electron gar 
refers to the condition in which the electrons have quantized energy levels in one 
spatial direction (perpendicular to the interface), but are free to move in the other two 1 
spatial directions. 

The potential function near the interface can be approximated by a triangular po- 
tential well. Figure 9.20a shows the conduction band edges near the abrupt junction 
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Figure 9.20 I (a) Conduction-band edge at N-AIGaAs, n-GaAs heterojunction; (b) triangular well 
approximation with discrete electron energies. 

Figure 9.21 I Electron density in 
triangular potential well. 

interface and Figure 9.20b shows the approximation of the triangular potential well. 
We can write 

V ( x )  = eEz z > 0 (9.351) 

V ( z )  = m z < O  (9.35b) 

Schrodinger's wave equation can be solved using this potential function. The quan- 
tized energy levels are shown in Figure 9.20b. Higher energy levels are usually not 
considered. 

The qualitative distribution of electrons in the potential well is shown in Fig- 
ure 9.21. A current parallel to the interface will be a function of this electron concen- 
tration and of the electron mobility. Since the GaAs can be lightly doped or intrinsic, 
the two-dimensional electron gas is in a region (1f low impurity doping so that impu- 
rity scattering effects are minimized. The electron mobility will be much larger than 
if the electrons were in the same region as the ionized donors. 
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- Doprd -1- Undoped - 

Fizure 9.22 I Conduction-hand edge at 
a graded heterojunction. 

The movement of the electrons parallel to the interface will still be influenced by 
the coulomb attraction of the ionized impurities in the AlGaAs. The effect of the 
forces can be fu~ther reduced by using a graded AlCaAs-GaAs heterojunction. The 
graded layer is Al,Gei_,As in which the mole fraction x varies with distance. In this 
case, an intrinsic layer of graded AlCaAs can be sandwiched between the N-type 
AIGaAs and the intrinsic GaAs. Figure 9.22 shows the conduction-band edges across 
a graded AlCaAs-GaAs heterojunction in thermal equilibrium. The electrons in the 
potential well are further separated from the ionized impurities so that the electron 
mobility is increased above that in an abrupt heterojunction. 

"9.3.4 Equilibrium Electrostatics I 
We will now consider the electrostatics of the nP heterojunction that was shown in Fig- 
ure 9.18. As in the case of the homojunction, potential differences exist across the 
space charge regions in both then region and the Pregion. These potential differences / 
correspond to the built-in potential barriers on either side of the junction. The built-in 1 
potential barrier for this ideal case is defined as shown in Figure 9.18 to be the poten- / 
tial difference across the vacuum level. The built-in potential barrier is the sum of the / 
potential differences across each of the space charge regions. The heterojunction built- 1 
in potential barrier, however, is not equal to the difference between the conduction ' 
bands across the junction or the difference between the valence bands across the junc- / 
tion, as we defined for the homojunction. 

Ideally, the total built-in potential barrier Vb, can be found as the difference be- 
tween the work functions, or 

Vlb! = 4 % ~  - 47n 

Equation (9.36). from Figure 9.17, can be wntten as 



which can b e  expressed as  

P eV , ,  = A E ,  + AE, + hT In (3) - k~ ln (2) (9.38) 

Finally, we can write Equation (9.38) as 

rVb, = AE, ,  + k T l n  - . - (2  2)  
where p,,,, and p,,, are the hole concentrations in the P and n materials, respectively, 
and N,,, and N,,,  are the cffective density of states functions in t h e n  and P materials, 
respectively. We could also obtain an expreshion for the built-in potential barrier in 
terms of the conduction band shift a s  

O b j e c t i v e  I EXAMPLE 9.8 

To detcmminc AE, . A t , .  and Vh, for an nGe to P-CaAs heternjunction using the electron 
affinity rule. 

Consider n-type Ge doped with N,, = 10'' cm-' and P-type GaAs doped with N,, = 

lO1%cm3. Let T = 300 K so that , I ,  = 2.4 x 10'' cm-' for Ce. 

H Solution 
From Equaliun (934aJ. we have 

I AE, = e ( ~ , ,  - x P J  = e(4.13 -4.07) = 0.06 eV 

and from Equation (9.34bJ. we have 

A E ,  = AE,  - A E ,  = (1.43 - 0.67) -0.06 =0.70 eV 

1 Todetermine Vh, using Equation (9.39). wc need lo determine p,,,, in Ge. or 

(2.4 x 10")' 
P,,,, = - = = 5.76 x 10"' cm-' 

Nd I0l6 

eVb, = 0.70 + (0.0259) In 
[ 1 l 0 ' ~ ) t h  x 10") 

(5 7h x 101°)(7 x 10IXJ  

or, finally. 

I 

1 Comment 
There is a nonsymmetry in the AE, and A E ,  valucs that will tend to make the potential harriers 
seen by electrons and holes different. This nonsynimetry does not occur in homr,junctions. 
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We can determine the electric field and potential in the junction from Poisso 
equation in exactly the same way as we did for the homojunction. For homogen 
doping on each side of the junction, we have in then region 

eNd,, E n = - ( x , + x )  ( - X . ~ X < O )  
6" 

and in the P region 

eN0p 
Ep = --(xp - x )  (0 < x 5 X P )  

G P  

where E,, and c p  are the pennittivities of the n and P materials, respectively. We 
note that E,, = 0 at x = -x,, and Ep = 0 at x = x p .  The electric flux density D 
continuous across the junction, so 

c,E,(x = 0) = tpEp(x = 0 )  

which gives 

Ndnx, = N , , P ~ P  

Equation (9.42b)  simply states that the net negative charge in the P region is equal to 
the net positive charge in the n region-the same condition we had in a pn homo- 
junction. We are neglecting any interface states that may exist at the heterojunction. 

The electric potential can be found by integrating the electric field through the 
space charge region so that the potential difference across each region can the 
termined. We find that 

eNdnx2 
Vhin = 

2t" 
and 

eN,px; 
vb ip  = --- 

2 6 ~  

Equation (9.42b) can be rewritten as 

xn Nap - - - - 
x r  Ndn 

The ratio of the built-in potential baniers can then be determined as I 

Assuming that t ,  and c p  are of the same order of magnitude, the larger potential dif- 
ference is across the lower-doped region. 

The total built-in potential barrier is 
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If we solve for x p ,  for example, from Equation (9.42h) and substitute into Equa- 
tion (9.46), we can solve for x,, as 

We can also find 

The total depletion width is found to be 

If a reverse-bias voltage is applied across the heterojunction, the same equations 
apply if Vbi is replaced by Vb, + V R .  Similarly, if a forward bias is applied, the same 
equations also apply if V, ,  is replaced by Vb, - V,. As before, V R  is the magnitude 
of the reverse-bias voltage and V, is the magnitude of the forward-bias voltage. 

As in the case of a homojunction, a change in depletion width with a change in 
junction voltage yields a junction capacitance. We can find for the nPjunction 

Aplot of (1, '~;) '  versus VH again yields a straight line. The extrapolation of this plot 
of (1,'~;)' = 0 is used to find the built-in potential harrier, Vh,. 

Figure 9.1 8 showed the ideal energy-band diagram for the nP abrupt heterojunc- 
tion. The experi~nentally determined values of AE, and AE,  may differ from the 
ideal values determined using the electron affinity rule. One possible explanation for 
this difference is that most heterojunctions have interface states. If we assume that 
the electrostatic potential is continuous through the junction, then the electric flux 
density will he discontinuous at the heterojunction due to the surface charge trapped 
in the interface states. The interface states will then change the energy-band diagram 
of the semiconductor heterojunction just as they changed the energy-band diagram of 
the metal-semiconductor junction. Another possible explanation for the deviation 

? 
from the ideal is that as the two materials are brought together to form the hetero- 
junction, the electron orbitals of each material begin to interact with each other, re- 

; sulting in a transition region of a few angstroms at the interface. The energy bandgap 
is then continuous through this transition region and not a characteristic of either ma- 

. terial. However. we still have the relation that 

I A E , + A E ,  = AE,  (9.50) 

for the straddling type of heterojunction, although the AE, and A E ,  values may dif- 
fer from those determined from the electron affinity rule. 

We may consider the general characteristics of the energy-hand diagrams of the 
other types of heterojunction. Figure 9.23 shows the energy-band diagram of an Np 

s 
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Figure 9.23 1 Ideal energy-band diagmrn of an 
Np hcten~,junction in thennal equilibrium. 

Figure 9.21 1 Ideal energy-bend diagram of a 
pP heterojunction in thermal cquilihrium. 

heterojunction. The same AE, and AE,, discontinuities exist, although the general 
shape of the conduction band, for example, is different in the nP and the Np junc- 
tions. This difference in energy bands will influence the I-Vcharacteristics of the two 
junctions. 

The other two types of heterojunctions are the nN and the pP isotype junctions. 
The energy-hand diagram of the nN junction was shown in Figure 9.19. To achieve 

I 
thermal equilihrium. electrons from the wide-bandgap material will How inta the 
narrow-bandgap material. A positive space charge region exists in the widc-gap mate- 
rial and an accumulation layer of electrons now exists at the interface in the nanuw- 
gap material. Since there are a large number of allowed energy states in the conduction 
band, we expect the space charge width r,, and the built-in potential barrier V,,,,, to be 
small in the narrow-gap material. The energy-band diagram of the pP heterojunction 
in thermal equilibrium is shown in Figure 9.24. To achieve thermal equilibrium, holes 
from the wide-bandgap material will Row inta the narrow-bandgap material, creating 
an accumulation layer of holes in the narrow-handgap material at the interface. These 
types of isotype heterojunctions are obviously not possible in a homojunction. 



$9.3.5 Current-Voltage Characteristics 

The ideal current-voltage characteristics of a pn homojunction were developed in 
Chapter 8. Since the energy-band diagram of a heterojunction is more complicated 
than that o f a  homojunction, we would expect the 1-Vcharacteristics of the two junc- 
tions to differ. 

One immediate difference between a homojunction and a heterojunction is in the 
barrier heights seen by the electrons and holes. Since the built-in potential harrier 
for electrons and holes in a homojunction is the same, the relative magnitude of the 
electron and hole currents is determined by the relative doping levels. In a hetero- 
junction. the harrier heights seen by electrons and holes are not the same. The 
energy-band diagrams in Figures 9.18 and 9.23 demonstrated that the barrier heights 
forelectrons and holes in a heterojunction can be significantly different. The barrier 
height for electrons in Figure 9.18 is larger than for holes, so we would expect the 
current due to electn~ns to be insignificant compared to the hole current. If the barrier 
height for electrons is 0.2 eV larger than for holes, the electron current will he 
appn~ximately a factor of 10' smaller than the hole current, assuming all other 
parameters are equal. The opposite situation exists for the band diagram shown in 
Figure 9.23. 

The conduction-band edge in Figure 9.23 and the valence-band edge in Fig- 
ure 9.18 are somewhat similar to that of a rectifying metal-semiconductor contact. 
We derive the current-voltage characteristics of a heterojunction, in general. on the 
hasis of thernlionic emission of carriers over the banier, as we did in the metal- 
scmiconductor junction. We can then write 

where E,, is an effective barrier height. The barrier height can be increesed or re- 
duced by an applied potential across the junction as in the case of a pn hon~ojunction 
ora Schottky barrierjunction. The heterojunction 1-Vcharacteristics, however, may 
need to he modified to include diffusion effects and tunneling effects. Another com- 
plicating factor is that the effective mass of a carrier changes from one side of the 
junction to the other. Although the actual derivation of the I-Vrelationship of the het- 
erojunction is complex, the general form of the 1-Vequation is still similar to that of 
a Schottky barrier diode and is generally dominated by one type of carrier. 

9.4 1 SUMMARY 
A metal on a lightly doped semiconductor can produce a rectifying contact that is 
known as a Schottky barrier diode. The ideal banier height between the metal and 
semiconduct<>r is the difference between the metal work function and the semiconductor 
electron affinity. 
When a positive voltage is applied to an n-type semiconductor with respect to the metal 
(rcverse bias), the barrier between the semiconductor and metal increases so that there is 
essentially no How of charged carriers. When a positive mlltage is applicd to the metal 
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with respect to an n-type semiconductor (forward bias), the barrier between the 
semiconductor and metal is lowered so that electrons can easily flow from the 
semiconductor into the metal by a process called thennionic emission. 
The ideal current-voltage relationship of the Schottky barrier diode is the same as that 
of the pn junction diode. However, since the current mechanism is different from that of 
the pn junction diode, the switching speed of the Schottky diode is faster. In addition, 
the reverse saturation current of the Schottky diode is larger than that of the pn junction 
diode, so a Schottky diode requires less forward bias voltage to achieve a given current 
compared to a pn junction diode. 
Metal-semiconductor junctions can also form ohmic contacts, which are low-resistance 
junctions providing conduction in both directions with very little voltage drop across I 
the junction. 
Semiconduct<x heterojunctions are fonned between two semiconductor materials with 
different bandgap encrgies One useful property of a heterojunction is the creation of 
a potential well at the interface. Electrons are confined to the potential well in the 
direction perpendicular to the interface, but are free ttl move in the other two directions. 

GLOSSARY OF IMPORTANT TERMS 
anisotype junction A heterojunction in which the type of dopant changes at the metallurgi- 

cal junction. 

electron affinity rule The rule stating that, in an ideal heterojunctian, the discontinui 
the conduction band is the difference between the electron affinities in the two semi 
ductors. 

I 
heterojunction The junction fonned by the contact between two different semiconduct 

materials. 

image-force-induced lowering The lowering of the peak potential barrier at the med  
semiconductor junction due to an electric field. 

isotype junction A heterojunction in which the type of dopant is the same on both sides 
the junction. 

ohmic contact A low-resistance metal-semiconductor contact providing conduction in bo 
directions between the metal and semicc~nductor. 

Richardson constant The parameter A' in the current-voltage relation of a Schottky di 

Schottky harrier height The potential barrier 40,, from the metal to semiconductor I 

metal-semiconductor junction. 

Schottky effect Another term for image-force-induced lowering. 

specific contact resistance The inverse of the slope of the J versus V curve of a metal 
semiconductor contact evaluated at V = 0. 

therminnic emission The process by which charge flows over a potential barrier as a result 
of carriers with sufficient thermal energy. 

tunneling harrier A thin potential barrier in which the current is dominated by the tunneling 
of carriers through the barrier 

two-dimensional electron gas (2-DEG) The accumulation layer af electrons contained ina 
potential well at a heter<?junction interface that are free to move in the "other" two spatial 
directions. d 



Problems 

After studying this chapter, the reader should have the ability tu: 

Sketch the energy band diagram of zero-biased. revcne-biased, and forward-biased 
Schottky barrier diodes. 
Describe the charge How in a forward-biased Schottky barrier diode. 
Explain the Schottky barrier lowering and its effect on the reverse saturation current in 
a Schottky barrier diode. 
Explain the effect interface states on the characteristics of a Schottky harrier diode. 
Describe one effect of a larger reverse saturation current in a Schottky banier diode 
compared to that of a pn junction diode. 
Drscribr what is meant by an ohmic contact. 
Draw the energy band diagram of an nN heterojunction. 
Explain what is mcant by a two-dimensional electron gas. 

REVIEW QUESTIONS 
I. What is the ideal Schottky barrier height? Indicate the Schottky harrier height on an 

energy band diagram. 

2. Using an energy band diagram, indicate the effect of the Schottky bamier lowering. 

3. What is the mechanism of charge flow in a forward-biased Schottky barrier diode? 

4. Compare the forward-biased current-voltagc characteristic of  a Schottky barrier diode to 
that of pn junction diode. 

5. Sketch the ideal energy band diagram of a metal-semiconductorjunction in which 
$,, i q5,. Explain why this is an ohmic contact. 

6. Sketch the energy band diagram of a tunneling junction. Why is this an ohmic contact? 

7. What is a hetcrojunction'? 

8. What is a 2-D elcctron gas? 

PROBLEMS 
(In the following problems, assume A^ = 120 MI('-cm' for silicon and A' = 1.12 A/K2-cm' 
fur  gallium arsenide Schottky diodes unless otherwise stated.) 

Section 9.1 The Schottky Barrier Diode 

9.1 Consider a contact between Al and n Si doped at Nd = 10lh cm-). T = 300 K. 
( u )  Draw the energy-bmd diagrams of the two materials before the junction is formed. 
(6) Draw the ideal energy band at zero bias after thc junction is formed. ( c )  Calculate 
$a,,. xd, and E,,,, for pan (b). i d )  Repeat parts (bl and (c) using the data in Figure 9.5. 

9.2 An ideal rectifying contact is formed by depositing gold on n-type silicon doped at 
10'' cm-'. At T = 300 K, determine (a) $#o, (b) Vb;, (c) W, and (d)  E,,,,, all under 
cquilibnum conditions. 

9.3 Consider a gold Schottky diode at T = 300 K fvrmed on n-type GaAs doped at Nd = 
5 x 10" cm-'. Determine (0) the theoretical barrier height. m,,,. i b )  m,,, (c) V b , ,  
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Figure 9.25 1 Ftgure for 
Problem 9 6 

(d)  the space charge width, i,,, for V, = 5 V. and (el the electric field at the metal 
junction for VR = 5 V. 

9.4 Repeat problem 9.3, parts (b) through (e l ,  if the experimentally determined harrier 
height is found tu be @",, = 0.86 V. 

9.5 An Au-n-Si junction with No = 5 x 10" cm-' has a crocs-sectional area of A = 
5 x 10 ' cm'. 7 = 300 K. Use the data in Figure 9.5. ( a )  Determine the junction 
capacitance when Vx = 4 V. (b )  Repeat paR (a) if the doping is increased to Nd = 
5 x cm-'. 1 

9.6 A Schottky diode with n-type GaAs at 7 = 300 K yields the l/C" versus V R  plot 
shown in Figure 9.25. where C' is the capacitance per cm'. Determine (a) Vh,, (b) Nd 
( c )  4,,, and (4 40,) 

9.7 Consider an Al-n-Si Schottky barrier at 7 = 300 K with N,< = 10'" c m ' .  Use the 
data in Figure 9.5 to dcterminc the barrier heighl. (o) Determine Vh,. I',. and Em, at 
zero bias. (h )  Using the value of Em,, from pan ((0. determine A+ and r,,, for the 
Schottky barrier lowering. (c) Repeat part (h) for the case when a reverse bias of 
V, = 4 V is npplicd. 

9.8 Starling with Equation (9.12). derivc Equations (9.14) and (9.15). B 
9.9 An Au-n-GaAs Schottky diode is at T = 300 K with Nd = 5 x 10'' cm-'. Use the 

data in Figurc 9.5 to determine the harrier height. ( a )  Determine V h , .  x,,, and Em,, at 
zero bias. (b) Determine the reverse-bias voltage at which the Schottky bamier lowering, 
Am, win he 7 percent of 4 ~ , ,  . (Use the value of Em,, in the space charge region.) 

b 9.10 Consider n-type silicon doped at N,, = 10'' cm ' with a gold contact to form a 
Schottky diode. Investigate the effect of Schottky barrier lowering. ( a )  Plr~t the - s- Schottky barrier lowering Ad  versus revcr~e-bias \,oltagc over the range 0 5 VR 5 
50 V. (b) Plot the ratio J , , (VR)/J ,T(VR = 0)  over the same range of reverse-bias 
voltage. 

*9.11 The energy-band diagram of a Schottky diodc is shown in Figure 9.6. Assume the fol- 
lowing parameters: 

+,,, = 5.2 V + , , = 0 . 1 0 ~  @ , = o . ~ o v  
* 1 

Ex = 1.43 eV 8 = 2 5 A  C, = fii 1 
1 

6, = (13.1)to x = 4.07V N,, = 10'" cm ' 
D. - 10" eV-l cm ' ,, - 



C ( a )  Determine the theoretical barrier height @,,. without interface states. (b) Deter- 
mine the barrier height with interface states. (c) Repeat pans (a) and ( h )  if @,,, is 
changed to @,,, = 4.5 V. 

*9.12 A Schottky barrier diode contains interface states and an intefiacial layer Assume the 

I following parameters: 

@,,, = 4.75 v @,, = 0.164 V 40 = 0.230 V 

E, = 1.12eV S = ~ O A  t, = to 

, = I 7 x = 4.01 V Nd = 5 x 10lh cm-3 

$no = 0.60 V 
? 

Determine the interface state density, D,,, in units of e V '  cm-'. 

9.13 A PtSi Schottky diode at T = 300 K is fabricated on n-type silicon with a doping of 
N ,  = 1 0 ' % m 3 .  From Figure 9.5, the barrier height is 0.89 V Determine (a )  @,,, 
(b) V , , .  (c) JlTl whcn thc harrier lowering is neglected, and Id) V,, so that 
J, = 2 A/cm2. 

9.14 ( a )  Consider a Schottky diode at T = 100K fortncd with tungsten on n-type silicon. 
Let N,, = 5 x I0l5 cm-' and assume a cross-sectional area of A = 5 x 10-' cm'. 
Determine the forward-bias voltage required to obtain a current of I mA, 10 mA, and 
100 mA. (b) Repeat pan (n)  if the temperature i~ increased to T = 400 K. (Neglect 
Schottky barrier lowering.) 

9.15 A Schottky diode is formed by depositing Au on n-type GaAs doped at N,! = 5 x 
1016 cm-'. T = 3 0 0 K  ( I , )  Determine the forward-bias vollage required to obtain 
J, = 5 A/cm2. (b) What is the change in forward-hias vnltage necessary to double the 
current? (Neglect Schottky barrier lowering.) 

9.16 ( a )  Consider an Au n-type GaAs Schottky diode with a cross-sectional arca of 
10 ' cm'. Plot the forward-bias current-voltagc characteristics over a voltage range 
of 0 5 V D  5 0.5 V. Plot thc current an  a log scale. (b)  Repeat part ( a )  for an Au 
n-type silicon Schottky diode. (c) What conclusions can he drawn from thess results? 

9.17 A Schottky diode at T = 300 K is formed between tungsten and n-type silicon dopcd 
at N,! = l o t 6  c m ' .  Thc croys-sectional area is A = 10-%m2. Dctcrminc thc 
reverse-bias saturation current at ( a )  Vx = 2 V and (b )  VR = 4 V. (Take into account 
the Schuttky barrier lowering.) 

*9.18 Starting with the basic current equation given by Equation (9.18). derive the rclation 
given by Equation (9.23). 

9.19 A Schottky diode and a pn junction diode have cross-sectional arras of A = 
5 x 1 0 P  cm2. The reverse saturation currcnt density uflhe Schottky diode is 
3 x Alcm' and the reverse saturalion current density of the pn junction diode is 
3 x 1 0 "  Alcm? The temperature is 300 K. Determine the fr~rward-bias voltage in 
each diode required to yield diode currents of 1 mA. 

19.20 The reverse saturation current densities in a pn junction diode and a Schuttky diode 
are 5 x LO-'' Alcm' and 7 x 10-a Alcm', respectively, at T = 300 K. The cross- 
sectional area of the pn junction diode is A = 8 x 10-"m'. Determine the cmss- 
sectional area of the Schottky diode so that the difference in forward-bias voltagcs to 
achieve 1.2 mA is 02h5  V. 

9.21 ( a )  The reverse-saturation currents of a Schotlky diode and a pn junction diode at 
T = 300 K are 5 x IWX A and 10-" A, respectively. Thc diodes are connected in 
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each diode. (ii) Determine the voltage across cach diode. (b) Repeat part (u )  if the 
diodes are connected in series. 

parallel and arc driven by a constant current of 0.5 mA. ( i )  Determine the current in 

and pn junction are 4 x 1 0  ' A/cm2 and 3 x 1 0 ' '  A/crn2, respectively. A fonvard- 
bias current of 0.8 mA is required in each diode. ( a )  Determine the forward-bias 
voltage required across each diode. (b)  If the voltage from part (a) is maintained 
across each diode, determine the current in each diode if the temperature is increased 
to 400 K. (Take into account the temperature dependence of the reverse-saturntion 
currents. Assume E ,  = 1.12 eV for the pn junction diode and = 0.82 V. for the 
Schottky diode.) 

- ~ - - - ;ee 9.23 Compare the current-voltage characteristics of a Schottky banier diode and a pn junc- 
tion diode. Use the results of Example 9.5, and assume diode areas of 5 x cm2. 

- 
< -~ Plot the current-voltage characteristics on a linear scale over a current range of 0 5 

In < 10 mA. - 

Section 9.2 Metal-Semiconductor Ohmic Contacts 

9.24 I1 is possible, theoretically, to form an ohmic contact hetween a metal and silicon that 
has a very low harrier height. Considering the specific contact resi\tnnce, determine 
the value of @,,, that will give a value of R, = lo-' a-cm2 at T = 300 K. 

9.25 A metal, with a work function $,,, = 4.2 V, is deposited on an n-type silicon semicon- 
ductor with X ,  = 4.0 V and E, = 1 . I2  eV. Assume no interface states exist at the 
junction. Let T = 300 K. ( a )  Sketch the energy-hand diagram for zero bias fur the case 
when no space charge region exists at the junction. (b) Determine Nd so that the condi- 
tion in pan ( a )  is satisfied. (c) What is the potential barrier height seen by electrons in 
the metal moving into the semiconductor? 

9.26 Consider the energy-hand diagram of a silicon Schottky junction under zero bias sho 
in Figure 9.26. Let dHo = 0.7 V and T = 300 K. Determine the doping required so 

barrier lowering effect.) 
xd = 50 A at the point where the potential is @811/2 below the peak value. (Neglect the tk * .  EF Ec 

E,. 

Figure 9.26 I Figure for 
Problem 9.26. 



9.27 A metal-semiconductor junction is formed between a metal with a work function of 
4.3 eV and p-type silicon with an electn~n affinity of 4.0 eV. The acceptor doping 
concentration in the silicon is No = 5 x 1016 ccm3. Assume T = 300 K. (a) Sketch 
the thermal equilibrium energy band diagram. ( h )  Determine the height of the 
Schottky barrier. ( c )  Sketch the energy band diagram with an applied reverse-bias 
voltage of VR = 3 V. (d )  Sketch the energy band diagram with an applied forward- 
bias voltage of V, = 0.25V. 

9.28 ( a )  Consider a metal-semicanductor junction formed between a metal with a work 
function of 4.65 eV and Ge with an electron affinity of 4.13 eV. The dopingconcen- 
tration in the Ge material is Nd = 6 x 10'' cm-' and N, = 3 x lo" ern->. Assume 
T = 300 K. Sketch the zero bias energy-band diagram and determine the Schottky 
barrier height. (b) Repeat pan ( a )  if the metal work function is 4.35 eV. 

Section 9.3 Heterojunctions 

9.29 Sketch the energy-band diagrams of an abrupt Alo ,G@I ,AsGaAs  heterojunction for: 
(a) N+-AIGaAs. intrinsic GaAs, (b) N+-AIGaAs, p G a A s ,  and (c) P+-AIGaAs, 
ni-CaAs. Assume E, = 1.85 eV forAlo 'Gao ,AS and assume AE,  = ;AE, .  

9.30 Repeat Problem 9.29 assuming the ideal electron affinity rule. Determine AE, and 
A E ,  

$9.31 Starting with Poisson's equation, derive Equation (9.48) for an abrupt heterojunction. 

Summary and Review 

'9.32 (a) Derive an expression for dV,/dT as a function of current density in a Schottky 
diode. Assume the minority carrier current is negligible. ( b )  Compare dV,r/dT for a 
GaAs Schottky diode to that for a Si Schottky diode. ( c )  Compare dV,/dT for a Si 
Schottky diode to that for a Si pn junction diode. 

9.33 The (1/C,)2 versus V, data are measured for two Schottky diodes with equal areas. 
One diode is fdbricated with 1 R-crn silicon and the other diode with 5 I2-cm silicon. 
The plots intersect the voltage axis as VR = -0.5 V for diode A and at VR = - 1.0 V 
for diode B. The slope of the plot for diode A is 1.5 x 10'' (F"V)-' and that for 
diode B is 1.5 x lo" (FLV))' . Determine which diode has the higher metal work 
function and which diode has the lower resistivity silicnn. 

$9.34 Both Schottky barrier diodes and ohmic contacts are to be fabricated by depositing a 
particular metal on a silicon integrated circuit. The work function of the metal is 4.5 V, 
Considering the ideal metal-semiconductor contact, determine the allowable range of 
doping concentrations for each type of contact. Consider both p- and n-type silicon 
regions. 

9.30 Consider an n-GaAs-p-AIGaAs heterojunction in which the bandgap offsets are 
AE, = 0.3 eV and A E ,  = 0.15 e V  Discuss the difference in the expected electron 
and hole currents when the junction is forward biased. 
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C H A P T E R  

The Bipolar Transistor 

P R E V I E W  

T he single-junction devices we have considered, including the pn homojunc- 
tion diode, can be used to obtain rectifying current-voltage characteristics, and 
to form electronic switching circuits. The transistor is a multifunction semi- 

conductor device that, in conjunction with other circuit elements, is capable of current 
gain, voltage gain, and signal-power gain. The transistor is therefore referred to as an 
active device whereas the diode is passive. The basic transistor action is the control of 
current at one terminal by voltage applied across two other terminals of the device. 

The three basic transistor types are the bipolar transistor, the metal-oxide- 
semiconductor field-effect transistor (MOSFET), and the junction field-effect tran- 
sistor (JFET). The bipolar transistor is covered in this chapter, the MOSFET is 
treated in Chapters I I and 12, and the JFET is discussed in Chapter 13. The chap- 
ters dealing with each of the transistor types are written to stand alone, so that each 
type of transistor may be covered in any order desired. 

The bipolar transistor has three separately doped regions and two pn junctions, 
sufficiently close together so that interactions occur between the two junctions. We 
will use much of the theoly developed for the pn junction in the analysis of the bipolar 
transistor. Since the flows of both electrons and holes are involved in this device, it is 
called a bipolar transistor. 

We will first discuss the basic geometry and operation of the transistor. Since 
there is more than one pn junction in the bipolar transistor, several combinations of 
reverse- and forward-bias junction voltages are possible, leading to different operat- 
ing modes in the device. As with the pn junction diode, minority carrier distributions 
in the bipolar transistor are an important part of the physics of the device-minority 
carrier gradients produce diffusion currents. We will determine the minority carrier 
distribution in each region of the transistor, and the corresponding currents. 

The bipolar transistor is a voltage-controlled current source. We will consider the 
various factors that determine the current gain and derive its mathematical expression. 
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11 As with anv semiconductor device. nonideal effects inHuence device characteristics: 
a few of these effects, such as breakdown voltage, will be described. 

In order to analyze or design a transistor circuit. especially using computer sim- 
ulations, one needs a mathematical model or equivalent circuit of the transistor. We 
will develop two equivalent circuits. The first equivalent circuit, the Ebers-Moll 
model, can be used for a transistor biased in any of its operating modes and is espe- 
cially used for transistors in switching circuits. The second equivalent circuit, the 
hybrid-pi model, is applied when transistors are operated in a small signal linear am- 
plifier and takes into account frequency effects within the transistor. 

Various physical factors affect the frequency response of the bipolar transistor. 
There are several time-delay factors within the device that determine the limiting 
frequency response. We will define these time delays and develop expressions for 
each factor. The limiting frequency is given in terlils of a cutoff frequency, a figu 
of merit for the transistor. The frequency response generally applies to the 
signal, steady-state ~.haracteristics of the device. The switching characteristics, 

input signal.. 
contrast, determine the transient behavior of the transistor to large changes 

10.1 I THE BIPOLAR TRANSISTOR ACTION 
The bipolar transistor has three separately doped regions and two pn junctions. Fig- 
ure 10.1 shows the basic structure of an npn bipolar transistor and a pnp bipolar tran- 
sistor, along with the circuit symbols. The three terminal connections are called the 
emitter, base, and collector. The width ofthe base region is small compared to the mi- 
nority carrier diffusion length. The (++) and (+) notation indicates the relative mag- 
nitudes of the impurity doping concentrations normally used in the bipolar transistor, 
with [++I meaning very heavily doped and (+) meaning moderately doped. The 
emitter region has the largest doping concentration: the collector region has the small- 
est. The reasons for using these relative impurity concentrations, and for the narrow 
base width. will become clear as we develop the theory of the bipolar transistor. The 
concepts developed for the pn junction apply directly to the bipolar transistor. 

Figure 10.1 1 Simplified block diagrams and circuit symbols of (a) npn and (b) pnp 
bipolar transistors. 
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Bullrd Base 
layer 

Con\,mtional npn transistor 

(a) 

, . 
Silicon 

substrate 

1 Figure 10.2 I Cross section uf (a) a conventional integrated-circuit npn bipolar transistor and (b) an oxide-isolated npn 
bipolar transistor 
(Front Muiler and Kornins 131.) 

' The block diagrams of Figure 10.1 show the basic structure of the transistor. 

i but in very simplified sketches. Figure 10.2a shows a cross section of a classic npn 
bipolar transistor fabricated in an integrated circuit configuration, and Figure l0.2b 
shows the cross section of an npn bipolar transistor fabricated by a more modem 1 technology. One can immediately observe that the actual structure of the bipolar 
transistor is not nearly as simple as the block diagrams of Figure 10.1 might sug- 
gest. A reason for the complexity is that terminal connections are made nt the sur- 

/ face: in order to minimize semiconductor resistances, heavily doped n+ buried lay- 
ers must be included. Another reason for complexity arises out of the desire to 
fabricate more than one bipolar transistor on a single piece of semiconducror mate- 
rial. Individual transistors {nust be isolated from each other since all collectors, for 
example, will not be at the same potential. This isolation is accomplished by adding 
pt regions so that devices are separated by reverse-biased pn junctions as shown in 
Figure 10.2a. or they are isolated by large oxide regions as shown in Figure 10.2b. 

An important point to note from the devices shown in Figure 10.2 is that the 
bipolar transistor is not a symmetrical device. Although the transistor may contain 
two n regions or two p regions, the impurity doping concentrations in the emitter and 
collector are different and the geolnctry of these regions can be vastly different. The 
block diagrams of Figure 10.1 are highly simplified, but useful, concepts in the de- 
velopment of the basic transistor theory. 

10.1.1 The Basic Principle of Operation 

The npn and pnp transistors are complementary devices. We will develop the bipolar 
transistor theory using the npn transistor, but the same basic principles and equations 
also apply to the pnp device. Figure 10.3 shows an idealized impurity doping profile 
in an npn bipolar transistor for the case when each region is uniformly doped. Typi- 
cal impurity doping concentrations in the emitter, base, and collector may be on the 
order of 10'" 10''. and 10'"m3, respectively. 
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( a )  (b) 

Figure 10.3 1 Idealized doping profile of a uniformly doped npn bipolar transistor. 3 

'9 The base-emitter (B-E) pn junction is forward-biased, and the base-collector 
(B-C) pn junction is reverse-biased in the nonnal bias configuration as shown in 
Figure 10.4a. This configuration is called the,fnrwurd-uctive operating mode: The 
B-E junction is forward-biased so electrons from the emitter are injected across the 
B-E junction into the base. These injected electrons create an excess concentration 
of minority carriers in the base. The B-C junction is reverse biased, so  the minority 
canier electron concentration at the edge of the B-C junction is ideally zero. We ex- 
pect the electron concentration in the base to be like that shown in Figure 10.4b. 
The large gradient in the electron concentration means that electrons injected from 
the emitter will diffuse across the base region into the B-C space charge region. 
where the electric field will sweep the electrons into the collector. We want as many 
electrons as possible to reach the collector without recombining with any majority 
carrier holes in the base. For this reason, the width of the base needs to be small 
compared with the minority carrier diffusion length. If the base width is small, rhen 
the minority carrier electron concentration is a function of both the B-E and 
B-C junction voltages. The two junctions are close enough to be called intera~.fing 
pn junctions. 

Figure 10.5 shows a cross section of an npn transistor with the injection of elec- 
trons from the n-type emitter (hence the name emitter) and the collection of the elec- 
trons in the collector (hence the name collector). 

10.1.2 Simplified Transistor Current Relations 1 
We can gain a basic understanding of the operation of the transistor and the relations 1 between the various currents and voltages by considering a simplified analysis.After 
this discussion, we will then delve into a more detailed analysis of the physics of the 
bipolar transistor. 1 The minority carrier concentrations are again shown in Figure 10.6 for an npn 
bipolar transistor biased in the forward active mode. Ideally. the minority canier 
electron concentration in the base is a linear function of distance, which implies no 
recombination. The electrons diffuse across the base and are swept into the collector 
by the electric field in the B-C space charge region. 
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(a) 

E-B space B-C space 
charge region charge reglum 

Figure 10.4 I (a) Biasing of an npn hipolar transistor in the forwad-active mode, 
(b) minority uarricr distribution in an npn bipolar transistor operating in the forward-active 
mode. and ( c )  energy band diagram of the npn bipolar transistor under zero bias and under a 
forwerd-active mode bias. 

Collector Current Assuming the ideal linear electron distribution in the base, the 
collector current can be written as a diffusion current given by 
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Figure 10.5 1 Cross section of an npn 
bipolar transistor showing the injection 
and collection of electrons in the 
forward-active mode. 

Figure 10.6 1 Minority carrier distributions and basic currents in a 
forward-biased npn bipolar transistor. 

where ABE is the cross-sectional area of the B-E junction, nna is the thermal equi 
librium electron concentration in the base, and V, is the thermal voltage. The diffu- 
sion of electrons is in the +x direction so that the conventional current is in the -x 
direction. Considering magnitudes only, Equation (10.1) can be written as I 

ic = IS exp - ";: 
The collector current is controlled by the base~rni t ter  voltage; that is, the current at 
one terminal of the device is controlled by the voltage applied to the other two ter- 
minals of the device. As we have mentioned, this is the basic transistor action. I 
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mitter Current One component of emitter current, i ~ , ,  shown in Figure 10.6 is 
ue to the flow of elections injected from the emitter into the hase. This current, then, 
equal to the collector current given by Equation (10.1). 

Since the b a s e ~ m i t t e r  junction is forward biased; majority canier holes in the 
ase are injected across the B-E junction into the emitter. These injected holes pro- 
uce a pn junction current iE2 as indicated in Figure 10.6. This current is only a B-E 
unction current so this component of emitter current is not part of the collector cur- l nt. Since iE2 is a forward-biased pn junction current, we can write (considering 
magnitude only) 

1 where Is2 involves the minority carrier hole parameters in the emitter. The total emit- 
ter current is the sum of the two components, or 

Since all current components in Equation (10.4) are functions of exp ( u a L /  V,), the 
I ratio of collector current to emitter current is a constant. We can write 

i ic 
- = a  (10.5) 
It 

where a is called the common-base currenrgain. By considering Equation (10.4). we 
see that ic c iE or ol < 1. Since iE2 is not part of the basic transistor action, we 
would like this component of current to be as small as possible. We would then like 
the common base current gain to be as close to unity as possible. 

Referring to Figure 10.4a and Equation (10.4). note that the emitter current is an 
exponential function of the basexmitter voltage and the collector current is ic = 
w i ~ .  To a first approximation, the collector current is independent of the hase- 
collector voltage as long as the B-C junction is reverse biased. We can sketch the 
common-base transistor characteristics as shown in Figure 10.7. The hipolar transis- 
tor acts like a constant current source. 

Figure 10.7 1 Ideal bipolar transistor common-base 
current-voltage characteristics. 
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Base Current As shown in Figure 10.6, the component of emitter current i E 2  isa 
B-E junction current so that this current is also a component of base current sh 
as iso.  This component of base current is proportional to exp ( V H E /  V i ) .  9 

There is also a second component of base current. We have considered the ideal 
case in which there is no recombination of minority carrier electrons with rn:, 
carrier holes in the base. However, in reality, there will be some recombill. 
Since majority carrier holes in the base are disappearing, they must he resuppll,. 
a flow of positive charge into the base terminal. This flow of charge is indicated as a 
current is(, in Figure 10.6. The number of holes per unit time recombining in the base 
is directly related to the number of minority carrier electrons in the base (see Equa- 
tion (6.13)). Therefore, the current igb is also proportional to exp (vBt/ V,). The iota1 
base current is the sum of iflo and iah, and is proportional to exp ( u B E /  V,). 

The ratio of collector current to hase current is a constant since both current, ui. 
directly proportional to exp ( v e t /  V , ) .  We can then write 

where f i  is called the common-emitter current gain. Normally. the hase current will 
be relatively small so  that, in general, the common-emitter current gain is much larga 
than unity (on the order of 100 or larger). 

10.1.3 T h e  Modes of Operation 

Figure 10.8 shows the npn transistor in a simple circuit. In this configuration, tk 
transistor may be biased in one of three modes of operation. If the B-E voltage is 
zero or reverse biased ( V B E  5 0). then majority carrier electrons from the emitter 
will not be injected into the hase. The B-C junction is also reverse biased; thus. the 
emitter and collector currents will be zero for this case. This condition is referrcd to 
as cutof-all currents in the transistor are zero. 

Figure 10.8 I An npn bipolar transi~tor in 
a common-emitter circuit configuration. 



1 0.1 The BiDolar Trans~stor Action 

When the B-Ejunction becomes forward biased, an emitter current will be gener- 
ated as we have discussed, and the injection of electrons into the base results in a col- 
lector current. We may write the KVL equations around the collector-emitter loop as 

Vcc = I c R c  + VCH + V H I  = V R + V C E  (10.7) 

If Vcc is large enough and if VR is small enough, then VCB > 0, which means that 
the B-C junction is reverse biased for this npn transistor. Again, this condition is the 
forward-active region of operation. 

As the forward-biased B-E voltage increases, the collector current and hence VR 
will also increase. The increase in VR means that the reverse-biased C-B voltage 
decreases, or 1 VCB 1 decreases. At some point, the collector current may become large 
enough that the combination of VR and Vec produces zero voltage across the B-C 
junction. A slight increase in ic beyond this point will cause a slight increase in VR 
and the B-C junction will become forward biased (VC8 c 0). This condition is called 
saturation. In the saturation mode of operation, both B-E and B-C junctions are 
forward biased and the collector current is no longer controlled by the B-E voltage. 

Figure 10.9 shows the transistor current characteristics, 1'- versus V C E ,  for con- 
stant base currents when the transistor is connected in the common-emitter configu- 
ration (Figure 10.8). When the collector-emitter voltage is large enough so that the 
base-collector junction is reverse biased, the collector current is a constant in this 
first-order theory. For small values of C-E voltage, the base-collector junction be- 
comes forward biased and the collector current decreases to zero for a constant base 
current. 

Writing a Kirchhoff's voltage equation around the C-E loop, we find 

Equation (10.8) shows a linear relation between collector current and collector- 
emitter voltage. This linear relation is called a load line and is plotted in Figure 10.9. 
The load line. superimposed on the transistor characteristics, can be used to visualize 
the bias condition and operating mode of the transistor. The cutoff mode occurs when 

~~J~~~~~~~~~~ I n  

, . Cutoff . 

Figure 10.9 1 Bipolar transistor common-emitter current-voltage 
characteristics with load line superimposed. 
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4. = 0, saturation occurs when there is no longer a change in collector current for 
change in base current, and the forward-active mode occurs when the relati 
Ic = B I B  is valid. These three operating modes are indicated on the figure. 

A fourth mode of operation for the hipolar transistor is possible, although 
with the circuit configuration shown in Figure 10.8. This fourth mode, known as in- 
verse ucrive, occurs when the B-Ejuncfon is reverse biased and the B-C junction 1 is 
forward biased. In this case the transistor is operating "upside down," and the roles 
of the emitter and collector are reversed. We have argued that the transistor is not a 
symmetrical device; therefore, the inverse-active characteristics will not be the same 
as the forward-active ckaracterislics. 

The junction voltage conditions for the four operating modes are shown in Fig- 
ure 10.10. 

10.1.4 Amplification with Bipolar Transistors 

Voltages and currents can he amplified by bipolar transistors in conjunction wi 
other elements. We will demonstrate this amplification qualitatively in the fullowin 
discussion. Figure 10.11 shows an npn bipolar transistor in a cornmon-emitter co 

(such as a signal from a satellite) that needs to be amplified. 

1 figuration. The dc voltage sources, VBB and Vcc, are used to bias the transistor in the 
forward-active mode. The voltage source L', represents a time-varying input voltage 

Figure 10.12 shows the various voltages and currents that are generated in the 
circuit assuming that u; is a sinusoidal voltage. The sinusoidal voltage v, induces a 
sinusoidal component of base current superimposed on a dc quiescent value. Since 
ic = @i8. then a relatively large sinusoidal collector current is superimposed on a 
dc value of collector current. The tirne-varying collector current induces a time- 
varying voltage across the Rc- resistor which, by Kirchhoff's voltage law, means that 
a sinusoidal vollage, superimposed on a dc value, exists between the collector and 
emitter of the bipolar transistor The sinusoidal voltages in the collector-emitter 

- 
Figure 10.10 i Junction voltage 
conditions for the four Figure 10.11 1 Cornmtln-emitter npn bipolar 
operating modes of a bipolar circuit configuration with a time-varying signal 
transistor. voltage u, included in the basc-emitter loop. 

"ca 

Cutoff 

Inverse 
active 

' 
Forward 

active 

- 
VBE 

+ 
Saluration "8, 

- 



Figure 10.12 1 Currents and voltages existing in the 
circuit shown in Figure 10.11. (a) Input sinusoidal 
signal voltage. (bj Sinusoidal base and collector 
currents superimposed o n  the quiescent dc values. 
(c) Sinusoidal voltage across the Rc resistor 
superimposed on the quiescent dc value. 

portion of the circuit are larger than the signal input voltage v , .  so that the circuit has 
produced a voltage gain in the time-varying signals. Hence, the circuit is known as a 
voltage amplifie,: 

In the remainder of the chapter, we will consider the operation and characteris- 
tics of the bipolar transistor in more detail. 

10.2 1 MINORITY CARRIER DISTRIBUTION 
We are interested in calculating currents in the hipolar transistor which, as in the sim- 
ple pn junction, are determined by minority carrier diffusion. Since diffusion currents 
are produced by minority carrier gradients, we must determine the steady-state 
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Table 10.1 1 Notation used in the analysis of the bipolar transistor 

Notation Definition 

For both the npn and pnp transistors 
Na, N s .  Nc Doping concentrations in the emitter, base, and collector 

X I . X B . X C  Widths of neutral emitter, base. and collectur regions 

D E .  D R .  Dr  Minority cnrrier difkusion coefficients in emitter, base. and 
collector regions 

L E . L B .  LC Minority carrier diffusion lengths in emitter, base, and 
collector regions 

T i o . T s o . I c o  Minority carrier lifetimes in emitter, base, and collector 
regions 

For the npn 
P E O .  ~ B C I .  pco Themlal equilibrium minorit? carrier hole, electron, and hole 

concentrations in the emitter, base, and collector 

P E ( x ' ) , ~ B ( x ) .  PC(X")  Total minority carrier hole, electron. and hole ctjncentrations 
in the emitter base, and collector 

S ~ E ( X ' ) ,  SnB(r), Sp,(x") Excess minoriry carrier hole, electron. and hole 
concentrations i n  the emitter, base, and collector 

For the pnp 
nrn, ~ s i i .  nco Thermal equilibrium minority cnmri6~r electn~n, hole, and 

electron concentrations in the emitter, base. and collector 

ns(x'1. p,(x),nc(x") Total minority carrier electron. hole, and electron 
concentrations in the emitter, base, and collector 

Gnr (x'),  Sp, ( X I ,  Gnc (x")  Excess minorin. carrier electron, hole, and electron 
concentrations in the emitter, base, and collector 

Emitter Base Collector 
-n- I. - P ~  I. -"- 

Figure 10.13 1 Geometry of thc npn bipolar transistor used 
to calculate the minority carrier distribution. 

minority carrier distribution in each of the three transistor regions. Let us first con- 
sider the forward-active mode. and then the other modes of operation. Table 10.1 
surnmarires the notation used in the following analysis. 

10.2.1 Forward-Active Mode 

Consider a uniformly doped npn bipolar transistor with the geometry shown in Fig- 
ure 10.13. When we consider the individual emitter, base, and collector regions, we 
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I b;mitter I I Babe I ( Collector 

Figure 10.14 1 Minority carrier distribution in an npn 
hipolar transistor operating in the forward-active mode. 

will shift the origin to the edge of the space charge region and consider a positive x ,  
x' ,  or x" coordinate as shown in the figure. 

1 In the forward-active mode, the B-Ejunction is forward biased and the B-C is re- 
verse biased. We expect the minority carrier distributions to look like those shown in 
Figure 10.14. As there are two n regions, we will have minority carsier holes in both 
emitter and collector. To distinguish between these two minority canier hole distrib- 
utions, we will use the notation shown in the figure. Keep in mind that we will be 
dealing only with minority carriers. The parameters pro, nBo, and pca denote the 
thermal-equilibrium minority canier concentrations in the emitter, base, and collec- 
tor, respectively. The functions p ~ ( x ' ) ,  ns(x), and pc(xt') denote the steady-state 
minority carrier concentrations in the emitter, base, and collector, respectively. We 
will assume that the neutral collector length xc is long compared to the minority car- 
rier diffusion length Lc in the collector, but we will take into account a finite emitter 
1ength.r~. If we assume that the surface recombination velocity at x' = r E  is infinite, 
then the excess minority canier concentration at x' = xE is zero, or pE(xl = XE) = 
p ~ o .  An infinite surface recombination velocity is a good approximation when an 
ohmic contact is fabricated at x '  = xE.  

I 
Base Region The steady-state excess minority carrier electron concentration is 
found from the ambipolar transport equation, which we discussed in detail in Chap- 

: ter 6. For a zero electric field in the neutral base region, the ambipolar transport equa- 
i tion in steady state reduces to 

where 6nB is the excess minority carrier electron concentration, and D g  and roo are 
the minority canier difiusion coefficient and lifetime in the base region, respectively. 

i The excess electron concentration is defined as 
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The general solution to Equation (10.9) can be written as 

where L5 is the minority carrier diffusion length in the base, given by L g  = 
G. The base is of finite width so both exponential terms in Equation (10.11) 
must be retained. 

The excess minority carrier electron concentrations at the two boundaries become 

S n ~ ( x  = 0) = Sns(0) = A + B (10.17.a) 

and 

Sna(x = xa) E S ~ B ( X B )  = Aexp (2) + B p (2) (ID11b) 

The B-E junction is forward biased, so the boundary condition at r = 0 is 

a n ~ ( 0 )  = n5(x = 0) - n5, = n," [ exp - - I ]  (10.13a) 

The B-C junction is reverse biased, so the second boundary condition at x = xs is 

From the boundary conditions given by Equations (10.13a) and (10.13b), the 
coefficients A and B from Equations (10.12a) and (10.12b) can be determined. The 
results are 

.. - 
2 sinh (5) I .  

and 

2 sinh (E) 
Then, substituting Equations (10.14a) and (10.14b) into Equation (10.9), we can 
write the excess minority carrier electron concentration in the base region as 

nso 1 [exp (9) - I ]  sinh ( ) - sinh (&) 1 Sno(x) = 

sinh (2) i 
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Figure 10.15 1 Hyperbolic sine function 
and its linear approximation. 

Equation (10.15a) may look formidable with the sinh functions. We have 
ctrs~red that we want the base width X B  to be small compared to the minority carrier 
diffusion length L a .  This condition may seem somewhat arbitrary at this point, but 
the reason will become clear as we proceed through all of the calculations. Since we 
want XH < L B ,  the argument in the sinh functions is always less than unity and in 
most cases will he much less than unity. Figure 10.15 shows a plot of sinh ( y )  for 
0 5 y 5 I and also shows the linear approximation for small values of y .  If y < 0.4, 
the sinh ( y )  function differs from its linear approximation by less than 3 percent. All 
of this leads to the conclusion that the excess electron concentration 6na in Equa- 
tion ( 1 0 . 1 5 ~ )  is approximately a lineur function of x through the neutral base region. 
Using the approximation that sinh (x) % x for x << I .  the excess electron concentra- 
tion in the base is given by 

We will use this linear approximation later in some of the example calculations. 
The difference in the excess canier concentrations determined from Equations (10.1Sa) 
and (10.15b) is demonstrated in the following exercise. 

TEST YOUR UNDERSTANDING 

E1O.l The emitter and ba~e  of a silicon npn bipolar transistor are uniformly doped at 
impurity concentrations of loL8 cm-' and 10j6 cm-', respectively. A forward-bias 
B-E voltage of V B E  = 0.610 V is applied. The neutral base width is x" = 2 pm and 
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the minority camer diffusion length io the bace is LH = 1011m. Calculate the 
excess minority carrier concentration in  thc basc at (a )  x = 0 and ( h )  x = x , / 2 .  
(c) Determine the ratio of the actual minority canier concentration at x = xs/2 

(Equation (10.15a)) to that i n  the ideal case of a linear minority carrier distribution 
(Equation (lO.lSh)). IOS66'0 = (*,01 X z P O h l / + , ~ l  x Lb681) = O!I@8 

'r-UJ *,01 X LP68I = (z/'")"u = (ilH-')""9 (Y) 
'r-ms b , o ~  x I X E  = (0)" ( w )  W V J  

Tahle 10.2 shows the Taylor expansions of some of the hyperbolic functions t 
will he encountered in this section of the chapter. In most cases. we will consi 
only the linear terms when expanding thesc functions. 

Emitter Region Consider, now, the minority carrier hole concentration in the emit 
ter. The steady-state excess hole concentration is determined from the equation 1 
where Dc and rz" are the minority carrier diffusion coefficient and minority cam 
lifetime, respectively. in the emitter. The excess hole concentration is given by 1 
The general solution to Equation (10.16) can he written as 

where L E  = G. If we assume the neutral emitter length XE is not necessarily 
long compared to L E .  then both exponential terms in Equation (10.18) must be 
retained. 

The excess minority canier hole concentrations at the two boundaries are 

SPE(X'? 0) -- S / > E ( ~ )  =- C +  D (10.19a) 
and 

Table 10.2 I Taylor expansions ol hyperholic functions 

Function Taylor expansion 

xi xi 

sinh ( .I)  I+-+-+--. 
3!  5! 
x2  XI 

cosh (r ) I + - +- +  . . .  
2! 4! 
x' 21' 

tanh ( x )  x - - + - + . . .  
3  15 
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!gain, the B-E junction is forward biased so 

I SPE(OJ = p,(x' = 0) - PEU = PEU [ exp ) - - I ]  ( I O Z O ~ )  

An infinite surface recombination velocity at I' = xE implies that 

JPE(XE) = 0 (10.20b) 

Solving for C and D using Equations (10.19) and (10.20) yields the excess mi- 
rity carrier hole concentration in Equation (10.1 8): 

This exress concentration will also vary approximately linearly with distance i f x ~  is 
small. We find 

p.0 [exp (3) - 11 sinh (y ) 
Spt(x') = 

sinh (2) 

I f x ~  is comparable to LE, then SpE(x') shows an exponential dependence on x E  

(l0.21a) 

TEST YOUR UNDERSTANDING I 
E10.2 Consider a silicon npn bipolar transistor with emitter and base regions uniformly 

doped at concentrations of 10'8cm-' and 10'%cm3. respectively. Aforward bias 
B-E voltage of Vnf = 0.610 V is applied. The neutral emitter width is rE = 4 Gm 
and the minority carrier diffusion length in the emitter is L E  = 4 um. Calculate the 
excess minority carrier concentration in the emitter at (a) x '  = 0 and (b) x' = xi/2 
[i-"Ji lOl X 689'1 (9 )  '<-"J r l O l  X 808E (0) 'sub'] 

Collector Region The excess minority carrier hole concentration in the collector 
can he determined from the equation 

where Dc and rca are the minority carrier diffusion coefficient and minority carrier 
lifetime, respectively, in the collector. We can express the excess minority canier 
hole concentration in the collector as 
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The general solution to Equation (10.22) can he written as . 

~ p c ( x " )  = G exp ($) + H exp ($) 
where LC = -. If we assume that the collector is long. then the coefficient 
must be zero since the excess concentration must remain finite. The second bound 
condition gives 

fipc(x8' = 0 )  = 6p<(0)  = p<(x"  = 0 )  - pco = 0 - pco = -pco (10.2 

The excess minority carrier hole concentration in [he collector is then given as 1 
This result is exactly what we expect fronl the results of a reverse-biased pn junctio i 

1 
TEST YOUR UNDERSTANDING 

E10.3 Consider the collector region of an npn bipolar transistor biased in the forward ac- 
tive region. At whet value of A " .  compared to L C .  doe? the magnitude of the minor- 
ity carrier concentration reach 95 percent of the thermal equilibrium value. 
( E  % ~ i ~ l / , , x ' s u v )  I 

10.2.2 Other Modes of Operation 4 
The bipolar transistor canal50 operate in the cutoff, saturation, or inverse-active mode. 
We will qualitatively discuss the minority carrier distrihutions for these operating 
conditions and treat the actual calculations as problems at the end of the chapter. 

Figure 10.16a shows the minority carrier distribution in an npn bipolar transis- 

I 
tor in cutoff. In cutoff, both the B-E and B-C junctions are reverse biased: thus, the, 

Figure 10.16 I Minority carrier distribution i n  an npn bipolar transistor operating i n  (a) cutoff and (b) saturation 
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Figure 10.17 1 (a) Minorily carrier distribution i n  an npn bipolar transistor operating in the inverse-active mode. 
(b) Cross section of an npn bipolar transistor showing the injection and collection of clectrons in the inverse-active 
mode. 

I minority camier concentrations are zero at each space charge edge. The emitter and 
collector regions are assumed to be "long" in this figure, while the base is narrow 
compared with the minority carrier diffusion length. Since x~ << Lo ,  essentially all 
minority carriers are swept out of the base region. 

Figure 10.16b shows the minority carrier distribution in the npn bipolar transis- 
tor operating in saturation. Both the B-E and B-C junctions are forward biased; thus, 
excess minority carriers exist at the edge of each space charge region. However, 
since a collector current still exists when the transistor is in sdturation, a gradient will 
still exist in the minority carrier electron concentration in the base. 

Finally, Figure 10.17a shows the minority carrier distribution in the npn transis- 
tor for the inverse-active mode. In this case, the B-E is reverse biased and the B-C is 
forward biased. Electrons from the collector are now injected into the base. The 
gradient in the minority carrier electron concentration in the base is in the opposite 
direction compared with the forward-active mode, so the emitter and collector cur- 
rents will change direction. Figure 10.17b shows the injection of electrons from the 
collector into the base. Since the B-C area is normally much larger than the B-E area. 
not all of the injected electrons will be collected by the emitter. The relative doping 
concentrations in the base and collector are also different compared with those in the 
base and emitter; thus, we see that the transistor is not symmetrical. We then expect 
the characteristics to be significantly different between the forward-active and 
inverse-active modes of operation. 

10.3 1 LOW-FREQUENCY COMMON-BASE 
CURRENT GAIN 

The basic principle of operation of the bipolar transistor is the control of the collec- 
tor current by the B-E voltage. The collector current is a function of the number of 
majority carriers reaching the collector after being injected from the emitter across 
the B-E junction. The cotnmon-base current ~ a i n  is defined as the ratio of collector 
current to emitter current. The flow of various charged carriers leads to detinitions of 
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- 
particular currents in the device. We can use these definitions to define the current 
gain of the transistor in terms of several factors. 

10.3.1 Contributing Factors 

Figure 10.18 shows the various particle flux components in the npn bipolar transis- 
tor. We will define the various flux components and then consider the resulting cw- 
rents. Although there seems to be a large number of flux components, we may 
clarify the situation by correlating each factor with the minority carrier distnbuti 
shown in Figure 10.14. 

The factor J,; is the electron flux injected from the emitter into the base. As 
electrons diffuse across the base, a few will recombine with mdiority camer ho 
The majority carrier holes that are lost by recomhination must be replenished f 
the base terminal. This replacement hole flux is denoted by The electron flux 
that reaches the collector is .I,>. The majority camer holes from the base that arc 111- 

jected back into the emitter result in a hole flux denoted by J&. Some electrons and 
holes that are injected into the forward-biased B-E space charge region will recom- 
bine in this region. This recombination leads to the electron flux J; .  Generation of 
electrons and holes occurs in the reverse-biased B-C junction. This generation yields 
a hole flux J z .  Finally, the ideal reverse-saturation current in the B-C junction is 
denoted by the hole flux JG,. 

The corresponding electric current density components in the npn transistor are 
shown in Figure 10.19 along with the minority carrier distributions for the forward 
active mode. The curves are the same as in Figure 10.14. As in the pn junction, 
currents in the bipolar transistor are defined in terms of minority cmier  diffus 
currents. The current densities are defined as follows: 

J n t :  Due to the diffusion of minority canier electrons in the base at x = 0. 
3 , ~ :  Due to the diffusion of minority carrier electrons in the base at x = r ~ .  I 
J R ~ :  The difference betwecn J,,E and Jnc ,  which is due to the recomhination 
of excess minority carrier electrons with majority carrier holes in the base. The 
J K B  current is the flow of holes into the base to replace the holes lost by 
recombination. 
JpE:  Due to the diffusion of minority canier holes in the emitter at x' = 0. 

Figure 10.18 1 Particle current density or flux components in 
an npn bipolar transistor operating in the fanvard-active mode 
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Figure 10.19 I Current density components in an npn bipalar transistor operating in the 
forward-active mode. 

J R :  Due to the recombination of carriers in the forward-biased B-E junction. 
J,,": Due to the diffusion of minority carrier holes in the collector at x" = 0. 

.Iti: Due to the generation of carriers in the reverse-biased B-C junction. 

The currents JKH. J,,E. and J R  are B-E junction currents only and do not con- 
hihute to the collector current. The currents J,>,o and Jc are B-C junction currents only. 
These current components do not contribute to the transistor action or the current gain. 

The dc common-base current gain is defined as 

If we assume that the active cross-sectional area is the same for the collector and 
emitter, then we can write the current gain in terms of the current densities, or 

We are pri~narily interested in determining how the collector current will change 
with a change in emitter current. The small-signal, or sinusoidal, common-base cur- 
rent gain is defined as 

The reverse-bias B-C currents, JG and .Ipco, are not functions of the emitter current. 
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We can rewrite Equation (10.29) in the form 

a = yarS 

The factors in Equation (10.30b) are defined as: - emitter injection efficiency factor 

a. = (g) s base transport factor 

S = 
J = E  + J p z  

r recombination factor 
J,E + J R +  J p ~  

We would like to have the change in collector current be exactly the same as th 
change in emitter current or. ideally, to have a = 1. However, a consideration o 
Equation (10.29) shows that a will always be less than unity. The goal is to make 
as close to one as possible. To achieve this goal, we must make each term in Equ 
tion (10.30b) as close to one as possible, since each factor is less than unity. 

The emitter injection eficiency factor y takes into account the minority came 
hole diffusion current in the emitter. This current is part of the emitter current, but 
does not contribute to the transistor action in that J p 6  is not part of the collector cur- 
rent. The base transportfl~ctor ar takes into account any recombination of exce 
minority carrier electrons in the base. Ideally, we want no recombination in the base. 
The recombinution factor S takes into account the recombination in the fonvard- 
biased B-E junction. The current JR contributes to the emitter current, but does not 
contribute to collector current. I 
10.3.2 Mathemat i ca l  Der ivat ion o f  C u r r e n t  G a i n  Factors I 
We now wish to determine each of the gain factors in terms of the electrical 
geometrical parameters of the transistor. The results of these derivations will show 
how the various parameters in the transistor influence the electrical properties of 
the device and will point the way to the design of a " g o o d  bipolar transistor. 

Emitter Iqjection Eficiency Factor Consider, initially, the emitter injection 
ciency factor. We have from Equation (10.31a) 

We derived the minority carrier distribution functions for the forward-active mode 
in Section 10.2.1. Noting that J n ~ ,  as defined in Figure 10.19, is in the negative 



1 0.3 Low-Frequency Cornrnon-Base Current Ga~n 

xdirection, we can write the current densities as 

Jpt = - ~ D E  (10.33a) 

J n ~  = ( - ) ~ D B  d(8yx(x)) lx=n (10.33b) 

where S ~ E ( X ' )  and Sne(x) are given by Equations (10.21) and (10.15), respectively. 
Taking the appropriate derivatives of S p ~ ( x ' )  and Sne(x), we obtain 

~ D E P E O  ~ V B E  1 
J p ~  = - [exp - I ]  . (10.34a) 

L E tanh (xEILE) 

1 [ e x p ( e V ~ ~ l k T )  - 11 
J,,E = - 

+ tanh (xB/LB) 

' Positive J,,E and JnE values imply that the currents are in the direct~ons shown in 
Figure 10.19. If we assume that the B-E junction is biased sufficiently far in the for- 

i ward bias so that VBE >> kT/e, then 

exp (+) >> I 

I and also 

e x p ( e V ~ ~ / k T )  >> , 1 
tanh (xB/LB) s l n h ( x ~ / L e )  

The emitter injection efficiency, from Equation (10.32), then becomes 

y = - 
1 

1 - ,B tanh(xalLs)  - .  
, E  tanh (xE/LE) 

If we assume that all the parameters in Equation (10.35a) except pro and nso are 
fixed, then in order for y % 1, we must have pEo << noo. We can write 

n' n? 
PEO = - and nao = - 

NE NB 

where NE and NB are the impurity doping concentrations in the emitter and base, re- 
spectively. Then the condition that pEO << nBO implies that NE >> Ng. For the emit- 
ter injection efficiency to be close to unity, the emitter doping must be large com- 
pared to the base doping. This condition means that many more electrons from the 
n-type emitter than holes from the p-type base will be injected across the B-E space 
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charge region. If both xo << LB and xr  << L E ,  then the emitter injection efficieni! 
can be written as 

Base Transport Factor The next term to consider is the base transport facka. 
given by Equation (l0.31b) as ur = J , , c / J , , ~ .  From the definitions of the currrilt 
directions shown in Figure 10.19, we can write 

and 

Using the expression for Sno(x) given in Equation (10.15), we find that 

, - ~ D B ~ H U  l e x p ( e V ~ ~ / k T )  - 11 + 
" - ( sinh (xB/Lo) 

(10.3ii 
LB 

The expression for J,,E was given in Equation (10.34a). 
If we again assume that the B-E junction is biased sufficiently far in the forward 

bias su that VBP; >> k T / e ,  then exp(rVnE/kT) >> 1. Substituting Equations (10..37) 
and (10.34b) into Equation (10.31 b), we have I 

J,,c exp i e V ~ ~ l k T )  + cosh (xBILB) a ? = - %  
J,E 1 + exp ( e v ~ ~ / k T )  cosh (.x8/L8) 

(10.38) I 
In order for cxr to be close to unity, the neutral base width X B  must be much smal- 

cosh (XB/LB) will be just slightly greater than unity. In addition, if exp(eVnr/ 
I ler than the minority can.ier diffusion length in the base L B .  If .vg << Lti. then 

kT) >> 1, then the base transport factor is approximately 

cosh(xa/Lo) 

For x~ << Lo, we may expand the cosh function in a Taylor heries, so that 

1 - - I I 

cosh (xti/Lo) 1 + f ( z B ~ L B ) ~  

The base transport factor CYT will be close to one if x8 << Lo. We can now see why 
we indicated earlier that the neutral base width nB would be less than LB.  
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Recombination Factor The recombination factor was given by Equation (10.3 lc). 
We can write 

We have assumed in Equation (10.40) that J,,E << J,,E. The recombination current 
density, due to the recombination in a forward-biased pn junction, was discussed in 
Chapter 8 and can be written as 

where is the B-E $pace charge width. 
The cumnt  Jnc from Equation (10 34b) can be approximated as 

f VRE 
J,,E = A0.x P ( F )  (10.42) 

where 

eDanao 
Jsu = (10.41) L B  tanh(x8/LB) 

The recombination factor, from Equation (10.40), can then be written as 

(10.44) 

f The recombination factor is a function of the B-E voltage. As VBE increases, the 
recombination current becomes less dominant and the recombination factor 
approaches unity. i The recombination factor must also include surface effects. The surface effects 
can be described by the surface recombination velocity as we discussed in Chapter 6. 
Figure 10.20a shows the B-E junction of an npn transistor near the semiconductor 
surface. We will assume that the B-E junction is forward biased. Figure 10.20b 
shows the excess minority carrier electron concentration in the base along the cross 
section A-A'. This curve is the usual forward-biased junction minority carrier con- 
centration. Figure 1 0 . 2 0 ~  shows the excess minority carrier electron concentration 
along the cross section C-C' from the surface. We showed earlier that the excess con- 
centration at a surface is smaller than the excess concentration in the bulk material. 
With this electron distribution, there is a diffusion of electrons from the bulk toward 
the surface where the electrons recombine with the majority carrier holes. Fig- 
ure 10.20d shows the injection of electrons from the emitter into the base and the dif- 
fusion of electrons toward the surface. This diffusion generates another component 
of recombination current and this component of recombination current must be 
included in the recombination factor 8. Although the actual calculation is difficult 
because of the two-dimensional analysis required, the form of the recombination 
current is the same as that of Equation (10.41). 
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Figure 10.20 1 The surface at the E-B junction showing the diffusion of carriers toward th 
surface. 

10.3.3 Summary 

Although we have considered an npn transistor in all of the derivations, exactly 
same analysis applies to a pnp transistor; the same minority carrier distributions will 
be obtained except that the electron concentrations will become hole concentrations 
and vice versa. The current directions and voltage polarities will also change. 

We have been considering the common-base current gain, defined in Equa- 
tion (10.27) as a. = l, -//~. The common-emitter current gain is defined as b0 = 
I c / l ~ .  From Figure 10.8 we see that I E  = It, + I,-. We can determine the relation 
between common-emitter and common-base current gains from the KCL equation. 
We can write 

I 
I E  I f l  - = -  
1c /c 

+ 1 

Substituting the definitions of current gains, we have 

1 I - - - - + I  
00 Bo 

Since this relation actually holds for hoth dc and small-signal conditions, we can 
drop the subscript. The common-emitter current gain can now be written in terms of 
the common-base current gain as 

LY b=-- 
1 - a  

The common-base current gain, in terrns of the common-emitter current gain, is 
found to be 

B 
(Y = -- 

l + B  
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Table 10.3 1 Summary of limiting factors 

Emitter injection efficiency 

t Base transport factor 

I Recombination factor 

6 = 
I 

! Common-base current gain 

Common-emitter current gain 

Table 10.3 summarizes the expressions for the limiting factors in the common 
base current gain assuming that xa << La and XE << LE. Also given are the approx- 
imate expressions for the common-base current gain and the common-emitter current 
gain. 

10.3.4 Example Calculations of the Gain Factors 

If we assume a typical value of p to be 100, then u = 0.99. If we also assume that 
y = ar = 8 .  then each factor would have to be equal to 0.9967 in order that 
f l  = 100. This calculation gives an indication of how close to unity each factor must 
be in order to achieve a reasonable current gain. 

DESIGN 
O

b
j
ective 

EXAMPLE 10.1 
To design the ratio of emitter doping to base doping in order to achieve an emitter injection 
efficiency factor equal toy = 0.9967. 

Consider an npn bipolar transistor. Assume, for simplicity, that D ,  = DB,  L E  = LB . and 
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Solution 
Equation (10.35a) reduces to 

1 
y = =  

I 
P i o  .:INE 

I + -  I+-  
1 ~ 8 "  ": IN8 

SO 

I 
y = ----- = 0.9967 

N R  
I + - 

Nt 

Then 

NP -- N E  - 302 - 0.00331 or - - 
Nt N A 

Comment 
The emitter doping concentration must be much larger than the base doping concentration 
achieve a high emitter injection efticiency. 

DESIGN 1 Objective 
EXAMPLE 10.2 

To design the base width required to achieve a base transport factor equal t o u r  = 0.991 
Consider a pnp bipolar transistor. Assume that D8 = 10 cm2/s and rB,, = lo-' s. 

5 Solution 
The base transport factor applies to both pnp and npn transistors and is given by 

Then 

. xB/L8  = 0.0814 

We have 

L~ = = Jm = 10-' cm 

so that the base width must then be 

x s  = 0.814 x 10-' cm = 0.813 u m  

m Comment 
If the base width is less than approximately 0.8 um,  thcn the required base transport 
will be achieved. In most cases, the base transport factor will not be the limiting factor 
bipoliu; transistor current gain. 
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Objective I EXAMPLE 10.3 

To calculate the forujard-biased B-E voltage required tu achieve a recombination fdctor equal 
to6 = 0.9967. 

i Consider an npn hlpolar transistor at T = 300 K. Assume that J,, = 10 Alcm' and 
that .Iso = 1 0 "  Alcm'. 

I Solution 
The rccr~mbination factor, fiom Equation (10.44), is 

We then have 

We can rearrange this equation and write 

I Comment 
This cxamplc demonstrates that the recombination factor may be an important limiting factor 
in the bipolar current gain. In this example, if V B Z  is smaller than 0.654 V, then the recombi- 
nation factor S will fall below the desired 0.9967 value. 

Objective 1 EXAMPLE 10.4 

To calculate the common-emitter current gain of a silicon npn bipolar transistor at 7 = 300 K 
given a set of parameters. 

Assume the following parameters: 
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The following parameters are calculated: 

Solution 
The emitter injection efficiency factor, from Equation (10.35a), is 

The base vansport factor, from Equation (10.39~~) is 

The recombination factor, from Equation (lO.U), is 

where 

~ D R ~ B O  - - 
(1.6 x 10-'9)(25)(2.25 x I@) = 

A/cm2 J,e = 
LH tanh (t) 3.54 x lo-' tanh (1.977 x 

We can now calculate S = 0.99986. The common-base current gain is then 

a = yui8 = (0.9944)(0.9998)(0.99986) = 0.99406 

which gives a common-emitter current gain of 

Comment 
In this example, the emitter injection efficiency is the limiting factor in the current gain. 

I TEST YOUR UNDERSTANDING 
NOTE: In Exercises E10.4 through E10.9, assume a silicon npn bipolar transistor at T = 300K 
has the following minority carrier parameters: Dt = 8 cm21s. Dx = 20 crn21s, Dc = 12 cm'h 
r,o = 1 0 P  s, THO = lo-' S, T C ~ I  = S. 
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E10.4 If the emitter doping concentration is NE = 5 x 10" cm-'. find the base doping 
concentration such that the emitter injection efficiency is y = 0.9950. Assume 
xi = 21, = 2 fim. (c-m3 p,OI X £0'1 = R~ .SUV) 

E10.5 Assume that ar = 6 = 0.9967. x ,  = x, = I Wm, NH = 5 x LOt6 cm-', and N E  = 

5 x 1018 cm-'. Determine the common emitter current gain p. ( 5 . ~ 6  = d ' s u ~ )  
E10.6 Determine the minimum base width X B  such that the base transport factor is 

ar = 0.9980. ("fl S68'0 = '1 'SUE-) 

E10.7 Assume that y = S = 0.9967 and x8 = 0.80 um. Determine the common-emitter 
current gain p .  ( l Z l  = d 'Sub') 

E10.8 If JFo = lo-' A/cm2 and J,,o = 10-" Alcm2, find the value of V R E  such that 
S = 0.9960. (A 9EP9.0 = ' "A  "JV) 

E10.9 Assume that y =a, = 0.9967. J,o = 5 x 10-"cm2, Jso = 10-" Alcm', and 
V 8 ~  = 0.585 V. Determine the common-emitter current gain 8. (VLL = d s U V )  

10.4 1 NONIDEAL EFFECTS 
In all previous discussions, we have considered a transistor with uniformly doped re- 
gions, low injection, constant emitter and base widths, an ideal constant energy 
bandgap, uniform current densities, and junctions which are not in breakdown. If any 
of these ideal conditions are not present, then the transistor properties will deviate 
from the ideal characteristics we have derived. 

10.4.1 Base Width Modulation 

We have implicitly assumed that the neutral base width x~ was constant. This base 
width, however, is a function of the B-C voltage, since the width of the space 
charge region extending into the base region varies with B-C voltage. As the B-C 
reverse-bias voltage increases, the B-C space charge region width increases, which 
reduces x ~ .  A change in the neutral base width will change the collector current as 
can be observed in Figure 10.21. A reduction in base width will cause the gradient 
in the minority carrier concentration to increase, which in turn causes an increase in 
the diffusion current. This effect is known as base width modulation; it is also 
called the Early effect. 

The Early effect can be seen in the current-voltage characteristics shown in Fig- 
ure 10.22. In most cases, a constant base current is equivalent to a constant B-E volt- 
age. Ideally the collector current is independent of the B-C voltage so that the slope 
of the curves would be zero; thus the output conductance of the transistor would be 
zero. However, the base width modulation, or Early effect, produces a nonzero slope 
and gives rise to a finite output conductance. If the collector current characteristics 
are extrapolated to zero collector current, the curves intersect the voltage axis at a 
point that is defined as the Early voltage. The Early voltage is considered to be a pos- 
itive value. It is a common parameter given in transistor specifications; typical val- 
ues of Early voltage are in the 100- to 300-volt range. 
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Figure 10.21 1 The c h a n ~ e  in the base width and the change 
in the minority carrier gradient as the B-C space charge 
width changes. 

Figure 10.22 1 The collector current versus collector- 
emitter voltage showing the Early effect and Early voltage. 

From Figure 10.22, we can write that 1 

where VA and VCE are defined a s  positive quantities and go is  defined as the outp 
conductance. Equation (l0.45a) can be rewritten in the form 

Ic = ~ ~ ( V C E  + VA) (10.45b 1 
showing explicitly that the collector current is now a function of the C-E voltage 04 - .  
the C-B voltage. 

rn 

EXAMPLE 10.5 I O b j e c t i v e  

To calculate the change in the neutral base width with a change in C-B voltage. 
Consider a uniformly doped silicon bipolar transistor at T = 100 K with a base doping of 

N ,  = 5 x 10'6 c m  andacollecLordopingofNc = 2 x lo i5  cm'.Assume themetallurgical 
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base width is 0.70 urn. Calculate the change in the neutral base width as the C-B voltage 
changes from 2 to 10 V. 

I Solution 
The space charge width extending into the base region can be written as 

which becomes 

x,,~ = ((9.96 x 10-")(vh, + v ~ ~ ) ) ' ' ~  

The built-in potential 1s 

For Vcn = 2 V. we find xn, = 0.052 irm. and for VCB = 10 V, we find xdtl = 0.103 um.  If 
we neglect the B-E space charge region, which will be small because of the forward-biased 
junction, then we can calculate the neutral base width. For Vc8 = 2 V. 

ss = 0.70 - 0.052 = 0.648 @m 

and for V , ,  = 10 V, 

xB = 0.70 - 0.103 = 0.597 wm 

I Comment 
This example shows that the neutral base width can easily change by approximately 8 percent 
as the C-B voltage changes from 2 to 10 V. 

Objective I EXAMPLE 10.6 

To calculate the change in collector current with a change in neutral base width, and to esli- 
mate the Early voltage. 

Consider a uniformly doped silicon npn bipolar transistor with parameters described in Ex- 
ample 10.5. Assume Dg = 25 cm2/5, and VBE = 0.60 V, and also assume that r, << L , .  

I Solution 
The excess minority cat~ier electron concentration in the base is given by Equation (10.15) as 

n.0 [[ex. (3) - I]  sinh ( ) - sinh (2) 1 G n ~ ( x )  = 
sinh (z)  
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If xR << LB.  then ( r 8  - r) << L ,  so we can write the approximations 

i n  (2) ( and sinh ( ) * ( y) 
The expression for S n x ( x )  can then he approximated as 

X" 

The collector current is now 

I . )  C D X I ~ H O  eVsi 
IJcl=eD, dx 

I 8 

The value of nxo is calculated as 

n' (1.5 x 10'')' 
nR" = - = = 4.5 x 10' c m 3  

N u  5 x I0l6 

If we let xB = 0.648 pni when V,-0 = 2 V (Vci = 2.6 V) .  then 

(1.6 x 1019)(25)(4.5 x 10') 
IJc = cxp (z) = 3.20 ~ l c m '  

0.648 x lo-" 00259 

Now Ict ,rH = 0.597 urn when V,-x = 10 V (VCE = 10.6 V). In this case we have J C  

3.47 Alcni'. From Equation (10.45a). we can write 

Using the calculated values of current and voltage, we have 

The Early voltage is then determined to be 

Comment 
This example indicates how much the collector curient can change as the neutral base width 
changes with a change in the B-C space charge width. and it also indicates the magnitude of 
the Early voltage. 

The example demonstrates, too, that we can expect variations in transistor prop- 
erties due to tolerances in transistor-fabrication processes. There will be variations, 
in particular, in the base width of narrow-base transistors that will cause variations in 
the collector current characteristics simply due to the tolerances in processing. 
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TEST YOUR UNDERSTANDING 

0.10 A particular transistor has an out~ut resistance of 200 kR and an Early voltage of . 
V, = 125 V. Determine the change in collector current when Vcs increases from 
2 V to 8 V (ifd OC = ' IV  .SuV) 
(n )  If. because of fabrication tolerances, the neutral hase width for a set of transis- 
tors varie over !he range nf 0.800 5 s8 < l.O0/1m. delermine the variation in the 
base transport factor mi. Assume L B  = 1.414 x cm. (b) Using the results of 
part ((1) and assuming y = 6 = 0.9967, what is the variation in common emitter 
current gain. 1 1 Z 1  5 d 5 601 (Y) 'P866'0 5 "a 5 SL66'0 (0) 'sub'] 

10.4.2 High Injection 

b e a m h i p o l a r  transport equation that we have used to determine the minority canier 
distributions assumed low injection. As VBE increases, the injected minority carrier 
concentration may approach, or even becomelarger than, the majority carrier concen- 
tmtion. If we assume quasi-charge neutrality, then the majority carrier hole concen- 
tration in the p-type hase at x = 0 will increase as shown in Figure 10.23 because 
of the excess holes. 

Two effects occur in the transistor at high injection. The first effect is a reduction 
inemitter injection efficiency. Since the majority carrier holc concentration at x = 0 
increases with high injection, more holes are injected back into the emitter because 
of the forward-biased B-E voltage. An increase in the hole injection causes an in- 
crease in the J p ~  current, and an increase in J,,E reduces the emitter injection effi- 
ciency. The common, emitter current gain decreases, then, with high injection. Fig- 
ure 10.24 shows a typical common-emitter current gain versus collector current 

injection 
effects 

eiiects 

Collector current (A) 
Fieure 10.23 1 Minority and rnaioritv . . 
carrier concentrations in the base under 
low and high injection (solid line: low 
injection: dashed line: high injection). 

Figure 10.24 I Common-emitter current 
gain versus collector current. 
(From .S'hur 1131) 
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curve. The low gain at low currents is due to the small recombination factor andtbc 
drop-off at the high current is due to the high-injection effect. 

We will now consider the second high-injection effect. At low injection, t h e m  
jority carrier hole concentration at x = 0 for the npn transistor is 

and the minor~ty carrier electron concentration is 

n,(O) = n,o exp - 
(e:) (10. 

C 
The pn product is 

,.iP(o) = pponpo exp (+) (lo. 

At high injection, Equation ( 1 0 . 4 6 ~ )  still applies. However, p,(O) will also increase, 
and for very high injection it will increase at nearly the same rate as n,(O). The in- 
crease in n,(O) will asymptotically approach the function 

n,(O) % r zPo  exp - (;?: 1 
The excess minority carrier concentration in the base, and hence the collector cur- 
rent, will increase at a slower rate with B-E voltage in high injection than low injec- 
tion. This effect is shown in Figure 10.25. The high-injection effect is vely similar to 
the effect of a series resistance in a pn junction diode. 

Figure 10.25 1 Collector current versus 
baseemitter voltage showing high- 
injection effects. 

[ - 
2 

injection /'Pigh- effects 

, 
t , 
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10.4.3 Emitter Bandgap Narrowing 

Another phenomenon affecting the emitter injection efficiency is bandgap narrow- 
ing. We implied from our previous discussion that the emitter injection efticiency 
(actor would continue to increase and approach unity as the ratio of emitter doping to 
base doping continued to increase. As silicon hecomes heavily doped, the discrete 
donor energy level in an n-type emitter splits into a band of energies. The distance 
between donor atoms decreases as the concentration of impurity donor atoms in- 
creases and the splitting of the donor level is caused by the interaction of donor atoms 
ilith each other. As the doping continues to increase, the donor hand widens, he- 
comes skewed, and moves up toward the conduction hand, eventually merging with 
it. At this point, the effective handgap energy has decreased. Figure 10.26 shows a 
plot of the change in the handgap energy with impurity doping concentration. 

A reduction in the bandgap energy increases the intrinsic canier concentration. 
The intrinsic carrier concentration is given by 

- Es 
rii = N, N, ,  exp (F) 

In a heav~ly doped emitter, the intrinsic carrier concentration can he written as 

I n;E = N, N, exp 

where E,o is the handgap encrgy at a low doping concentration and A E ,  is the 
bandgap narrowing factor. 

The emitter injection efficiency factor wau given by Equat~on (10.35) as 

N,, (cm ' )  

Figure 10.26 1 Bandgap-narrowing factor versus donor 
irnpurity cancentration in silicon. 
(Frorn Sze il8I.j 
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and must be written as 

As the emitter doping increases, AE, increaes; thus, p ~ o  does not continue to 
crease with increased emitter doping. If p ~ "  starts to increase because of the bandg 
narrowing, the emitter injection efficiency bcgins to fall off instead of continuing 
increase with increased emitter doping. 

Consider a silicon emitter at T = 300 K. Assume the emitter doping increases 
10'8 cm-3 to lot9 crn-'. Calculate the change in the pEn value. 

Solution 
For emitter dopings of N, = 1Ui8 cm-' and l0l9 ern-?, we have, neglecting bandgap 
narrowing, 

nf (1.5 x 10IU)' 
Pro = - = 10'8 

= 2.25 x 10' cm-? 
NE 

and 

(1.5 x 1010)2 
Pto = = 2.25 x lo1 cm-) 

10" 
! 

Takmg into account the bandgap narrowing, we obtain, respectively, for N E  = 10" cm-' and 
N~ = 1019 ~ ~ - 3  

and 

Comment 
If the emitter doping increases from 10" to 1019 cm-), the thermal-equilibrium minority car- 
rier concenrration actually increases by a factor of 1.5 instead of decreasing by the expected 
factor of 10. This effect is due to bandgap narrowing. 

As the emitter doping increases, the bandgap narrowing factor, AE,, will in- 
crease; this can actually cause PEO to increase. As p ~ u  increases, the emitter injection 
efficiency decreases; this then causes the transistor gain to decrease, as in Figure 10.24. I 
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i A very high emitter doping may result in a smaller current gain than we anticipate be- 
cause of the handgap-narrowing effect. 

1 10.4.4 Current Crowding 

It is tempting to minimize the effects of base current in a transistor since the base cur- 
rent is usually much smaller than either the collector or the emitter current. Fig- 
ure 10.27 is a cross section of an npn transistor showing the lateral distribution of 

I base current. The base region is typically less than a micrometer thick, so there can 
be a sizable base resistance. The nonzero base resistance results in a lateral potential 
difference under the emitter region. For the npn transistor, the potential decreases 
from the edge of the emitter toward the center. The emitter is highly doped, so as a 
first approximation the emitter can be considered an equipotential region. / The number of electrons from the emitter injected into the base is exponentially 
dependent on the B-E voltage. With the lateral voltage drop in the base between the 
edge and center of the emitter, more electrons will be injected near the emitter edges 

1 than in the center, causing the emitter current to be crowded toward the edges. This 
current-crowding effect is schematically shown in Figure 10.28. The larger current 
density near the emitter edge may cause localized heatingeffects as well as localized 

1 high-injection effects. The nonuniform emitter current also results in a nonuniform 
lateral base current under the emitter. A two-dimensional analysis would he required 
to calculate the actual potential drop versus distance because of the nonuniform base 
current. Another approach is to slice the transistor into a number of smaller parallel 
transistors and to lump the resistance of each base section into an equivalent external 
resistance. 

Power transistors, designed to handle large currents, require large emitter areas 
to maintain reasonable current densities. To avoid the current-crowding effect, these 
transistors are usually designed with narrow emitter widths and fabricated with an in- 
terdigitated design. Figure 10.29 shows the basic geometry. In effect, many narrow 
emitters are connected in parallel to achieve the required emitter area. 

Base Emitter 

1 1 L ' 
p base nt ernitte p base 

Collector 

Figure 10.27 1 Cross section of an npn bipolar transistor 
showing the base current distribution and the lateral 
potential drop in the base region. 

Collector current 

Figure 10.28 I Cross section of an npn 
bipolar transistor showing the emitter 
current-crowding effect. 
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Baae 

, Base Emitter 
terminal 

1 
I 
I 

Figure 10.29 1 (a) Top view and (b) cross section of an * 
interdigitated npn bipolar transistor stmcture. * 

TEST YOUR UNDERSTANDING 

E10.12 Consider the geometry shown in Figure 10.30. The base doping concentration is 
N ,  = 101%cm3, the neutral base width i s r ~  = 0.80pm. the emitterwidth is 
S = 10 pm, and the emitter length is L = 10 pm. (a) Determine the resistanceof 
the base between x = 0 and x = S/Z.Assume a hole mobility of p,, = 400 cmZN-s. 
(b) If the base current in this region is uniform and given by I n / 2  = 5 pA. determine 
the potential difference betweenx = 0 and x = S/2. ( c )  Using the results of panib). 
what is the ratio ofemirtercul.ren1 density atx = 0 to tharatx = S/2? 
I659 ( 5 )  'A" 5 8 8 P  ('4) 'UY LL.6 (0) 'S'JV] 

*10.4.5 Nonuniform Base Doping 

In the analysis of the bipolar transistor, we assumed uniformly doped regions. Ho 
ever, uniform doping rarely occurs. Figure 10.31 shows a doping profile in a dou 
diffused npn transistor. We can start with a uniformly doped n-type substrate, di 
acceptor atoms from the surface to form a compensated p-type base, and then di 
donor atoms from the surface to form a doubly compensated n-type emitter. 
diffusion process results in a nonuniform doping profile. 
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n+ emitter 
p base 

r = U x = S / 2  
n ~ l l e c t o r  

Figure 10.30 I Figure for ElO.12. 

Figure 10.31 1 Impurity concentration 
profiles of a double-diffused npn bipolar 
transistor. 

We determined in Chapter 5 that a graded impurity concentration leads to an in- 
duced electric field. For the p-type base region in thermal equilibrium, we can write 

dN" J,, = efi,N,E - ED,- = 0 
d x  

Then 

According to the example of Figure 10.31, d N , / d x  is negative; hence, the induced 
electric field is in the negative x direction. 

Electrons are injected from the n-type emitter into the base and the minority car- 
rier base electrons begin diffusing toward the collector region. The induced electric 
field in the base, because of the nonuniform doping, produces a force on the electrons 
in the direction toward the collector. The induced electric field, then, aids the flow of 
minority carriers across the base region. This electric field is called an accelerating 
jeld. 
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The accelerating field will produce a drift component of current that is in 

tion to the existing diffusion current. Since the minority carrier electron concen 
tion varies across the base, the drift current density will not he constant. The t 
current across the base, however, is nearly constant. The induced electric field in 
base due to nonunifonn base doping will alter the minority carrier distnbuti 
through the base so that the sum of drift current and diffusion current will be a c 

for estimating the base characteristics. 

10.4.6 Breakdown Voltage 

1 
stant. Calculations have shown that the uniformly doped base theory is vely useful 

There are two breakdown mechanisms to consider in a bipolar transistor. The first I 
called punch-through. As the reverse-bias B-C voltage increases, the B-C space 
charge region widens and extends farther into the neutral base. It is possible for the 
B-C depletion region to penetrate completely through the base and reach the B-E 
space charge region, the effect calledpunrh-throu~h. Figure 10.32a shows the energy- 
band diagram of an npn bipolar transistor in thermal equilibrium and Figure 10.3 
shows the energy-band diagram for two values of reverse-bias B-C junction volta 
When a small C-B voltage, VRI. is applied, the B-E potential barrier is not affe 
thus, the transistor current is still essentially zero. When a large reverse-bias vol 
VR? is applied, the depletion region extends through the base region and the 
potential barrier is lowered because of the C-B voltage. The lowering of the potenti 
banier at the B-E junction produces a large increase in current with s very srn 
increase in C-B voltage. This effect is the punch-through breakdown phenomenon. 

Figure 10.33 shows the geometry for calculating the punch-through voltage. As 
sume that NB and Nc are the uniform impurity doping concentrations in the base 
collector, respectively. Let W8 be the metallurgical width of the haseandletxde be 
space charge width extending into the base from the B-C junction. If we neglect 

Figure 10.32 1 Energy-band diagram of an npn bipolar transistor (a) in thermal 
equilibrium. and (b) with a reverse-bias 8-C voltage before punch-through, V,, 
and after punch-thn~ugh, VR1 
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Figure 10.33 1 Geometry of a bipolar 
transistor to calculate the punch-through 
voltage. 

narrow space charge width of a zero-biased o r  forward-biased B-E junction. then 
punch-through. assuming the abruptjunction approximation, occurs when x , , ~  = W g .  

We can write that 

where V,,, is the reverse-biased B-C voltage at punch-through. Neglecting VI,, com- 
pared to V ,,,, we can solve for V,,, as 

Objective I DESIGN 
EXAMPLE 10.8 

To desipn the collector doping and collectr)~ width to meet apunch-through voltage specification. 
Consider a unifr,mly doped silicon hipolar transistor with a metallurgical base width 

of 0.5 Wm and a base doping of Nn = 10" c m  3 .  The punch-through wltage is to be 

V,, = 25 V. 

I Solution 
The maximum collecmr doping concentration can be determined from Equation (10.54) as 

which yields 

Nc = 8 38 x 10'* cm-' 

This n-type doping concentration in the collectar must extend at least as far as the depletion 

ii 
width extends ina, the collector to avoid breakdown in the collector region. We have, using 
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results from Chapter 7, 

Neglecting I/>, compared to V, = V,,. we obtain 

or 

h, = 5.97 pm 

Comment 

case. For a lmger punch-through voltage, a larger metallurgical hase width will be requi 

I TEST YOUR UNDERSTANDING 

E10.13 The metallurgical hase width of a silicon npn bipolar transistor is Wn = 0.80 urn. 
The base and collector doping concentrations are N8 = 2 x 1016 cm-3 and 
Nc = 10" cm-'. Find the punch-through breakdown voltage. (A 807 'SUV) 

E10.14 The base impurity doping concentration is NB = 3 x 10'' cm-' and the metallur- 
gical base width is W g  = 0.70 pm. The minimum required punch-through 
breakdown voltage is specified to be I:,, = 70 V What is the maximum allowed 
collectordoping concentration? ( i - ~ 3  ~ ~ 0 1  X IS'S= J~ 'SUV) 

The second breakdown mechanism to consider is avalanche breakdown, but tak- 
ing into account the gain of the transistor.' Figure 10.33a is an npn transistor with a 
reverse-bias voltage applied to the B-C junction and with the emitter left open. The 
current 1 ~ ~ 0  is the reverse-biased junction current. Figure 10.34b shows the transis- 
tor with an applied C-E voltage and with the base terminal left open. This bias con- , 
dition also makes the B-C junction reverse biased. The current in the transistor for 1 
this bias configuration is denoted as I,-E". 

The current 1 ~ 8 ~  shown in Figure 10.34b is the normal reverse-biased B-C junc- 
tion current. Pan of this current is due to the flow of minority carrier holes from the 
collector across the B-C space charge region into the base. The Row of holes into the 

'The doping concentrations in the base and collector of the lransistor we assume to be smilll enough that 
Zener brealtdown is not a fanor to be considered. 
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Figure 10.34 1 (a) Open emitter configuration with saturation current Icso. (b) Open base 
configuration with saturation current lcm. 

base makes the base positive with respect to the emitter, and the B-E junction be- 
comes forward biased. The forward-biased B-E junction produces the current /CEO, 
due primarily to the injection of electrons from the emitter into the base. The injected 
electrons diffuse across the base toward the B-C junction. These electrons are subject 
to all of the recombination processes in the bipolar transistor. When the electrons 
reach the B-C junction, this current component is uIcm where a is the common base 
current gain. We therefore have 

I where is the common-emitter current pain. The reverse-biased junction current 
lCso is multiplied by the current gain fl when the transistor is biased in the open-base 
contiguration. 

When the transistor is biased in the open-emitter configuration as inFigure 10.34a. 
thecurrent k8(, at breakdown becomes Icn, + MIcso. where M is the multiplication 
factor. An empirical approximation for the multiplication factor is usually written as 

where n is an empirical constant, usually between 3 and 6, and BVCH, is the B-C 
breakdown voltage with the emitter left open. 

When the transistor is biased with the base open circuited as shown in Fig- 
ure I0.34b. the currents in the B-C junction at breakdown are multiplied, so that 

Solving for IcEu,  we obtain 

I The condition for breakdown corresponds to 
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Figure 10.35 1 Relative breakdown 
voltages and saturation currents of the 
open base and open emitter configurations 

Using Equation (10.56) and assuming that Vca z V c E ,  Equation (10.59) becomes 

where BVCLO iu the C-E voltage at breakdown in the open base configuration. Solv- 
ing for B V C E ~ ,  we find 

B Cicm = B VCBu= ( l 0 . q  
where, again, ol is the common-base current gain. The common-emitter and 
common-base current gains are related by 

Normally ci % 1, so that 

Then Equation (10.61) can be written as 

The breakdown voltage in the open-base configuration is smaller, by the factor fl, 
than the actual avalanche junction breakdown voltaxe. This characteristic is shown4 - 
Figure 10.35. 

DESIGN 1 Objective 
EXAMPLE 10.9 s 

To design a bipolar transistor to meet a breakdown voltage specification. 1 
Consider a silicon bipolar transistor with a common-emitter current gain of 0 = 100 and 

a base doping concentration of Ne = 10'' cm-'. The minimum open-base breakdown volfage 
is to be 15 volts. 



1 0 .  Eouivalent Circuit Models 

I Solution 
From Equation (10.63). the minimum open-emitter junction breakdown voltage must be 

Assuming the empirical constant n is 3, we find 

B V ~ ~ , ,  = m ( 1 5 )  = 69.6V 

From Figure 8.25, the maximum collector doping concentration should be approximately 
7 x 10'' cm-3 to achieve this breakdown voltage. 

I Comment 
In a transistor circuit, the transistor must be designed to operate under a worst-case situation. 
In this example, the transistor must be able to operate in an open-base configuration without 
going into breakdown. As we determined previously, an increase in breakdown voltage can be 
achieved by decreasing the collector doping concentration. 

TEST YOUR UNDERSTANDING 

E10.15 A uniformly doped silicon transistor has base and collector doping concentrations 
of 5 x 1016 cm-? and 5 x 10" cm-', respectively. The common emitter current 
gain is 0 = 85 .  Assuming an empirical constant value of n = 3, determine BVcEcfu 

(A 9'1ZSUV) 
E10.16 The minimum required breakdown voltage of a uniformly doped silicon npn 

bipolar transistor is to be BVc,o = 70 V .  The base impurity doping concentration 
is N ,  = 3 x 1016 cm-', the common-emitter current gain is 0 = 85. and the 
empirical constant value is n = 3. Determine the maximum collector impurity 
doping concentration. ( c - m ~  r l O l  X I i-- ,'N S U V )  

10.5 1 EQUIVALENT CIRCUIT MODELS 
In order to analyze a transistor circuit either by hand calculations or using computer 
codes, one needs a mathematical model, or equivalent circuit, of the transistor. There 
are several possible models, each one having certain advantages and disadvantages. 
Adetailed study of all possible models is beyond the scope of this text. However, we 
will consider three equivalent circuit models. Each of these follows directly from the 
work we have done on the pn junction diode and on the bipolar transistor. Computer 
analysis of electronic circuits is more commonly used than hand calculations, but it 
is instructive to consider the types of transistor model used in computer codes. 

It is useful to divide bipolar transistors into two categories-switching and 
amplification-defined by their use in electronic circuits. Switching usually involves 
turning a transistor from its "off" state, or cutoff, to its "on" state, either forward- 
active or saturation, and then back to its "off" state. Amplification usually involves 
superimposing sinusoidal signals on dc values so that bias voltages and currents are 
only perturbed. The Eber.7-Moll model is used in switching applications; the hybrid- 
pi model is used in amplification applications. 
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*10.5.1 Ebers-Moll Model 

The Ebers-Moll model, or equivalent circuit, is one of the classic models of the bi 
lar transistor. This particular model is based on the interacting diode junctions an 
applicable in any of the transistor operating modes. Figure 10.36 shows the curren 
directions and voltage polarities used in the Eber.;Moll model. The currents are 
fined as all entering the terminals so that 

IE + 18 + I c  = 0 

The direction of the emitter current is opposite to what we have considered up to 
point, but as long as we are consistent in the analysis, the defined direction does 
matter. 

The collector current can be written in general as 

I c  = a f l f  - !H 

where a~ is the common hase current rain in the forward-active mode. In this mode. - 
Equation (1065a) becomes 

I C = ~ F ~ F  + ICS 

where the current lcs is the reverse-bias B-C junction current. The current li is 
given by 

I* = I f ,  [ exp ( e , " : . ) l ]  - 

If the B-C junction becomes forward biased, such as in saturation, then we can write 
the current I R  as 

Using Equations (10.66) and (10.67), the collector current from Equation (10.65a) 
can be written as 

i l  

Figure 10.36 1 Current direction and 
voltage polarity definitions lor the 
Ebers-Moll model. 
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0 
B 

Figure 10.37 1 Basic Ebers-Moll equivalent circuit. 

We can also write the emitter current as 

The current I E s  is the reverse-bias B-E junction current and u~ is the common base 
cumnt gain for the inverse-active mode. Equations (10.68) and (10.70) are the clas- 
sic Ebers-Moll equations. 

Figure 10.37 shows the equivalent circuit corresponding to Equations (10.68) 
and (10.70). The current sources in the equivalent circuit represent current compo- 
nents that depend on voltages across otherjunctions. The Ebers-Moll model has four 
parameters: C Z F ,  aR, f.s, and lcs.  However, only three parameters are independent. 

I The reciprocity relationship states that 

. 
Since the Ebers-Moll model is valid in each of the four operating modes, we 

can, for example, use the model for the transistor in saturation. In the saturation 
mode, both B-E and B-C junctions are forward biased, so that VB. > 0 and 

i Vsc > 0. The B-E voltage will be a known pflameter since we will apply a voltage 
across this junction. The forward-biased B-C voltage is a result of driving the tran- 
sistor into saturation and is the unknown to be determined from the Ebers-Moll 
equations. Normally in electronic circuit applications, the collector-emitter voltage 
at saturation is of interest. We can define the C-E saturation voltage as 

We will find an expression for VcE(sat) by combining the Ebers-Moll equations. In 
the following example we see how the Ebers-Moll equations can be used in a hand 
calculation, and we may also see how a computer analysis would make the calcula- 
tions easier. 
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Combining Equations (10.64) and (10.70), we have 

( 1 .  + I=] = a ~ ~ C s  [exp (f) - I ]  - 1.. [exp (+) - ( I O ~  

If we solve for [exp (eVHc./kT) - I] from Equation (10.73). and substitute the rL, 
ing expression into Equation (10.68) we can then find VBE as 

where V, is the thermal voltage. Similarly, if we solve for [exp ( e v ~ ~ / k T )  - 1 / fun?1 

Equation (10.681, and substitute this expression into Equation (10.73), we cal, 

We may neglect the lEs and Its terms in the numerators of Equations (10.74) and 
(10.75). Solving for VcE(sat), we have 

The ratio of Its to Izs can be written in terms of (Yr and aR from Equation (10.71). 
We can finally write 

V ~ ~ ( s a t )  = V, in 
CYFI,~ - (I - "F)Ic a~ 

(10.77) 

To calculate the collector-zmitter saturation voltage of a bipolar transistor at T = 3M) K. 
Assume that a,. = 0.99. a, = 0.20. 1, = I mA, and IB = 50 {LA.  

Solution 
Substituting the parameters into Equation (10.77). we have 

EXAMPLE 10.10 

Comment 
This Vc,(sat) value is typical uf collector-zmitter saturation voltages. Because of the lug 
function, V,, (sat) is not a strong function of IC ur 1". 

Objective 

10.5.2 Gummel-Poon Model 

The Gummel-Poon model of the BIT considers more physics of the transistor thar 
the Ehers-Moll model. This model can he used if, for example, there is a nonunifom 
doping concentration in the base. 
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The electron current density in the base of m npn transistor can be written as 

dn(x) 
J,, = ep,,n(x)E + eD,- (10.78) 

d x  

n electric field will occur in the base if nonuniform doping exists in the base. This 
was discussed in Section 10.4.5. The electric field, from Equation (10.52), can be 
written in the form 

where p(x)  is the majority carrier hole concentration in the base. Under low injection, 
the hole concentration is just the acceptor impurity concentration. With the doping 
profile shown in Figure 10.31, the electric field is negative (from the collector to the 
emitter). The direction of this electric field aids the flow of electrons across the base. 

Substituting Equation (10.79) into Equation (10.78), we obtain 

k T  1 dp(x)  
J,, = ew,,n(x). - - - . --- dn(x)  

+eD,- (10.80) 
e p(x)  d x  d x  

Einstein's relation, we can write Equation (10.80) in the form 

J,, = - 
dp(x) 

'"'I (n(x)T + pix)- 
P(*) d x  ~ ( 1 )  dx 

, Equation (10.81) can be written i n  the form 

Integrating Equation (10.82) through the base region while assuming that the elec- 
tron current density is essentially a constant and the diffusion coefficient is a con- 
stant, we find 

Assuming the B-E junction is forward biased and the B-C junction is reverse biased, 
we have n(0) = noaexp (VBE/V,) and n ( x ~ )  = 0. We may note that n ~ o p  = nf so 
that Equation (10.83) can be written as 

The integral in the denominator is the total majority canier charge in the hase and is 
known as the hase Gutnmel number; defined as Q s .  

If we perform the same analysis in the emitter, we find that the hole current den- 
sity in the emitter of an npn transistor can be expressed as 

J,, = 
-eD,,nZ C~P(VBE/  Vi) 

J,'t n(x') dx' 
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The integral in the denominator is the total majority carrier charge in the emitter and 
is known as the emitter Gummel number, defined as QE  

Since the currents in the Gummel-Poon model are functions of the total i n b  
gr.dted charges in the base and emitter. these currents can easily be determined fa 
nonunifonnly doped transistors. 

5 
The Gummel-Poon model can also take into account nonideal effects, suc 

the Early effect and high-level injection. 4 s  the B-C voltage changes, the neu 
hdse width changes so that the kdse Gummel number Q H  changes. The change in Q 
with B-C voltage then makes the electron current density given by Equation (10.84) 
a function of the B-C volYage. This is the base width modulation effect or Early effect 
as discussed previously in Section 10.4.1. 

If the B-E voltage becomes too large. low injection no longer applies, which 
leads to high-level injection. In this case, the total hole concentration in the base in- 
creases because of the increased excess hole concentration. This means that the base 
Gummel number will increase. The change in hase Gummel number implies, from 
Equation (10.84). that the electron current density will also change. High-level in- 
jection was also previously discussed in Section 10.4.2. 

The Gummel-Poon model can then he used to describe the basic operation of 
the transistor as well as to describe nonideal effects. 

10.5.3 Hybrid-Pi Model 

Bipolar transistors are commonly used in circuits that amplify time-varying or sinu- 
soidal signals. In these linear amplifier circuits, the transistor is biased in the 
forward-active region and small sinusoidal voltages and currents are superimposed 
on dc voltages and currents. In these applications, the sinusoidal parameters are of in- 
tercst, so it is convenient to develop a small-signal equivalent circuit of the bipolar 
transistor using the small-signal admittance parameters of the pn junction developed 
in Chapter 8. 

Figure 10.38a shows an npn bipolar transistor in a common emitter configura- 
tion with the small-signal terminal voltages and currents. Figure 10.38h shows the 
cross section of the npn transistor. The C, B, and E terminals are [he external con- 
nections to the transistor, while the C', B', and E' points are the idealized internal all- 
lector, hase, and emitter regions. 

We can begin constructing the equivalent circuit of the transistor by considering 
the various terminals individually. Figure 10.39a shows the equivalent circuit 
between the external input base terminal and the external emitter terminal. The reyis- 
tance rb is the series resistance in the basc between the external base terminal B and 
the internal base region B'. The B'-E' junction is forward biased, so C, is the junc- 
tion diffusion capacitance and r, is the junction diffusion resistance. The diffusion 
capacitance C, is the same as the diffusion capacitance Cd given by Equation (8.72) 
and the diffusion resistance r, is the same as the diffusion resistance rd given by 
Equation (8.35). The values of both parameters are functions of the junction current. 
These two elements are in parallel with the junction capacitance, which is C,,. 
Finally, r,,, is the series resistance between the external emitter terminal and the 
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Figure 10.38 1 (a) Common emitter npn hipolar transistor with small-signal current and 
voltages. (b) Crosc scction of an npn bipalar trallsistor fbr the hybrid-pi model. 

Figure 10.39 I Components of the hybrid-pi equivalent circuit hetween (a) the base and 
emitter, (h) the cullector and emitter. and (c) the base and c<~llrctor. 
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rb 

C' t 
Figure 10.40 1 Hybrid-pi equivalent circuit. 

internal emitter region. This resistance is usually very small and may he on the n 
of 1 t o 2  Q. 

Figure 10.39b shows the equivalent circuit looking into the collector termin 
The r, resistance is the series resistance between the external and internal collecto 
connections and the capacitance C, is the junction capacitance of the reverse-biased 
collector-substrate junction. The dependent current source. g, VW,., is the collecto 
current in the transistor, which is controlled by the internal base-emitter voltage. The 
resistance ro is the inverse of the output conductance go and is primarily due to the 
Early effect. 

Finally, Figure 1 0 . 3 9 ~  shows the equivalent circuit of the reverse-biased B'-C' 
junction. The C, parameter is the reverse-biased junction capacitance and r ,  is the 1 
reverse-biased diffusion resistance. Normally, r,  is on the order of megohms and can 
be neglected. The value of C* is usually much smaller than C, but, because of the 
feedback effect which leads to the Miller effect and Miller capacitance, C, cannot be 
ignored in most cases. The Miller capacitance is the equivalent capacitance between 
B' andE' due to C,, and the feedback effect, which includes the gain of the transislor. 
The Miller effect also reflects C, between the C' and E' terminals at the output. Hou- 
ever, the effect on the output characteristics can usually he ignored. 

Figure 10.40 shows the complete hybrid-pi equivalent circuit. A computer sim- 
ulation is usually required for this complete model because of the large number uf 
elements. However, some simplifications can be made in order to gain an apprecia- 
tion for the frequency effects of the bipolar transistor. The capacitances lead to frr- 
quency effects in the transistor, which means that the gain, for example, is a function 
of the input signal frequency. 

EXAMPLE 10.11 1 Objective 

To determine, to a first approximation, the frequency at which the small-signal current gain 
decreases to 1/& of its low frequency value. 
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Figure 10.41 I Simplified hybrid-pi 
equivalent circuit. 

Consider the simplified hybrid-pi circuit shown in Figure 10.41. We are ignoring C,,, C,, 
r,, C,,, ro, and the series resistances. We must emphasize that this is a first order calculalion 
and that C, normally cannot be neglected. 

I Solution 
At verj low frequency, we may neglect C, so that 

We can then write 

where hrc,o is the low-frequency, small-signal common emitter current gain 
Taking into account C,, we have 

Then 

or the small-signal current gain can be written as 

The magnitude of the current gain drops to I /&  of its low-frequency value at f = 

l/2nr,C,. 
If, for example, r, = 2.6 kR and C ,  = 4 pF, then 

f = 15.3 MHz 

I Comment 
High-frequency transistors must have small diffusion capacitances, implying the use of small 
devices. 
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10.6 1 FREQUENCY LIMITATIONS 
The hybrid-pi equivalent circuit, developed in the last section, introduces frequency 
fects through the capacitor-resistor circuits. We will now discuss the various physic 
factors in the bipolar transistor affecting the frequency limitations of the device, an 
then define the transistor cutoff frequency, which is a figure of merit for a transistor. 

10.6.1 Time-Delay Factors 

The bipolar transistor is a transit-time device. When the voltage across the B-Ejunc 
tion increases, for example, additional carriers from the emitter are injected into th 
base, diffuse across the base, and are collected in the collector region. As the fre- I 
quency increases, this transit time can become comparable to the period of the 
signal. At this point, the output response will no longer be in phase with the input an 
the magnitude of the current gain will decrease. 

The total emitter-to-collector time constant or delay time is composed of fo 
separate time constants. We can write 

where 

T,,, = emitter-to-collector time delay 

r, = emitter-base junction capacitance charging time 
r,> = base transit time 

r,, = collector depletion region transit time 

r, = collector capacitance charging time 

The equivalent circuit of the forward-biased B-E junction was given in 
ure 10.39a. The capacitance C,,, is the junction capacitance. If we ignore the 
resistance, then the emitter-base junction capacitance charging time is 

where r; is the emitter junction or diffusion resistance. The capacitance C,, includes 
any parasitic capacitance between the base and emitter. The resistance r: is found as 
the inverse of the \lope of the I t  versus V H f  curve. We obtain 

, k T  I 
j- = - . -  (10.88) 

e IE 

where I E  is the dc emitter current. 
The second term, rl,. is thc base transit time, the time required for the minority 

diffusion capacitance C, of the B-E junction. For the npn transistor, the electron cur- 
rent density in the base can he written as 

I 
carriers to diffuse across the neutral base region. The base transit time is related tothe 
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- 
where u(x) is an average velocity. We can write 

$, U ( X )  = d x / d f  or dr = d x / u ( x )  (10.90) 

The transit time can then be found by integrating, or 

The electron concentration in the base is approximately linear (see Example 10.6) so 
we can write 

and the electron current density is given by 

The base transit time is then found by combining Equations (10.92) and (10.93) with 
Equation (10.91). We find that 

The third time-delay factor is rd ,  the collector depletion region transit time. As- 
suming that the electrons in the npn device travel across the B-C space charge region 
at their saturation velocity, we have 

where xd, is the B-C space charge width and u., is the electron stdturation velocity. 
The fourth time-delay factor, r,.. is the collector capacitance charging time. The 

B-C is reverse biased so that the diffusion resistance in parallel with the junction 
capacitance is very large. The charging time constant is then a function of the collec- 
tor series resistance r,. We can write 

where C,, is the B-C junction capacitance and C, is the collector-to-substrate capaci- 
tance. The series resistance in small epitaxial transistors is usually small; thus the 
time delay r,, may be neglected in some cases. 

Example calculations of the various time-delay factors will he given in thc next 
section as part of the cutoff frequency discussion. 
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10.6.2 Transistor Cutoff Frequency 

The current gain as a function of frequency was developed in Example 10.1 1 ro th;i. 

we can also write the common base current gain as 

where a0 is the low-frequency common base current gain and f ,  is defined as thc 
alpha cutofffrequency. The frequency f ,  is related to the emitter-to-collector timc 
delay re, as 

When the frequency is equal to the alpha cutoff frequency, the magnitude of thc 
common base current gain is I /& of its low-frequency value. 

We can relate the alpha cutoff frequency to the common emitter current gain b! 
considering 

u 
D=,_u 

We may replace u in Equation (10.99) with the expression given by Equation (10.97 
When the frequency f is of the same order of magnitude as f a ,  then 

where we have assumed that uo = 1. When the signal frequency is equal to the alpha 
cutoff frequency. the magnitude of the common emitter current gain is equal to unity. 
The usual notation is to define this cutofffrequency as f7,  so we have 1 

I 

From the analysis in Example 10.1 I, we may also write the common-eminel 
current gain as 

where f0 is called the beta c ~ t n f f f r e q u e n c ~  and is the frequency at which the magni- 
tude of the common-emitter current gain p drops to I /& of its low-frequency value 

Combining Equations (10.99) and (10.97). we can write 

a" i 
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Figure 10.42 1 Bode plot of common 
emitter current gain versus frequency. 

where 

Comparing Equations (10.104) and (10.102). the beta cutoff frequency is related to 
the cutoff frequency by 

Figure 10.42 shows a Bode plot of the common emitter current gain as a func- 
tion of frequency and shows the relative values of the beta and cutoff frequencies. 
Keep in mind that the frequency is plotted on a log scale, so f p  and f r  usually have 
significantly different values. 

Objective EXAMPLE 10.12 

To calculate the emitter-to-collector transit time and the cutoff frequency of a bipolar transis 
tor, given the transistor parameters. 

Consider a silicon npn transistor at T = 300 K. Assume the following parameters: 

I E  = 1 mA C , ,  = I pF 

I, = 0.5 pm U,, = 25 cm2/s 

xdi = 2.4 prn r, = 20 S2 

C, =O.lpF C, =0.I pF 
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Solution 
We will initially calculate the various time-delay factors. If we neglect 
tance, the emitter-base junction charging time is 

where 

Then 
re = (25.9)(10-") = 25.9 ps 

The base transit time is 

The collector depletion region transit time is 

The collector capacitance charging timr is 

I, = r,(C, + C , )  = (20)(0.2 x lo- '?)  = 4 ps 

The total emilter-to-collector time delay is then 

re, = 2 5 . 9 + 5 0 + 2 4 + 4  = 103.9 ps 

so that the cutoff frequency is calculated as 

the parasitic 

I 
- - 

1 
f r  = - = 1.53 GHr 

2nr,, 2n(103.9 x 10-") 

If we assume a low-frequency common-emitter current gain of p = 100, then the beta cutoff 
frequency is 

Comment 
The design of high-frequency transistors requires small device geomet~cs  in order to reduce 
capacitances, and narrow base widths in order to reduce the base transit time. 

TEST YOUR UNDERSTANDING 

E10.17 A cilicon npn bipolar transisa~r is biased at I E  = 0.5 mA and has a junction capaci- 
tance of C,, = 2 p F  All other parameters are the same as listed in Exanlple 10.12. 
Find the emitter-to-collector transit time, the cutoff frequency, and the beta cutoff 
frequency. (ZHW P.11 = "'ZHt)PI'I = 1!'"99181 = '''1 S U V )  
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10.7 1 LARGE-SIGNAL SWITCHING 
Switching a transistor from one state to another is strongly related to the frequency 
characteristics just discussed. However, switching is considered to be a large-signal 
change whereas the frequency effects assumed only small changes in the magnitude 
uf the signal. 

10.7.1 Switching Characteristics 

Consider an npn transistor in the circuit shown in Figure 10.43a switching from cut- 
off to saturation, and then switching back from saturation to cutoff. We will describe 
the physical processes taking place in the transistor during the switching cycle. 

Consider, initially, the case of switching from cutoff to saturation. Assume that 
in cutoff VHE % VHH < 0, thus the B-E junction is reverse biased. At t = 0, assume 
that VH8 switches to a value of VH8" as shown in Figure 10.43b. We will assume that 
VBso is sufficiently positive to eventually drive the transistor into saturation. For 
0 5 t 5 t , .  the base current supplies charge to bring the B-E junction from reverse 
bias to a slight forward bias. The space charge width of the B-E junction is narrow- 
ing, and ionized donors and acceptors are being neutralized. A small amount of 
charge is also injected into the base during this time. The collector current increases 
from zero to 10 percent of its final value during this time period, referred to as the 
delay time. 

Figure 10.43 1 (a) Circuit used for transistor switching. (h) Input hasc drive firr transistor 
switching. ( c )  Collector current versus time during transistor switching. 
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During the next time period, tl 5 t 5 12,  the base current is supplying ch 
which increases the B-E junction voltage from near cutoff to near saturation 
this time, additional carriers are being injected into the base so  that the gradie 
minority carrier electron concentration in the base increases, causing the collec 
current to increase. We refer to this time period as the rise time, during which thec 
lector current increases from 10 percent to 90 percent of the final value. Fort > 
the base drive continues to supply base current, driving the transistor into saturati 
and establishing the final minority carrier distribution in the device. 

The switching of the transistor from saturation to cutoff involves removing all 
the excess minority carriers stored in the emitter, base, and collector regions. Fi 
ure 10.44 shows the charge storage in the base and collector when the transistor is 
saturation. The charge Q 8  is the excess charge stored in a forward-active transi 
and Q a x  and Qr are the extra charges stored when the transistor is biased in sa 
tion. At t = ri, the base voltage V H B  switches to a negative value of ( - V K ) .  The 
current in the transistor reverses direction as was the case in switching a pn jun 
diode from forward to reverse bias. The reverse base current pulls the excess stor 
carriers from the emitter and base regions. Initially, the collector current does 
change significantly, since the gradient of the minority carrier concentration in the, 
base does not change instantaneously. Recall that when the transistor is biased in sat 
urnation, both the B-L and B-C junctions are forward biased. The charge Q 8 i  in  4 
base must be removed to reduce the forward-biased B-C voltage to zero volts befoe 
the collector current can change. This time delay is called the roruge rime and is ded 
noted by r., . The storage time is the time between the point at which VDB switches to! 
the time when the collector current is reduced 
tion value. The storage time is usually the most 
speed of the bipolar transistor. 

The final switching delay time is the fall time r, during which the 
rent decreases from the 90 percent to the 10 percent value. During this time, the B- 

Ern~ter Collector 

Minority 
tamer 

con~entration 

Figure 10.44 1 Charge storage in the base and collector at 
saturation and in the active mode. 
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junction is reverse biased but excess carriers in the base are still being removed, and 
the B-E junction voltage is decreasing. 

The switching-time response of the transistor can be determined by using the 
Ebers-Moll model. The frequency-dependent gain parameters must be used, and 
normally the Laplace transform technique is used to obtain the time response. The 
details of this analysis are quite tedious and will not be presented here. 

10.7.2 The Schottky-Clamped Transistor 

One method frequently employed to reduce the storage time and increase the switch- 
ing speed is the use of a Schottky-clamped transistor. This is a normal npn bipolar 
device with a Schottky diode connected between base and collector, as shown in Fig- 
ure 10.45a. The circuit symbol for the Schottky-clamped transistor is shown in Fig- 
ure 10.45b. When the transistor is biased in the forward-active mode, the B-C junc- 
tion is reverse biased; hence, the Schottky diode is reverse biased and effectively out 
of the circuit. The characteristics of the Schottky-clamped transistor--or simply the 
Schottky transistor-are those of the normal npn bipolar device. 

When the transistor is driven into saturation, the B-C junction becomes forward 
biased; hence the Schottky diode also becomes forward biased. We may recall from our 
discussion in the previous chapter that the effective turn-on voltage of the Schottky 
diode is approximately half that of the pn junction. The difterence in turn-on voltage 
means that most of the excess base current will be shunted through the Schottky diode 
and away from the base SO that the amount of excess stored charge in the base and 
collector is drastically reduced. The excess minority carrier concentration in the base 
and collector at the B-C junction is an exponential function of VBc. If Vtlc is reduced 
from 0.5 volt to 0.3 volt, for example, the excess minority carrier concentration is 
reduced by over 1 orders of magnitude. The reduced excess stored charge in the base of 
the Schottky transistor greatly reduces the storage time-storage times on the order of 
1 ns or less are common in Schottky transistors. 

I Figure 10.45 1 (a) The Schottky-clamped transistor. (b) Circuit 
symbol of the Schottky-clamped transistor. 
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h10.8 I OTHER BIPOLAR TRANSISTOR t 
STRUCTURES 9 a 

This section is intended to briefly introduce three specialized bipolar transistor 5truc. 
tures. The first structure is the polysilicon emitter bipolar junction transistor IRJT). 
the second is the SiGe-base transistor, and the third is the heterojunction bipolar iran- 
sistor (HBT). The pnly silicon emitter BJT is being used in some recent integrated cir- 
cuits, .and the SiGe-base transistor and HBT are intended for high-freq11enc)ihigh- 
speed applications. 

10.8.1 Polysilicon Emitter BJT 
I 

The emitter injection efficiency is degraded by the carriers injected from the base 
back into the emitter. The emitter width, in general, is thin, which increases speed 
and reduces parasitic resistance. However. a thin emitter increases the gradient in the 
minority carrier concentration, as indicated in Figure 10.19. The increase in the gra- 
dient incrcases the B-Ejunction current, which in turn decreases the emitter injection 
efficiency and decreases the common emitter current gain. This effect is also shown 
in the summary of Fable 10.3. 

Figure 10.46 shows the idealized cross section of an npn bipolar transistor with 
a polysilicon emitter. As shown in the figure, there is a very thin n+ single clystal 
silicon region hetween the p-type base and the n-type polysilicon. As a first approxi- 
mation to the analysis, we may treat the polysilicon portion of the emitter as low- 
mobility silicon, which tneilns that the corresponding diffusion coefticient is small. 

Assuming that the neutral widths of both the polysilicon and single-crystal por- 
tions of the emitter are much smaller than the respective diffusion lengths, then the 
minority carrier distribution functions will be linear in each region. Both the rnini~r~ty 
carrier concentration and diffusion current must be continuous across the polysilii.on1 
silicon interface. We can therefore write 

p base 

n ~uliector 

Figurn 10.46 I Simplified cross section of an npn poly<ilicon 
emitter BJT. I 
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I 

Metal n- P O ~ Y  n- silicon p base 
ernltter ernl l t~r  

Figure 10.47 1 Excess minority carrier hole 
concentrations in n i  polysilicon and n+ silicon emitter. 

Since 4(po,y) < Dt,n+,, then the gradient of the minority carrier concentration at the 
emitter edge of the B-E depletion region in the nf region is reduced as Figure 10.47 
shows. This implies that the current back-injected from the base into the emitter is re- 
duced so that the common-emitter current gain is increased. 

10.8.2 Silicon-Germanium Base Transistor 

The bandgap energy of Ge (-0.67 eV) is significantly smaller than the bandgap en- 
ergy of Si (-1.12 eV). By incorporating Ge into Si, the bandgap energy will de- 
crease compared to pure Si. If Ge is incorporated into the base region of a Si bipolar 
transistor, the decrease in bandgap energy will influence the device characteristics. 
The desired Ge concentration profile is to have the largest amount of Ge near the 
base~ollector junction and the least amount of Ge near the base-emitter junction. 
Figure 10.48a shows an ideal uniform boron doping concentration in the p-type base 
and a linear Ge concentration profile. 

The energy bands of a SiGe-base npn transistor compared to a Si-base npn tran- 
sistor, assuming the boron and Ge concentrations given in Figure 10.48a, are shown 
in Figure 10.48b. The emitter-base junctions of the two transistors are essentially 
identical, since the Ge concentration is very small in this region. However, the 
bandgap energy of the SiGe-base transistor near the base-collector junction is 
smaller than that of the Si-base transistor. The base current is determined by the 
base-emitter junction parameters and hence will be essentially the same in the two 
transistors. This change in bandgap energy will influence the collector current. 
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Concentration 

Boron 

, 

Base 
Emitter 

SiGe base 

E, 

(b) 

Figure 10.48 1 (a) Assumed horon and germanium concen- 
trations in the base of the SiGe-base transistor. (b) Energy 
band diagram of the Si- and SiGe-base lransistors. 

Collector Current and Current Gain Effects Figure 10.49 shows the them 
equilibrium minority carrier electron concentration through the base region of th 
SiGe and Si transistors. This concentration is given by .? 

n80= -i 
NB 

where N B  is assumed to be constant. The intrinsic concentration, however, is a func-1 
tion of the bandgap energy. We may write 

where n;(SiGe) is the intrinsic carrier concentration in the SiGe material, ni(Si) is 
the intrinsic carrier concentration in the Si material, and AE, is the change in the 
bandgap energy of the SiGe material colnpared to that of Si 

The collector current in a SiGe-base transistor will increase. As a first approxi- 
mation, we can see this from the previous analysis. The collector current was found 
from Equation (10.36a), in which the derivative was evaluated at the base-collector 
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Electron 
concentratiun 

_---- ....................... 
ti,,, Si base 

Figure 10.49 1 Thcrrnal equilibrium minority carrier elecmm 
concentration through the base of the Si- and SiGs-basc 
transistors. 

/ junction. This means that the value of n ~ , ,  in the collector current expression in 
Equation (10.37) is the value at the base-collectorjunction. Since this value is larger 
for the SiGe-base transistor (Figure 10.49), the collector current will be larger com- 
pared to the Si-base transistor. Since the base currents are the same in the two tran- 
sistors, the increase in collector current then implies that the current gain in the 
SiGe-base transistor is larger. If the bandgap narrowing is 100 meV, then the increase 
in the collector current and current gain will be approximately a factor of four. 

Early Voltage Effects The Early voltage in a SiGe-base transistor is larger than 
that of the Si-base transistor. The explanation for this effect is less obvious than the 
explanation for the increase in collector current and current gain. For a bandgap nar- 
rowing of I00 meV, the Early voltage is increased by approximately a factor of 12. 
Incorporating Ge into the base region can increase the Early voltage by a large 
factor. 

Base Transit Time and Emitter-Base Charging Time Effects The decrease in 
bandgap energy from the base+emitter junction to the base-collector junction in- 
duces an electric field in the base that helps accelerate electrons across the p-type 
base region. For a bandgap narrowing of 100 meV, the induced electric field can be 
on the order of 10' to loJ Vlcm. This electric field reduces the base-transit time by 
approximately a factor of 2.5. 

The emitter-base junction charging time constant, given by Equation (10.87), is 
directly proportional to the emitter diffusion resistance r:. This parameter is in- 
versely proportional to the emitter current, as seen in Equation (10.88). For a given 
hase current. the emitter current in the SiGe-base transistor is larger, since the current 
gain is larger. The emitter-base junction charging time is then smaller in a SiGe-base 
transistor than that in a Si-base transistor. 

The reduction in both the base-transit time and the emitter-base charging time 
increases the cutoff frequency of the SiGe-base transistor. The cutoff frequency of 
these devices can be substantially higher than that of the Si-base device. 
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10.8.3 Heterojunction Bipolar Transistors 

As mentioned previously, one of the basic limitations of the current gain in the bipolar 
transistor is the emitter injection efficiency. The emitter injection efficiency y can be 
increased by reducing the value of the thermal-equilibrium minority carrier con- 
centration p ~ "  in the emitter. However, as the emitter doping increases, the bandga 
narrowing effect offsets any improvement in the emitter injection efficiency. 0 

mire the injection of carriers from the base hack into the emitter. 
possible solution is to use a wide-bandgap material for the emitter, which will 

1 Figure 10.50a shows a discrete aluminum gallium arsenidelgallium arsenide het- 
erojunction bipolar transistor, and Figure 10.50b shows the band diagram of the 

1Cc 
Base 

Collector 

Figure 10.50 1 (a) Cross section of AIGaAsIGaAs hetero- 
junction bipolar transistor showing a discrete and integrated 
structure. (b) Energy-band diagram of the n AlCaAs emitter 
and p GaAs base junction. 
(Fmm Tiwar; ei o l  l1Yl.i 



I n-AIGaAs emitter to p-(iaAs base junction. The large potential barrier Vi, limits the 
number of hole\ that will be in,jected back from the base into the emitter. 

The intrinsic carrier concentration is a function of bandgap energy as 

I For a given emitter doping. the numher of minority carrier holes injected into the 

i emitter is reduced hy a factor of 
I 

inchanging from a narrow- to wide-handgapemitter. If AE,  = 0.30 eV, for example, 1 n? would he reduced by approximately 1 0 '  at T = 300 K .  The drastic reduction in n: 
' for the wide-bandgap emitter mean? that the requirements of a very high emitter 
doping can be relaxed and a high emitter injection efficiency can still be obtained. A I lower emitter doping reduces the handgap-narrowing effect. 

The hetern.junction GaAs bipolar transistor has the potential of being a very high 
frequency devtcc. A lower emitter doping in the wide-bandgap emitter leads to a 

1 smaller junction capacitance, increasing the speed of the device. Also, for the GaAs 
npn device. the minority carriers in the h i~se  arc electrons with a high mobility. The 
electron mobility in GaAs is approximately 5 times that in silicon; thus, the base tran- 
sit time in the GaAs base is very short. Experimental AIGaAslGaAs heterojunction 
transistors with hase widths on the order of 0.1 p m  have shown cutoff frequencies on 
the order of 40 GHz. 

One disadvantage of GaAs is the low minority carrier lifetime. The small 
lifetime is not a factor in the base of a narrow-base device, but result5 in a larger B-E 
recombination current. which decreases the recombination factor and reduces the 
current gain. A current gain of 150 has been reported. 

10.9 1 SUMMARY 
There ;Ire two complcrnentary bipolar tmnsi~tors--npn and pnp. Each transistor has 
three separately doped regions and two pn junctions. Thc ccnter region (base) is very 
narrow. so the two pn junction\ are said to he interaotinpjunctions. 

H In the forward-active mode. the R-E junction is forward hiascd and thc B-C junclion is 
rrvcrse hiased. Ma.jnnty carrier5 from the emitter arc injcctcd into the hase whcrc they 
hrcome minority carrlerc. These minority carriers diffu~e across the hace into thr B-C 
space charge reeion where they are swept into th~. collector. 

H When a transistor is hiased in the forward-active mode of opcratinn, the current at one 
tcrminal of the transistor (collector current) is controlled hy thc voltage applied across 
the other two terminals of the rran\ictor (hase<mitter voltage). This IS the basic 
transistor action 

H The minority c;,rricr oonoenlration~ werr determined in each region of the transi?tor. 
The principal currents in the device are delermlned hy the dlfiusion of these minority 
carriers. 
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The common-base current gain, which leads to the common-emitter current gain, is a 
function of three factors--emitter injection efficiency, base transport factor, and 
recombination factor The emitter injection efficiency takes into account caniers fro 
the base that are injected back into the emitter, the base transport factor takes into 
account recombination in the base region. and the recomhination factor takcs into 
account caniers that recumbine within the forward-biased B-E junction. 
Several nonideal effects were considered: 

8-C or C-E voltage. 

4 1. Base ~pidth modulation, or Early effect-the changc in the neutral base width with 
a change in B-C voltage, producing a change in collector current with a change in 

2. High-injection effects that cause the collector culment to increase at a Flower rate 
with base-emitter voltagc. 

3. Emitter bandgap narrowing that produces a smaller emitter injection efficiency 
.1 

because of a very large emittcr region doping concentration. 
4. Current crowding effects that produce a larger current density at the cmitter edge 

than in the center of the emitter 
5. A nonuniform base doping concentration that induces an electric field in the base 

region, which aids the flow of minority carriers across the base. 
6. Two breakdown voltage mechanisms-punch-through and avalanche. 111 
Three equivalent circuits or mathematical models of the transistor were considered. The 
Ebers-Moll model and equivalent circuit are applicable in any of the transistor 
operating modes. The Gummcl-Poon model is con\,enient to use when nonuniform 
doping exists in the transi~tor. The small-signal hybrid-pi model applies to transistam 
operating in the forward-active mode in linear amplifier circuits. 
The cutoff frequency of a transistor, a figure of merit for the transistor, is the frequency 
at which thc magnitude of the common-emitter cunenl gain hccomes equal to unity. 
The frequency responsc is a function of the emitter-base junction capacitance charging 
time, the base transit time, thc collector depletion region transit time, and the collector 
capacitance charging time. 
The switching characteristics are closely related to the frequency limitations although 
switching invalvcs large changes in currents and voltages. An imponant parameter in 
switching is the charge storage time. which applies to a transistor switching from 
saturation to cutoff. 

GLOSSARY OF IMPORTANT TERMS 
alpha cutoff frequency The frequency at which the magnitude of the common base current 

is I /& of its low-Srequcncy value; also equal to the cutoff frequency. 

bandgap narrowing The reduction in the forbidden energy bandgap with high emitter 
doping concentration. 

hase transit time The time that it takes a minority carricr to cross the neutral base region. 

base transport factor The factor in the common base current gain that accounts for recom- 
bination in the neutral base width. 

base width modulation The changc in the neutral base width with C-E or C-B voltage. 

beta cutoff frequency The frequency at which the magnitude of the common emitter cur- 
rent gain is l /& of its low frequency value. 



collector capacitance charging time The time constant that describes the time required for 
the B-C and collector-substrate space charge widths to change with a change in emitter 
current. 

collector depletion region transit time The time that i t  takes a carrier to be swept acmss the 
B-C space charge region. 

common-base current gain The ratio of collector current to emitter current. 

rommon-emitter current gain The ratio of collector current to base current. 

current crowding The nonuniform current density across the emitter junction areacreated by 
a lateral voltage drop in the base region due to a finite base current and base resistance. . . 

cutoff The bias condition in which zero- or reverse-bias voltages are applied to both trdnsis- 
torjunctions, resulting in zero transistor currents. 

cutoff frequency The frequency at which the magnitude of the common emitter current gain 
is unity. 

early effect Another term fur base width modulation. 

early voltage The value of voltage (magnitude) at the intercept on the voltage axis obtained 
by exvapolaling the I ,  versus Vri curves to zero current. 

emitter-base junction capacitance charging time The time constant describing the time 
for the B-E space charge width to change with a change in emitter current. 

emitter injection efficiency factor The factor in the common-base current gain that takes 
into account the injection of carriers from the base into the emitter. 

forward active The bias condition in which the B-E junction is forward biased and the 
B-C junction is reverse biased. 

inverse active The bias condition in which the B-E junction is reverse biased and the 
B-C junction is forward biased. 

output conductance The ratio of a differential changz in collector current to the corn- 
sponding differential change in C-E voltage. 

CHECKPOINT 
After studying this chaptcr, the reader should have the ability to: 

I Describe the basic operation of the transistor. 
I Sketch the energy bands of the transistor in thermal equilibrium and when biased in the 

various operating modes. 
Calculate, to a good hrst approximation, the collector current as a function of 
base-emitter voltage. 

I Sketch the minority canter concentrations throughout the transistor under the various 
operating modes. 

I Define the various diffusion and other current components in the transistor from the 
minority carrier distribution curves. 

I Explain the physical mechanisms of the current gain limiting factors. 
Define the current-limiting factors from the current components in the transistor. 

I Describe the physical mechanism of base width modulation and its effect on the 
current-voltage characteristics of the transistor 

I Describe the voltage breakdown mechanisms in a bipolar transistor 
I Sketch the simplified small-signal hybrid-pi equivalent circuit of the transistor biased in 

the fonvard-active mode. 
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W Describe qualitatively the four time-delay or time-constant components in the frequen~ 
response of the bipolar vansistor. 

REVIEW QUESTIONS 
1. Describe the charge flow in an npn bipolar transistor biased in the forward-active 

mode. Is the current by drift or diffusion? 

2. Define the common-emitter current gain and explain why, to a first approximation, the ! 
current gain is a constant. 

3. Explain the conditions of the cutoff, saturation, and inversc-active modes. 

4. Sketch the minority carrier concentrations in a pnp bipolar transistor biased in the 
forward-active mode. 

5. Define and describe the three limiting factors in the common-base current gain. 

6 .  What is meant by base width modulation? What is another term used for this effect? 

7. What is meant by high injection? 

8. Explain emitter current crowding. 

9. Deiine Icno and [ ( L O ,  and explain why I,,, > I,,, I 
10. Sketch a simplified hybrid-pi model for an npn bipolar transistor and explain when thi~ 

equivalent circuit is used. 

11. Describe the time-delay factors in the frequency limitation o i  the bipolar transistor. 

12. What is the cutoff frequency of a bipolar transistor? 

13. Describe the response of a bipolar transistor when i t  is switching between saturation 
and cutoff. f 

PROBLEMS 
(Note: In the following problems, use the transistor geometry shown in Figurc 10.13. Assu 
T = 300 K unless otherwise stated.) 

Section 10.1 The Bipolar Transistor Action 

10.1 Fur a uniformly doped n++p7n bipolar transistor in thennal equilibrium, (a) sketch 
the energy-band diagram, (b) sketch the electric tield through the dcvice, and 
(c) repeat parts ( a )  and (h) for the transistor biased in the forward-active region. 

10.2 Consider a p'+ n+p bipolar transistar, unifr,rnmly doped in each region. Sketch the 
energy-band diagram for the case when the transistor is (a) in thermal equilibrium, 
(6) biased in the forward-active mode, ( c )  biased in the inverse-active region, and 
id) biased in cutoff with both the 6 -E  and B-C junctions reverse biased. 

10.3 The parameters in the base region of an npn bipolar transistor are D. = 20cm'/s, 
nzo  = lo4 = 1 wm,and A B C  = I n 4  cm2. (a)ComparingEquations(lO.l) 
and (10.2) calculate the magnitude of 4. ( b )  Determine the collector current for 
(i)  V ~ E  = 0.5 V, (ii) "of = 0.6 V,  and (iii) unl = 0.7 V .  

10.4 Assume the common-base current gain for the transistor described in Problem 10.3 
is a = 0.9920. (a )  What is the common-emitter current gain f l? [Note that /J = 
u / ( l  - a).)  (b) Determine the cmittcr and base currentscumspunding to ihr collector 
currents determined in Prtlblzm 103b. 



Problems 

I 
10.5 la)  In a bipolar transistor biased in the forward-active region, the base current is 

i in = 6.0 bA and the collector current is i, = 510 PA. Determine f l ,  a, and ii. 
(Note that i~ = ic  + i ~ . )  (b) Repeat pan (a )  if in = 50 FA and i, = 2.65 mA. 

10.6 Assume that an npn hipolar transistor has a common-emitter current gain of P = 100. 
(0) Sketch the ideal cumt-voltage characteristics (ic versus V C I ) ,  like those in 
Figure 10.9, as i R  varies from zero to 0.1 mA in 0.01-mA increments. Let u,, vary 
over the range 0 5 uci 5 10 V (b) Assuming Vcc = 10 V and Rc = 1 kR in the 
circuit in Figure 10.8, superimpose the load line on the transistor characteristics in 
part ( a ) .  (c) Plot, on the resulting graph, the value of ic and  or^ corresponding to 
ig = 0.05 mA. 

10.7 Considcr Equation (10.7). Assume Vcr = 10 V, Rc = 2 kR. and V,, = 0.6 V.  

1 ( a )  Plot Vcn versus IC ovcr the range 0 5 lc 5 5 mA. ( h )  At what value of Ic does 
vcn = O? 

Section 10.2 Minority Carrier Distribution 

10.8 A uniformly doped silicon npn bipolar transistor is to he biased in the fnrward-active 
mode with the B-C junction reverse hiased by 3 V The metallurgical base width 
is 1.10 Wm. The transistor dopings are NE = 10'' ~ m - ~ ~ ,  N8 = 10'' cm-', and 
Nc = l0I5 cm-'. (a1For T = 300 K, calculate the B-E voltage at which the minority 
carrier electron concentration at x = 0 is 10 percent of the majority canier hole 

i concentration. (b) At this bias, determine the minority carrier hole concentration at 

i x' = 0. lc) Determine the neutral base width for this bias. 

10.9 A silicon npn bipolar transistor is uniformly doped and biased in the forward-active 
region. The neutral base width is .r, = 0.8 jrm. The transistor doping concentrations 
are NE = 5 x 10" cm-', NB = 10'' cm ',and NC = 10" cm-'. ( n )  Calculate the 
values of p ~ o ,  nun.  and pr , ,  (h )  For V,, = 0.625 V ,  determine n n  at x = 0 and p~ 
at x' = 0. (c) Sketch the minority carrier concentrations through the device and label 
each curve. 

10.10 A uniformly doped silicon pnp transistor is biased in the forward-active mode. The 
doping concentrations are N E  = lo'' cm-', Ng = 5 x 1016 ~ m - ~ ,  and N, = 
10'' cm '. ( u )  Calculate the values of nf i l ,  pHO, and nco. (b) For VF8 = 0.650 V ,  
determine p8 at .r = 0 and n, at .i-' = 0. (r.) Sketch the minority carrier concenrra- 
lions through the device and lahel each curve. 

10.11 Consider the minority carrier electron concentration in the base of an npn bipolar 
transistor as given by Equation (lO.lSa). In this problem, we want to compare 
the gradient af the electron concentration evaluated at the B-C junction to that 
evaluated at the B-E junction. In particular, calculate the ratio of d(SnsJ/dx at 
x = xs todlSnp)/dx a t x  = 0  for ( a )  X B I L R  = 0.1. (b).lig/Lg = 1.0. and 
(c )xB/LR = 10. 

10.12 Derive the expressions for the coefficients given by Equations (10.14aJ and (10.14b). 

*10.13 Derive the expression for the excess minority carrier hole concentration in the base 
region of a uniformly doped pnp bipolar transistor operating in the fonvard-active 
region. 

10.14 The excess electron concentratiun in the base of an npn bipolar transistor is given 
by Equation (10.15a). The linear approximation is given by Equation (10.l5b). If 
6n,,(x) is the linear approximation given by Equation (10.15b) and Sn,(r) is the 
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actual distribution given by Equation (10.15a), determine 

at .v = 1g/2 for ( t i )  X S / L B  = 0.1 and (b) .;,/L, = 1.0. Assume V B L  >> k7/e. 

10.15 Consider a pnp bipolar transistor. Assume that the excess minority carrier hole 
concentrations at the edges of the B-E and B-C space charge regions are Sp,(O) = 
8 x 10'' cm-' and S p , ( x ~ )  = -2.25 x 10' cm-', respectively. Plot, on the same 
graph, Spn( r )  for (a )  the ideal case when no recombination occurs in the base, and 
(b) the case when r" = LR = 10 wm.  assuming D, = 10 cm21s, calculate the 
diffusion current density at .r = 0 and .I = 1 8  for the conditions in plts ( a )  and (b )  
Determine the ratio ./(I = x B ) / J ( x  = 0)  for the two cases. 

*10.16 ( a )  A uniformly doped npn bipolar transistor at 7  = 300 K is biased in saturation. 
Starting with the continuity equation for minority carriers, show that the excess 
electron concentration in the base region can be expressed as 

forx,/L, << I whcrexm is the neutral base width. (b)  Show that the minority 
cmie r  diffusion current in the babc is then given by 

( c )  Show that the total excess minority carrier charge (Cicm') in the base region is 
given by 

*10.17 Consider a silicon pnp bipolar transistor at 7  = 300 K with uniform dopings of 
N, = 5 x 10'' cm-), Ns = 10'' cm-'. and Nc = 5 x 10'' cm-'. Let D8 = 
10 cm2/s, .YB = 0.7 p m ,  and assume .ro << LB. The transistor is operating in 
saturation with J ,  = 16.5 A/cm2 and VF, = 0.75 V. Determine ( a )  V,,. 
(h)  V ~ ~ ( s a t ) ,  ( c )  the #/cn12 ofexcess minority carrier holes in the base, and 
(d)  the #lcm2 of excess minority carrier electrons in the long collector. Let 
LC = 35 um. 

10.18 An npn silicon bipolar transistor at 7  = 300 K has uniform dopings of NE = 
IOl9 cm-'. N g  = 10'' cm-', and N, = 7 x lo" ern->. The transistor is operat- 
ing in the inverse-active mode with V", = -2 V and Vet = 0.565 V (a) Sketch 
the minority carrier distribution through the device. (h) Determine the minority 
carrier concentrations at .Y =I" and r "  = 0. ( c )  If the metallurgical base width is 
1.2 jrm, determine the neutral base width. 

10.19 A uniformly doped silicon pnp bipolar transistor at 7  = 300 K with dopings of 
N E  = 5 x 10" cm-', Ng = 10'' cm-', and Nc = 5 x l0l4 cm ' is biased in the 
inverse-active mode. What is the maximum B-C voltage so that the low-injection 
condition applies? 



1 Section 10.3 Low-Frequency Cornmon-Base Current Gain 

I 
10.20 The following currents are measured in a uniformly doped npn bipolar transistrv: 

I,,, = 1.20 mA I,,, = 0.10 mA 

I, , ,  = 1.18 mA I ,  = 0.20 mA 

iG = 0.00 1 mA /,,.,I = 0.001 mA 

Determine (a) a. (b)  y .  (c)  a?, (dl 8 ,  and (c) 8. 
10.21 A silicon npn transistor at T = 300 K has an area of lo-' cm2. neutral base width 

of I wm. and doping concentrations of N E  = 1018 ~ m - ~ ,  N g  = lo1' ~ m - ~ ,  NC = 
1016 cm-'. Other semiconductorparameters are Dn = 20cmz/s, TE,J  = 780 = lo-' 6 ,  

and rco = IOh s. Assuming the transistor is biased in the active region and the 
recombination factor is unity, calculate the collector current for: ( n )  V#E  = 0.5 V, 
(0 )  I L  = 1.5 rnA. and ( c )  le = 2 @A.  

10.22 Consider a uniformly doped npn bipolar transistor at 7 = 300 K with the following 
parameters: 

For V,, = 0.60 V and V,, = 5 V, calculate ( o )  the currents J, ,E.  J P E .  -I,,,-. and JR 
and (b)  the current gain factors y ,  a ,  . 8, a .  and @. 

10.23 Three npn bipolar transistors have identical parameters except for thz bass doping 
concentrations and neutral base widths. The base parameters for the three device5 are 
as follows: 

Device Base duping Base width 

A n j ~  = NRO . B  = ,rgo 
B Nn = 2 N 8 ~  xu = rue 
C Nn = N R I I  X R  = . 1~0 /2  

(The babe doping concentration for the B devicc is twice that of A and C, and the 
neutral base width for the C device is half that of A and B.) 

( ( I )  Determine the ratio of the emitter injection efficiency of ( i )  device B to device A 
and (ti) device C to device A. 

(h )  Repeat part ( a )  for the bale lranspon factor. 
( c )  Repeat pan (a) for the recombination factor. 
( d )  Which device has the largest cummon-emitter current @in p? 

10.24 Repeat Problem 10.23 for three devices in which the emitter paramelers vary. The 
emitter parameters for the three devices are as follows: 

Device Emitter doping Emitter width 

A NL = NEO XE = xE0 

B NE = 2 N ~ 0  .xE = x ~ o  

C NE = NLO IE = X E , , / ~  
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10.25 An npn silicon transistor is biased in the inverse active mode with V8,  = 3 V and 
VgC = 0.6 V The doping concentrations are N E  = 101%m-'. Ng = 10'' ern-), 
N, = 1 0 ' % m 3 .  Other parameters arer"  = I pm. ria = rg0 = TCO = 2 x 10- 
Dh = 10 cm'ls. Ds = 20 cm'/s, D, =15 cm'ls, and A = cm'. (a )  Calcula 
and plot the minority carricr distribution in the device. (b) Calculate the collector 
and emitter currents. (Neglect geometry factors and assume the recombination 
factor is unity.) 

10.26 (a) Calculate the base transport factor, a,, forx8/LB = 0.01.0.10. 1.0. and 10. 

emitter injection efficiency are the limiting factors for the common-emitter current 
gain? 

1 
Assuming that y and 6 are unity, determine f l  for each case. (b) Calculate the emitter 
injection efficiency, y .  for NBINI = 0.01, 0.10, 1.0, and 10. Assuming that a, and 
6 are unity, determine p for cach case. ( c )  Considering the results of pans (a) and (b), 
what conclusionr cdn be made concerning when the base transport factor or when the 

10.27 l a )  Calculate the recombination fdctor for VB>. = 0.2.0.4, and 0.6 V. Assume the 
following parameters: 

DB = 25 cm2/s Dt = 10 cm'ls 

N E  = 5 x 10'' cm-' N8 = 1 x l0" cm-' 

Nc = j x 1 0 ' ~  cm-' r6 = 0.7 p m  

rgg = r ~ "  = lo-' s J," = 2 x l U 9  ~ / c m '  

n, = 1.5 x 10'%crn-~ 

(6 )  Assuming the base transport and emitter injection efficiency factors are unity, 
calculate the common-emitter current gain for the conditions in  part lo) .  (c) Consi- 
dering the results of part (b), what can be said about the recombination factor being 
the limiting factor in the common emitter current gain. 

10.28 Consider an npn silicon bipolar transistor at T = 300 K with the following 
parameters: 

Da = 25 cm21s Doi = 10 cm2/s 

TBO = r,,, = 5 x 

i 
N 8  = 1016 cm-I x~ = 0.5 p m  

The recombination factor, 8, has been detemined to he S = 0.998. We need a 
common-emitter current gain of f l  = 120. Assuming that U T  = y .  determine the 
maximum base width, r ~ ,  and the minimum emitter doping, N L ,  to achieve this 
specification. 

*10.29 ( a )  The recombination current density, in an npn silicon bipolar transistor at 
T = 300 K is J,o = 5 x l 0 P  Alcm'. The uniform dopings are N E  = 10" cm-;, 
N u  = 5 x 10" cm-', and Nc = I0l5 cm-'. Other parameters are DI = 10cm21s, 
D g  = 25 cm2/s. ria = LO-' S, and r8, = 1 0  ' F. Determine the neutral base width 
so that the recornbination factor is 8 = 0.995 whcn V,E = 0.55 V (b) If J,,  remains 
constant with temperature, what is the value uf S when VBF = 0.55 V for the case 
when the temperaturf is T = 400 K'? Use the value of xn determined in pan (a). 

- - 10.30 (a) Plot, for a bipolar transistor, the base transport factor. m i .  as a function of ( x a / L B )  
over the range 0.01 5 ( x B / L B )  5 10. (Use a log scale an the horizontal axis.) - - 



( h )  Assuming that the emitter injection efficiency and recornhination factors are 
unity, plot the common emitter gain for the conditions in plt (a ) .  (c)  Considering the 
rcsults of pan (b) ,  what can be said about the base transpon factor being the limiting 
factor in the common emitter current gain? 

1031 (a) Plot the emitter injection eficiency as a function of the doping ratio, N B  INt , O Y ~ I  ?= 

therange0.01 5 NB/NL 5 10.Assumethat DL = D R .  L R  = L f .  andx" = I E .  Q 
(Use a log scale on the horizontal axis.) Neglect bandgap narrowing effects. (b) Assum- 
ing that the base transport factor and recombination factors are unity, plot the common 
emitter current gain for the conditions in part (a). (c) Considering the results of p a l  (b), 
what can be said about the emitler injection efficiency being the limiting factor in the 
conlmon emitter current gain. 

)I032 (a) Plot the recombination factor as a function af the forward-bias B-E voltage for ?- 

0.1 j VBE 5 0.6. A~sume the following parameters: 
iQ - < - 

Da = 25 cmvs D, = 10 cm2/s 

N~ = 5 x 10'%cm2 N8 = 1 x 10" cm-' 

N,- = 5 x 10" cm-' xn  = 0.7 ~ n l  

i 7 . r,,, = TEO = 10 s J , ,  = 2 x 1 0 ~ ~ c m 2  

n ,  = 1.5 x 10"' cm-' 

(h )  Assuming the base transport and emitter injection efficiency factors are unity, 
plot the common emitter current gain for the conditions in part ( a ) .  ( c )  Considering 
the rcsults of part (b). what can be said about the rccolnbination factor being the 
limiting factor in the common emitter current gain. 

10.33 The emitter in a BJT is often made very thin to achieve high operating speed. In this -= 
problem. we investigate the effect of emitter width an current gain. Consider the 
emitter injection efficiency given by Equation (10.35a). Assume that NE = 1 0 0 N ~ .  S- 

DE = D,, and L E  = L 8 .  Also let xti = O.lLn.  Plot the emitter injection efficiency 
for 0.01 L, 5 xi 5 IOL, From these results, discuss the effect of emitter width on 
the current gain. 

Section 10.4 Nonideal Effects 

10.34 A silicon pnp bipolar transistor at T = 300 K has uniform dopings of NE = 10'' cm-', 
N, = 1016 ~ m - ~ ,  and Nc = 1015 ~ r n - ~ .  The metallurgical hase width is 1.2 Irm. 
Let DB = 10 cm2/s and TR,, = 5 x lo-' S. Assume that the minority carrier hole 
concentration in the hase can be approximated by a linear distribution. Let VER = 
0.625 V (a j  Detcrminr the hole diffusion current density in the base for VRC = 5 V, 
Vljc = 10 V, and VlSc = 15 V ( h )  Estimate the Early voltage. 

:"0.35 The base width of a bipolar transistor is normally small to provide a large current 
gain and increased speed. The hase width also affects the Early voltage. In a silicon 
npn bipolar transistor at T = 300 K, the doping concentrations arc NL = 10" ~ m - ~ ,  
N,, = 3 x 10'%n-', and Nc = 5 x 10" cm-l. Assume DR = 20 cm2/s and 
r,,, = 5 x lo-' s. and let Vut = 0.70V. Using voltages Vca = 5 V and VC-n = 10 V 
as two data paints. estimate the Early vultage for metallurgical base widths of 
(a) I 0  urn, (b) 0.80 wm, and (c) 0.60 um. 
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10.36 An npn silicon bipolar vansistor has a base doping concentration of N8 = 10'' cm~ 
a collector doping concentration of Nr = 10" cm-), a metallurgical base width of 
1. I pm,  and a base minority carrier diffusion coefficient of D, = 20 cm2/s. The 
transistor is biased in the forward-active region with Vgt = 0.60 V. Determine 
(a )  the change in the neutral base width as V r ,  changes from I V to 5 V, and (b )  the 
corresponding change in the collector current. 

1037 Consider a uniformly doped silicon npn bipolar transistor in which x~ = X B ,  

L ,  = L , ,  and D, = Dg. Assume that rrr = S = 0.995 and let N g  = 10'' cm-l, 
Calculate and plot the common emitter current gain f i  for N E  = lo", 10", lOI9. 
and LOzU cm-', and for the case (a) when the bandgap narrowing effect is neglected. 
and (b) when the bandgap narrowing effect is taken into account. 

- s$J 
10.38 A silicon pnp bipolar transistor at T = 300 K is to be designed so that the emitter 

injection efficiency is y = 0.996. Assume that xs = x,. L E  = L, .  DE = D,, and 
/ 

x let N E  = lot9 cm-'. ( a )  Determine the maximum base doping, taking into accouni 
bandgap narrowing. ( h )  If bandgap narrowing were neglected, what would he the 
maximum base doping required? 

10.39 A tirst-approximation type calculation of the current crowding effect can be made 
using the geometry shown in Figure 10.3 I. Assume that one-half of the base current 
enters from each side of the emitter strip and flows uniformly to the center of the 
emitter. Assume the base is p type with the following parameters: 

N ,  = 10lh cm-3 X B  = 0.70 &m 

py = 400 cm21v-s S = 8 b m  

Emitter length L = 1 0 0 b m  

(a) Calculate the resistance between x = 0 and x = S/2 .  (b) If i [, = 10 FA, 
calculate the voltage drop between x = 0 and x = Sf2. (c) If VBE = 0.6 Vat x = 
estimate in percent the number of electrons being injected into the base at.< = S/2 
compared to x = 0. 

10.40 Consider the geometry shown in Figure 10.5 1 and the device parameters in 
Problem 10.39 except the emitter width S. The emitter width S is to be changed so 
that the number of electrons injected into the hase at x = Sf2 is no more than 10 
percent less than the number of electrons injected into the base at x = 0. Calculate 

? 

Collector 

r = O 1" I = SI2 

Figure 10.51 I Figure for Problems 10.39 
and 10.40. 



e10.41 The base doping in a diffused n+pn bipolar transistor can be approximated by an 
exponential a5 

Nn = Nn (0) exp - ( ;:) 
where a is a constant and is given by 

I 
( a )  Show that, in thermal equilibrium, the electric field in the neutral base region is a 
constant. ( b )  Indicate the direction of the electric field. Does this electric tield aid or 
retard the flow of minority carrier electrons across the base'? (cj Derive an expres- 
sion for the steady-state minority carrier electron concentration in the base under 
fonvard bias. Assume no recombination occurs in the base. (Express the electron 
concentration in terms of the electron current density.) 

10.42 Consider asilicon npn bipolar vansistor with uniform dopings of Nt = 5 x 10'' ~ m - ~ ,  
Nn = 10" cm-'. and N, = 5 x 10" cm-'. Assume the common-base current eain is - 
u = 0.9920. Deternine ( a )  B V,,, . ( h )  BVcko. and (c )  the base-emitterbreakdown 
voltage. (Assume n = 3 for the empirical constant.) 

10.43 A high-voltage silicon npn bipolar transistor is to be designed such that the uniforn - @, 
base doping is N, = I0Ih and the common-emitter current grain is fi = 50. 
The breakdown voltage BVcFo is to he at least 6 0 V  Determine the maximum -= 

collector doping and the minimum collector length to support this voltage. (Assume 
n = 3.) 

10.44 A uniformly doped silicon epitaxial npn bipolar transistor is fdbricated with a base 
doping of N H  = 3 x 10lh c d  and a heavily doped collector region with Nc = 
5 x 10" c m 3 .  The neutral base width is x~ = 0.70 /*m when VBE = VBC = 0. 
Determine VDc at which punch-through <occurs. Compare this value to the expected 
avalanche breakdown voltage of the junction. 

10.45 A silicon npn bipolar transistor has a base doping concentration of NU = 10" cm-'. 
a collector duping concentration of Nc = 7 x 10" cm-'. and a ~netallurgical base 
width of 0.50 urn. Let V"E = 0.60 V. (a) Determine Vcr at punch-through. 
(h)  Determine the peak electric field in the B-C space charge region at punch-through. 

10.46 A uniformly doped silicon pnp bipolar transistor is to be designed with NE = 
10" c m  ' and Nr = 1 0 ' % m J .  The metallurgical base width is 0.75 um. Deter- 
mine the minimum base doping so that the punch-through voltage is no less than 
b',,, = 25 V. 

Section 10.5 Equivalent Circuit Models 

10.47 The Vci(satj voltage of an npn transistor in saturation continues to decrease slowly as 
the base current increases. In the Ehers-Moll model. assume us = 0.99. uu = 0.20. 
and Ic = I mA. For T = 3M) K, determine the base current, I R ,  necessary to give 
( a )  Vc~(sat) = 0.30 V, ( b )  Vci(sat) = 0.20 V, and (c) Vc~(sat)  = 0.10 V. 

10.48 Consider an npn bipolar transistor biased in the active mode. Using the Ebers-Moll 
m<&l, derive the equation for the base current, I # .  in terms of U F ,  a,, I , , ,  Icr. and 

VBE.  
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10.49 Consider thr Ebrrs-Mrjll model and let the base terminal bc open so I,, = 0. S 
that. when a collector-emitter voltage is applicd. we ha\c 

10.50 In  the Ehers- moll model. let a ,  = 0.Y8. I ,  , = 10 " A, and I, , = 5 x 10 I' A .  
7 = 300 K. Plot I< versus V, , for - V x t  i Vex < 3 V and for Vnc = 0.2,0.4. 
and 0.6 V (Note that V,, = - V B c . )  What can be said about the base width mudu 
lation rffcct using this model? 

- - - 10.51 The cullector-cmittrr saturation voltage. from the Ebers-Mull modrl, is given by 
Equation (10.77). Consider a power BJT in which u+ = 0.98. ax = 0.20. and 4 

< - I A. Plut VcL(satj versus 1" over the range 0.03 5 I H  5 1.0 A. 

Section 10.6 Frequency Limitations 

10.52 Consider a silicon npn transistor s t  7 - 300 K. Ahrume thr fullowing paralneters: 

I L  = 0.5 mA C,, = 0 8 p F  

xB = 0.7 urn D,, : 25 cm'ls 

xdr = 2.0 pi11 r, = 30 R 

C, = C,, = 0.08 pF / I  = SO 

( a )  Calculate the transit time factors. (b )  Calculate the cutoff and beta cutoff fre- 
quencies. i; and f p .  respectively. 

10.53 In a panicular hipalar trdnsi*t(~r, the base tramit time is 20 percent of the total dela! 
time. The base width is 0.5 @m and the base diffusion coefficient is Do = 20 cm'l: 
Determine the cutoff frequency. 

10.54 Assume the base transit time of a BJT is 100 ps and carriers cross the 1.2 vln B-C 
space charge region at a speed at' 10' c~lds .  The emitter-base junction charging tir 
is 25 ps and the collector capacitance and resistance are O. 10 pF and 10 R .  respec 
tivcly. Determine the cutoff frequency. 

Summary and Review 
- *10.55 (a)A rilicon npn bipolar transistor at T = 300 K ir to be dcsigned with an Early 

voltage of at least 200 V and a current gain <rf ;at lrast f l  = 80. (b) Repeat pan ( i t )  for, - P s- - 
s pnp bipolar transistor, 

- - *10.56 Design a uniformly doped silicon npn bipolar transistor so that /I = 100 at T = 

300 K. The maximum CE voltage ib la be 15 V and any h r rakb~wn *altagr is tu be - 3 < - 

1 
at leas1 3 times this value. Assume the recombination factor is constant at 6 = 0.995. 

I 
The transistor is to be operated in low injection with a maximum collectr~r current of 
l r  = 5 mA. Bandgap narrowing effects and base width modulation cffrcts are to be 
minimi7ed. Let D1 = 6 cm'lr, D, - 25 cm'ls, r,,, = 1 0 - 5 ,  and r,,,, L- 10 ' s. 

Drternline duping concentrations, the metallurgical base width, the active arra. and 
the maximum allowable VHZ. 

3 *10.57 Deign  a pair of complcment;lry npn and pnp bipdar tran5isrors. The transistor, are 
to have the same metallurgical babe and smttler widths of W8 = 0.75 p m  and , 

! 
I 
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E xt = 0 5 &m. Assume that the following minority carrier parameters apply to each 
device. 

D,, = 23 cm'ls r,," = lo-' s 

D,, = 8 cm2/s r,,o = 5 x s 

The collector doping concentration in each device is 5 x 10" cm-' and the recom- 
bination factor in each device is constant at 6 = 0.9950. ( a )  Design, if possible, fhe 
devices so  that = 100 in each de*,ice. If this is not possible. how close a match can 
he obtained'! (b) With equal fotward-hias baseemitter voltages applied. the collector 
currents are to he Ic = 5 mA with each device operating in low-injection. Determine 
the active cross-sectional areas. 
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Fundamentals of the 
Metal-Oxide-Semiconductor 

Field-Effect Transistor 

P R E V I E W  

T he fundamental physics of the Metal-Oxide-Semiconductor Field-Effect 
Transistor (MOSFET) is developed in this chapter. Although the bipolar tran- 
sistor was discussed in the last chapter, the material in this chapter presumes 

a knowledge only of the semiconductor material properties and characteristics of the 
pn junction. 

The MOSFET, in conjunction w ~ t h  other circuit elements, is capable of voltage 
gain and signal-power gain. The MOSFET is also used extensively in digital circuit 
applications where, because of its relatively small size, thousands of devices can be 
fabricated in a single integrated circuit. The MOSFET is, without doubt. the core of 
integrated circuit design at the present lime. 

The MOS designation is implicity used only for the metal-silicon dioxide (SiO2)- 
silicon system. The more general terminology i~ metal-insulator-semiconductor 
(MIS), where the insulator is not necessarily silicon dioxide and the semiconductor is 
not necessarily silicon. We will use the MOS system throughout this chapter although 
the same basic physics applies to the MIS system. 

The heart of the MOSFET is a metal-oxide-semiconductor structure known 
as an MOS capacitor. The energy bands in the semiconductor near the oxide- 
semiconductor interface bend as a voltage is applied across the MOS capacitor. The 
position of the conduction and valence bands relative to the Fermi level at the 
oxide-semiconductor interface is a function of the MOS capacitor voltage, so that 
the characteristics of the semiconductor surface can be inverted from p-type to 
n-type, or from n-type to p-type, by applying the proper voltage. The operation and 
characteristics of the MOSFET are dependent on this inversion and the creation of 
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an inversion charge density at the semiconductor surface. The threshold voltage is 
defined as the applied gate voltage required to create the inversion layer charge and 
is one of the important parameters of the MOSFET. 

The various types of MOSFETs are examined and a qualitative discussion of the 
current-voltage characteristics is initially presented. A mathematical derivation of! 
the current-voltage relation is then covered in detail. The frequency response and 
limitations of the MOSFET are also considered. 

Although we have not discussed fabrication processes in any detail in this text, 
there is an MOS technology that should be considered, since it directly influences the 
characteristics and properties of the MOS devices and circuits. We will consider the 
complementary MOS (CMOS) process. The discussion of this technology will be 
brief, but should provide a good base for further in-depth study. W 

11.1 1 THE TWO-TERMINAL MOS STRUCTURE 
The heart of the MOSFET is the metalhxide-semiconductor capacitor shown in 
Figure 11.1. The metal may be aluminum or some other type of metal, although in 
many cases, it is actually a high-conductivity polycrystalline silicon that has beende- 
posited on the oxide; however, the term metal is usually still used. The parameter to, 
in the figure is the thickness of the oxide and to, is the permittivity of the oxide. 

11.1.1 Energy-Band Diagrams 

The physics of the MOS structure can be more easily explained with the aid of the 
simple parallel-plate capacitor. Figure 1 1.2a shows a parallel-plate capacitor with the 
top plate at a negative voltage with respect to the bottom plate. An insulator material 
separates the two plates. With this bias, a negative charge exists on the top plate, a 
positive charge exists on the bottom plate, and an electric field is induced between 
the two plates as shown. The capacitance per unit area for this geometry is 

Semiconductor 

i 

Figure 11.1 1 The basic MOS capacitor 
structure. 
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Figure 11.2 1 (a)  A parallel-plate capdcitor showing the electric field and conductor charges. (b) A corresponding 
MOS capacitor with a negalive gate bias showing the electric field and charge Row. (c) The MOS capacitor with 
an accumulation layer of holes. 

I where t is the permittivity of the insulator and rl is the distance between the two 
plates. The magnitude of the charge per unit area on either plate is 

Q' = C'V (11.2) 

where the prime indicates charge or capacitance per unit asea The magnitude of the 
. electric field is 

Figure 11.2b shows an MOS capacitor with a p-type semiconductor substrate. 
The top metal gate is at a negative voltage with respect to the semiconductor sub- 
strate. From the example of the parallel-plate capacitor, we can see that a negative 
charge will exist on the top metal plate and an electric field will be induced with 
the direction shown in the figure. If the electric field were to penetrate into the 
semiconductor, the majority carrier holes would experience a force toward the 
oxide-semiconductor interface. Figure 1 1 . 2 ~  shows the equilibrium distribution of 
charge in the MOS capacitor with this particular applied voltage. An nccrin~rilufior! 
l a y r  of bolcs in the oxide-semiconductor junction corresponds to the positive 
charge on the bottom "plate" of the MOS capacitor. 
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Figure 11.3a shows the same MOS capacitor in which the polarity of the appli 

voltage is reversed. A positive charge now exists on the top metal plate and the 
duced electric field is in the opposite direction as shown. If the electric field pe 
trates the semiconductor in this case, majority carrier holes will experience a for 
away from the oxide-semiconductor interface. As the holes are pushed away 
the interface, a negative space charge region is created because of the fixed io 
acceptor atoms. The negative charge in the induced depletion region correspun 
the negative charge on the bottom "plate" of the MOS capacitor. Figure 1 I .3b sho 
the equilibrium distribution of charge in the MOS capacitor with this applied volta 

The energy-hand diagram of the MOS capacitor with the p-type substrate, for 
case when anegative voltage is applied to the top metal gate, is shown in Figure 11 
The valence-band edge is closer to the Fermi level at the oxide-semiconductor in 
face than in the bulk material, which implies that there is an accumulation of h 
The semiconductor surface appears to he more p-type than the bulk material. 
Fermi level is a constant in the semiconductor since the MOS system is in the 
equilibrium and there is no current through the oxide. 

Figure 11.4b shows the energy-band diagram of the MOS system when a po 
tive voltage is applied to the gate. The condlrction and valence band edges bend 

Figure 11.3 1 The MOS capacitor with a moderate positive gate bias, showing (a) the electric field and charge flow and 
(b) the induced space charge reginn. 

1 

Accumulation layer of holes Induced space charge region 

(a) (b) 

Figure 11.4 1 The energy-band diagram of an MOS capacitor with a p-type substrate for (a) a negative gate bias and 
(b) a moderate positive gate bias. 
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shown in the figure, indicating a space charge region similar to that in a pn junction. 
The conduction hand and intrinsic Fermi levels move closer to the Fermi level. The I 

I induced space charge width is xd. 
1 Now consider the case when a still larger positive voltage is applied to the top 

metal gate of the MOS capacitor. We expect the induced electric field to increase in 

I magnitude and the corresponding positive and negative charges on the MOS capaci- 
torto increase. Alarger negative charge in the MOS capacitor implies a larger induced 
space charge region and more band bending. Figure 11.5 shows such a condition. The 
intrinsic Fermi level at the surface is now below the Fermi level: thus, the conduction 
band is closer to the F e m i  level than the valence band is. This result implies that the 
surface in the semiconductor adjacent to the oxide-semiconductor interface is n type. 

I By applying a sufficiently large positive gate voltage, we have inverted the surface of 
the semiconductor from a p-type to an n-type semiconductor. We have created an 
inverrion luyer of electrons at the oxide-semiconductor interface. 

In the MOS capacitor structure that we have just considered, we assumed a p- 1 type semiconductor substrate. The same type of energy-band diagrams can be con- 
structed for an MOS capacitor with an n-type semiconductor substrate. Figure 11.6a 
shows the MOS capacitor structure with a positive voltage applied to the top gate ter- 
minal. Apositive charge exists on the top gate and an electric field is induced with the 
direction shown in the figure. An accumulation layer of electrons will be induced in 

version layer of electrons 

I 

Figure 11.5 I The energy-band diagram of the MOS capacitor 
with a p-type substrate for a "large" positive gate bias. 

-I.-:-r *."--.. 

Induced positive space 
of electrons 

(a) (b) 

Figure 11.6 1 The MOS capacitor with an n-type substrate for (a) a positive gate bias and (b) a moderate negative gate bias. 
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the n-type substrate. The case when a negative voltage is applied to the top gate ij 
shown in Figure 11.6b. A positive space charge region is induced in the n-type semi- 
conductor in this situation. 

The energy-band diagrams for this MOS capacitor with the n-type suhstrate 
shown in Figure 11.7. Figure 11.7a shows the case when a positive voltage is a 
plied to the gate and an accumulation layer of electrons is formed. Figure 11. 
shows the positive space charge region induced by an applied negative gate voltag 
in it the conduction and valence band energies bend upward. Figure 1 1 . 7 ~  shows 

Accumulation of electmns 

i 
energy bands when a larger negative voltage is applied to the gate. The conduction 
and valence bands are bent even more and the intrinsic Fermi level has moved 
above the Fermi level so that the valence band is closer to the Fermi level than the 

Gate 

E,. 

Induced posilive space 
charge region 

lo\ersion layer of holes 

Figure 11.7 I The energy-band diagram of the MOS 
capacitor with an n-type substrate for (a) a positive 
gate bias. (b) a mcdcrate negative bias, and (c) a 
"large" negative gate bias. 
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I conduction band is. This result implies that the semiconductor surface adjacent to 
the oxide-semiconductor interface is p type. By applying a sufficiently large nega- 
tive voltage to the gate of the MOS capacitor, the semiconductor surface has been 

i 
inverted from n type to p type. An inversion layer of holes has been induced at the 
oxide-semiconductor interface. 

1 11.1.2 Depletion Layer Thickness 

I We may calculate the width of the induced space charge region adjacent to the oxide- 
semiconductor interface. Figure 11.8 shows the space charge region in a p-type semi- 
conductor substrate. The potential @,!> is the difference (in volts) between E F ~  and E, 

id is given by 

where N ,  is the acceptor doping concentration and ni is the intrinsic carrier 
concentration. 

The potential @$ is called the surface potential; it is the difference (in volts) be- 
hveen E F ,  measured in the bulk semiconductor and E F ;  measured at the surface. The 
surface potential is the potential difference across the space charge layer. The space 
charge width can now be written in a form similar to that of a one-sided pn junction. 
We can write that 

where c, is the permittivity of the semiconductor. Equation (11.5) assumes that the 
abrupt depletion approximation is valid. 

Figure 11.9 shows the energy bands for the case in which @s = 24,". The Fermi 
level at the surface is as far above the intrinsic level as the Fermi level is below the 

Figure 11.8 IThe energy-band diagram in the p-type 
semiconductor, indicating surface potential. 
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Figure 11.9 I The energy-hand diazrarn in (he p-type 
semiconductor at (he threshold inversion point. 

intrinsic level in the hulk semiconductor. The electron concentration at the surface is 
the same as the hole concentration in the bulk material. This condition is known as 
the rhreshold invrrriort point. The applied Fate voltage creating this condition is 
known as the threshold voltage. If the gate voltage increases above this thresh 
value, the conduction bend will hrnd slightly closer to the Fermi level. but 
change in the conduction hand at the sutface is now only a slight function of g 
voltage. The electron concentration at the surface. however, is an exponential fu 
tion of the sutface potential. The surface potential may increase by a few ( k T  
volts, which will change the electron concentration by orders of magnitude, butt 
space charge width changes only slightly. In this case, then, the space charge regi 
has essentially reached a maximum width. 

The ~naximum space charge width, x d r .  at this inversion transition point can 
calculated from Equation (1 1.5) by setting @, = 2dj,. Then 

EXAMPLE 11.1 1 Objective I 
To calculate the maximum space charge width given a particular cemicanductor doping 
concentration. 

Consider silicon at T = 300 K doped to N,, = 10" cm-'. The intrinsic carrier concen-, 
tration is n, = 1.5 x 101%nir'. 

Solution 
From Equatiun ( 11.4). we have 
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the maximum space charge width is 

(1.6 x 10-l'l)(lO1h) 

r,,, = 0.30 x ccm = 0.30 pm 

w Comment 
The marin~um induced space charge width is oo thc samc order of magnitude as pn junctjon 
,pace charge widths. 

We have been considering a p-type semiconductor substrate. The same maxi- 
lnum induced space charge region width occurs in an n-type substrate. Figure I1 .I0 
is the energy-band diagram at the threshold voltage with an n-type substrate. We can 
write 

Note that we are always assuming the parameters $,i,, and 6,. to be positive quantities. 
Figure I 1  . I  I is a plot of r d r  at T = 300 K as a function of doping concentration 

in silicon. The semiconductor doping can be either n-type or p-type. 

Figure 11.10 1 The cnergy-band diagrem in the n-type 
semiconductor at the threshold inversion point. 
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1014 lou io16 1n17 1 0 ~ ~  

N. semiconductor doping ( c m  '1 

Figure 11.11 1 Maximum induced space charge region width 
versus semiconductnr doping. 

TEST YOUR UNDERSTANDING 

Ell.1 (a) Consider as oxide-to-p-type silicon junction at 7 = 300 K. The impurity doping 
concentmlion in the silicon is N, = 3 x 10" ern-'. Calculate the maximum space- 
charge width in the silicon. (b )  Repeat part (a )  for an impurity concentration of 
N, = 1015 cm-'. Iwfl £98'0 ( 9 )  'ud 081'0 ("1 "UVI 

E11.Z Consider an oxide-to-n-type silicon junction at 7 = 300 K. The impurity doping 
cancentration in the silicon is Nd = 8 x 10" cm-'. Calculate the maximum space- 
charge width in the silicon. (w* E E O  'YUV) 

11.1.3 Work Function Differences 

We have been concerned. so far. wtth the enerev-band dtagramq of the semlconduc-' 
G ,  & 

tor material. Figure 11.12a shows the energy levels in the metal, silicon dioxide, andi 
silicon relative to the vacuum level. The metal work function is @m and the electro 
affinity is X .  The parameter xi is the oxide electron affinity and, for silicon dioxi 
xi = 0.9 V. 4 

Figure 1112b shows the energy-band diagram of the entire metal-oxide- 
semiconductor structure with zero gate voltage applied. The Fermi level is a constant 
through the entire system at thermal equilibrium. We may define q5:n as a modifi 
metal work function-the potential required to inject an electron from the meral in 3 
the conduction band of the oxide. Similarly, X '  is defined as a modified electron 
affinity. The voltage VnXo is the potential drop across the oxide for zero applied ga 
voltage and is not necessarily zero because of the difference between 6, and X .  
potential 6," is the surface potential for this case. 
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Vacuum Ic\el 

ptype semiconductor 
Vacuum lets1 

- - - - - - - - - EF, 

- - - - - - - 

M 

Figure 11.12 1 (a) Energy levels in an MOS system pnor to contact and (b) energy-hand diagram through the 
MOS structure in thermal equilibrium after contact. 

If we sum the energies from the Fermi level on the metal side to the Fermi level 
on the semiconductor side, we have 

E,? 
e@L, + eVoxa = ex '  + - - e@,o + e4~~, ,  (1 1.9) 

2 

Equation ( I  1.9) can be rewritten as 

We can define a potential @,,,, as 

which is known as the metal-semiconductor work function difference 

Objective I EXAMPI.E 11.2 

To calculate the metal-semiconductor work function difference d,,,, for a given MOS systern 
and semiconductor doping. 
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For an aluminium-silicon dioxide junction, #:,r = 3.20 V and for a silicon-silicon dioi- 
ide junction, x '  = 3.25 V We may assume that E, = I .  I I e V  Let the p-type doping be No = 

ccm3. 

Solution 
For silicon at T = 300 K, we may calculate mi,, as 

( 
"'I' ) = 0.228 V 

1.5 x 10'" 

Then the work function difference is 

=3.20-(3.25+0.555+0.228) 

or 

4 .  = -0.83 V 

m Comment 
The value of m,,,, will become more negative as the doping of the p-type substrate increases. 

Degenerately doped polysilicon deposited on the oxide is also often used as the 
metal gate. Figure 11.13a shows the energy-band diagram of an MOS capacitor witL 
an n' polysilicon gate and a p-type substrate. Figure 1 1  . I  3b shows the energy-bat 
diagram for the case of a p+ polysilicon gate and the p-type silicon substrate. In the 
degenerately doped polysilicon, we will initially assume that E F  = E, for the n- 
case and EF = Eu for the p+ case. 

For the n+ polysilicon gate, the metal-semiconductor work function difference 
can be written as 

I 

S M l o t -  
(a) (b) 

Figure 11.13 1 Energy-band diagram through the MOS st~ucture with a p-type substrate at zero gate bias for (a) an n+ 
polysilicon gate and (b) apt  polysilicon gate. 1 
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1 and for the p+ polysilicon gate, we have 

I However, for degenerately doped n+ polysilicon and p' polysilicon, the Fermi level 
can be above E, and below E,., respectively, by 0.1 to 0.2 V. The experimental b,,, 
values will then be slightly different from the values calculated by using Equa- 
tions(ll.12) and (11.13). 

I We hare been considr"ng a p-type nemiconductor substrate. We may also ha i r  
an n-type semiconductor substrate in an MOS capacitor. Figure 11.14 shows the 
energy-band diagram of the MOS capacitor with a metal gate and the n-type semi- 
conductor substrate, for the case when a negative voltage is applied to the gate. The 
metal-semiconductor work function difference for this case is detined as 

where @,,, is assumed to be a positive value. We will have similar expressions for n+ 
and p' polysilicon gates. 

Figure 11.15 shows the work function differences as a function of semiconduc- 
tor doping for the various types of gates. We may note that the magnitude of m,,, for 
thepolysilicon gates are somewhat larger than Equations (11.12) and (11.13) predict. 
This difference again is because the Fermi level is not equal to the conduction band 

Figure 11.14 1 Energy-band diagram through theMOS 
structure with an n-type substrate for a negative applied 
gate bias. 
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Figure 11.15 1 Metal-semiconductor work 
function difference versus doping tbr 
aluminum, gold. and n+ and pi 

polysilicon gates. 
(From Sre 1161 uad Werner [ I Y / . J  

energy for  the  n+ gate and is not equal to the  valence band energy for the pC gate. 
The metal-semiconductor work function difference becomes important in the flat-band 
and threshold voltage pariuneters discushed next. 

TEST YOUR UNDERSTANDING 1 
E11.3 The silicon ilnpurily dopiny concentration in an aluminum-silicon dioxide-silican 1 

MOS structure is Nu = 3 x 10'' ~ r n - ~ .  Using the parameters in Enample 1 1  2 .  deter- 
mine the metal-semiconductor work function difference @,,,,. ( A  186.0- = '"@ "V) 

E11.4 Consider an n' polysilicon gate in an MOS structure with a p-type silicon substrate. 
The doping concentration of the silicon ir N,, = 3 x 1U'"m '. Using Equa- 
tion ( I  1.12). find thc value uT@,,,,. (A IE6.0- = ""@'SUV) 

E11.5 Rcprat El  1.4 fora pt polysilicon gate using Equation (1 1.13). ( A  61  1 C J t  = '"'4 rub') 

11.1.4 Flat-Band Voltage 

Thejrrf -band U O / ~ [ J ~ P  is defined as  the applied gate voltage such that there is  no band 
bending in the semiconductor and, a s  a result, zero net space charge in this region. 
Figure 11.16 shows this Rat-band condition. Because of  the  work function difference 
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Figure 11.16 1 Energy-band diagram of an 
MOS capacitor at flat band. 

1 and possible trapped charge in the oxide, the voltage across the oxide for this case is / not necessarily zero. 
We have implicitly been assuming that there is zero net charge density in the 

oxide material. This assumption may not be valid-a net fixed charge density, usu- 
ally positive, may exist in the insulator. The positive charge has been identified with 
broken or dangling covalent bonds near the oxide-semiconductor interface. During 
the thermal formation of SiOz, oxygen diffuses through the oxide and reacts near the 
Si-SiO, interface to form the S O z .  Silicon atoms may also break away from the 
silicon material just prior to reacting to form SiO?. When the oxidation process is  
terminated, excess silicon may exist in the oxide near the interface, resulting in the 
dangling bonds. The magnitude of this oxide charge seems, in general, to be a strong 
function of the oxidizing conditions such as oxidizing ambient and temperature. The 
charge density can be altered to some degree by annealing the oxide in an argon or 
nitrogen atmosphere. However, the charge is rarely zero. 

The net fixed charge in the oxide appears to be located fairly close to the oxide- 
semiconductor interface. We will assume in the analysis of the MOS structure that an 
equivalent trapped charge per unit area, Q:, ,  is located in the oxide directly adjacent 
to the oxide-semiconductor interface. For the moment, we will ignore any other 
oxide-type charges that may exist in the device. The parameter Q:, is usually given 
in terms of number of electronic charges per unit area. 

Equation (I ].lo), for zero applied gate voltage, can be written as 

If a gate voltage i\ applied, the potential drop across the oxide and the surface poten- 
tial will change. We can then write 

VG = Avo, + Ab.7 = (Vex - Voxo) + (4% - bSo) (11.16) 

Using Equation (1 1.15), we have 

VG = VOx + b.T + b,,,, (11.17) 

Figure 11.17 shows the charge distributior~ in the MOS structure for the flat-band 
condition. There is zero net charge in the semiconductor and we can assume that an 
equivalent fixed surface charge density exists in the oxide. The charge density on the 
metal is Q,, and from charge neutrality we have 

el, + Q:, = o  (11.18) 
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P-type 

Metal Oxide hrmiconductur 

Figure 11.17 1 Charge distribution in 
an MOS capacitor at flat band. 

We can relate Q:,, to the voltage across the oxide by 

er, V", = - 
c o x  

where Cox is the oxide capacitance per unit area.' Substituting Equation ( 1  1.18) in 
Equation (1  1.19). we have 

-Q:.y K n  = - c,,, 
In the flat-hand condition, the surface potential is zero, or 6, = 0. Then from Equa. 
tion (1 1.17). we have 1 

(11.21 

Equation (1 1.21) is the flat-band voltage for this MOS device. I 
EXAMPLE 11.3 I Objective 

To calculate the flat-band voltage for an MOS capacitor with a p-type semiconductor substrate. 
Consider an MOS structure with a p-type semiconductor substrate doped to N,, = 

1016 cm-', a silicon dioxide insulator with a thickness of to, = 500 A. and an n- polysilic 
gate. Assume that Q:, = I0"electronic charges percm'. 

Solution 

be found as 

1 
The wurk function difference, Irom Figure 11.15, is $,,,, = - I .  1 V. Thc oxide capacitance cam 

r,, (3.9)(8.85 x I0-l4) 
C,, = - = = 6.9 x ~ l c m '  

f,,, 500 x 

I 

'~lthough we will. in gencral. use the primed notation for capacitance per unit area or charge per unit 
area. we will omit, fur convenience, the prime on the oxide capacitance per unit area parameter 
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The equivalent oxide surfacc charge density is 

Q:, = (10")(1.6 x 10  I V )  = 1 .6  x 10-V~icm' 

The Hat-band voltage is then calculated as 

Comment 
The applied gate volrogc required to achieve the Rat-band corlilition for this p-type suhslratc is 
negative. If the ;imount of tixed oxide charge increases, the Hat-band voltdge becomes wen 
more ncgative. 

TEST YOUR UNDERSTANDING 

Ell.6 Considrr the MOS structure described in El 1.3. Far an oxide thickness of i,,, = 
200 A and an axide charge of Q:$ = 8 x 10"' c m ' ,  calculate the flat-band voltage. 
I 40'1- = ' sov) 

E11.7 Repeat El1.hfor the MOS device dcscribcd in El 1.4. ( A  I O I =  ".'A 'UV) 
E11.8 Repeat El 1.6 for the MOS debice described i n  E11.5. ( A  S01Of = " ' A  S U V )  

11.1.5 Threshold Voltage 

The threshold voltage was defined as the applied gate voltage required to achieve the 
threshold inversion point. The threshold inversion point, in turn, is defined a s  the con- 
dition when the surface potential is @, = ?@,,, for the p-type semiconductor and @, = 
Zrp,,, for the n-type semiconductor. These condirions were shown in Figores I l .9a 
and 11.10. The threshold voltage will he derived in terms of rhe clectrical and geo- 
metrical properties of the MOS capacitor. 

Figure 11.18 shows the charge distrihution through the MOS dcvicc at the 
threshold inversion point for a p-type semiconductor substrate. The space charge 

Figure 11.18 1 Charge distrihution in an 
MOS capacitor with a p-type suhstratc at 
the threshold inbcrsion noint. 
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width has reached its maximum value. We will assume that there is an equivalent 
oxide charge Q:, and the positive charge on the metal gate at threshold is Q;,,, .The 
prime on the charge terms indicates charge per unit area. Even though we are assum- 
ing that the surface has been inverted, we will neglect the inversion layer charge at 
this threshold inversion point. From conservation of charge, we can write 

QL,, + Q:, = lQ;o(max)l ( I  1.22) 

where 

and is the magnitude of the maximum space charge density per unit area of the de- 
pletion region. 

The energy-band diagram of the MOS system with an applied positive gate volt- 
age is shown in Figure 11.19. As we mentioned, an applied gate voltage will change 
the voltage across the oxide and will change the surface potential. We had from Equ- 
a t ion( l I .16) th~t  

At threshold, we can define Vti = VT,, where V T ~ V  is the threshold voltage that 
creates the electron inversion layer charge. The surface potential is 6, = 2@fp  at 
threshold so Equation (1 1.16) can be written as 

where Vu,r is the voltage across the oxide at this threshold inversion point. 

Figure 11.19 1 Energy-band diagram through the MOS 
structure with apositive applied gate bias. 
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I The voltage V,,r can be related to the charge on the metal and to the oxide capa- 
citance by 

1 where again C,, is the oxide capacitance per unit area. Using Equation ( I  l.22), we 
, can write 

Finally, the threshold voltage can be written as 

Using thc definition of flat-band voltage from Equation (1 1.21 ), we can also express 
the threshold voltage as 

l Q;,(max)l 
V T N  = + V F R  + 2@fp (1 1 . 2 7 ~ )  cox 

For a given semiconductor material, oxide material, and gate metal, the threshold volt- 
age is a function of semiconductor doping, oxide charge Q:,, and oxide thickness. 

DESIGN 
O

b
j
ective I EXAMPLE 11.4 

To design the oxide thickness of an MOS system to yield a specitied threshald voltage. 
Consider an n+ polysilicon gatc and a p-type silicon substrate doped to N,, = 3 x 

10'%n,-'.Assume Q:, = 10" cm-?. Determinetheoxidethicknesssuch that VT,,, = +0.65V. 

W Solution 
From Figure 1 1.15, the work function difference is @,,, , = -1.13 V. Thc various parameters 
can be calculated as 

Then 

Q;,i(maxjl = rN,,.r,,, = (1.6 x 10-'"l(3 x 10'~)(0.18 x lo-') 
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The oxide thickness can be determined from the threshold voltage equation 

Then 

or 

0.65 = 2.0 x lost,>, - 0.378 

which yields 

r,, = 504 A 

Comment 
The threshold voltage for chis case is a positive quantity, which means that the MOS device is 
an enhancement mode device: a gate voltage must he applied to create the inversion layer 
charge, which is zero for zero applied gate voltage. 

The threshold voltage must be within the voltage range of a circuit design. 
Although we have not yet considered the current in an MOS transistor, the threshold 
voltage is the point at which the transistor turns on. If a circuit is to operate between 
0 and 5 V and the threshold voltage of a MOSFET is 10 V, for example, the device 
and circuit cannot be turned "on" and "off." The threshold voltage, then, is one of the 
important parameters of the MOSFET. 1 
To calculate the threshold voltage of an MOS system using the aluminum gate. 

Consider a p-type silicon substrate at T = 300 K doped to N,, = 10" ccm'. Let 
Q:, = 10'%m-2. to, = 500 A, and assume the oxide is silicon dioxide. From Figure 11.15, 
we have that @,,,, = -0.83 V. 

Solution 
We can start calculating the various parameters as 

and 
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Then 

lpso(max)l = eN,.rd7 = (1.6 x 1 0 ~ ~ ~ ) ( 1 0 ' ~ ( 2 . 4 3  x 10-9 = 3.89 x C/cm2 

We can now calculate the threshold voltage as 

= - 0.341 V 

Comment 
In this example, the semiconductor is very lightly doped which, in conjunction with the posi- 
tive charge in the oxide and the work function potential difference, is sufficient to induce an 
electron inversion layer charge even with zero applied gate wltage. This condition makes the 
threshold voltage negative. 

A negative threshold voltage for a p-type substrate implies a depletion mode de- 
vice. A negative voltage must be applied to the gate in order to make the inversion 
layer charge equal to zero, whereas a positive gate voltage will induce a larger inver- 
sion layer charge. 

Figure 11.20 is a plot of the threshold voltage V ? ,  as a function of the acceptor 
doping concentration for various positive oxide charge values. We may note that the 
p-type semiconductor must be somewhat heavily doped in order to obtain an en- 
hancement mode device. 

The previous derivation of the threshold voltage assumed a p-type semiconduc- 
tor substrate. The same type of derivation can be done with an n-type semiconductor 
substrate, where a negative gate voltage can induce an inversion layer of holes at the 
oxide-semiconductor interface. 

Figure 11.14 showed the energy-band diagram of the MOS structure with an n- 
type substrate and with an applied negative gate voltage. The threshold voltage for 
this case can be derived and is given by 

where 



CHAPTER 11 Fundamentals of the Mstal4xde-Semiconductor Field~Effect Transstor 
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Figure 11.20 1 Threshold voltage of an nchannel MOSFET 
versus the p-type substrate doping concentration for various 
values of oxide trapped charge (to, = 500 A, aluminum gate). 

and 

1o13 loL4 1o15 loLh 1oI1 I oL8 

a:, = o  _____-.------ 

We may note that x d ~  and 41. are defined as positive quantities. We may also note 
that the notation of VTp is the threshold voltage that will induce an inversion layer of 
holes. We will later drop the N and P subscript notation on the threshold voltage, but, 
for the moment, the notation may be useful for clarity. 

I 
i 

DESIGN I Objective 
EXAMPLE 11.6 

To design the semiconductor dnping concentration to yield a specified threshold voltage. 
- 

Consider an aluminum-silicon dioxide-silicon MOS structure. The silicon is n type, ihe 
oxide thickness is r,, = 650 A, and the trapped charge density is Q:, = 10"' cm-'. Deter- 
mine the doping concentration such that VTP = -1.0 V .  

1 

/<-' 

* Solution 
The solution lo this design problem is not straightforward, since the doping concenvation ap- 
pears in the terms +f,,. x d r .  Q;,,(max) and +,,, . The threshold voltage, then, is a nonlinear 
function of No. Without a computer-generated solution, we resort to (rial and error. 

I .  

#' I I  I :  

7 , -  

I 
- 

Q' = 10'1 m-2 

- - - - 
Q:, = 5 X lo" cm-' 

- 

Q, = 1112 ",,-' ss -..-..I-"' 

I 

../a 

./* 

/ ;  

+/. 
4 

- 
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For N d  = 2.5 x 10" cm-', we find 

lhen 

IQ;O(max)l = eNdxtii = 6.48 x C/cm2 

jrom Figure 11.15, 

dm, = -0.3.5 V 

b e  threshold voltage is 

ihich yields 

VTp = -1.008V 

ind is essentially equal to the desired result. 

I Comment 
The thre~huld voltage is negative, implying that this MOS capacitor, with the n-type substrate, 
is an enhancement mode device. The invzrsion layer charge is zero with zero gate voltage, and 
anegative gate volrage must he applied to induce the hole inversion layer. 

Figure 11.21 is a plot of Vrr versus doping concentration for several values of 
Q:, . We may note that, for all values of positive oxide charge, this MOS capacitor is 
always an enhancement mode device. As the Q:, charge increases, the threshold 
voltage becomes more negative, which means that it takes a larger applied gate volt- 
age to create the inversion layer of holes at the oxide-semiconductor interface. 

11.1.6 Charge Distribution 

We've discussed the various charges in the MOS structure. We may gain a better un- 
derstanding by considering the following figures. The electron concentration in the 
inversion layer (p-type substrate) at the oxide interface is given by n ,  = ( n z / N , )  
exp (@.,I Vt). For silicon at T = 300 K with an impurity doping concentration of 
N, = 1 x 10'6cm-', the surface potential at the threshold inversion point is 
@.$ = 2@,,, = 0.695 V. The electron concentration at the oxide interface at this sur- 
face potential is just n, = 1 x 10''' cm-' as we have discussed before. Figure 11.22 
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Figure 11.21 1 Threshold voltage of a p-channcl MOSFET 
\,ersus the n-type substrate doping concentration for 
various values of oxide trapped chargc (to, = 500 A. 
aluminum gate). 

Figure 11.22 1 Electron inversion charge 
density as a function of surface 
votential. 
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10.' 
p-type Si (300 Kl 
N,, = 4 x l0"cm ' 
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Figure 11.23 I Variation of surface charge density (accumulation charge 
and inversion charge) as a lunction of surfece potential. 
(Fmm S;e /161.1 

shows the increase in electron concentration at the surface with an increase in surface 
potential. As discussed previously, since the electron concentration increases rapidly 
with very small changes in surface potential, the space charge width has essentially 
reached a maximum value. 

Figure 11.23 shows the total charge density (Cicm') in the silicon as a function 
of the surface potential. At flat band. the total charge is zero. For 0 5 @,7 5 @,,,, we 
are operating in the depletion mode since the inversion charge has not yet been 
formed. For &,, 5 @.% < 2q5fr, the Femi  energy at the surface is in the upper half ot 
the band diagram, which implies an n-type material, but we have not yet reached the 
threshold inversion point. This condition is referred to as weak inversion. The condi- 
tion for rg, > 2@,, is called strong inversion, since the inversion charge density in- 
creases rapidly with an increase in surface potential. as we have seen. 

TEST YOUR UNDERSTANDING 

E11.9 An MOS device ha5 the following parameters: aluminum gate, p-type sub~trare with 

N,, = 3 x 10'' c m ' .  to, = 250 A. and Q:, = 10" c m  '. Determine the threshold 
voltage. (A [8Z'0+ = "''A 'SUV) 
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E1l.10 Consider an MOS device with the following parameters: p+ polysilicon gate, 

n-type substrate with Nd = 10'' c m 3 ,  f o x  = 220 A. and Q : ,  = 8 x 10'' cm-'. 
(Use Figure 11.15). Determine the threshold voltage. (A t Z Z O +  = d lA  'SuV) 

*El l . l l  The device described in El 1 .I0 is to be redesigned by changing the n-type dopingcon- 
centration such that the threshold voltage is in the range -0.50 5 V7p (_ -0.30 V. 
( \ - _ ~ 1 3  9101 x P = PN NO$ A ~ 0 ~ 0 -  = d l ~  '1oua pue le!n .la 'suv) 

11.2 I CAPACITANCE-VOLTAGE 
CHARACTERISTICS 

The MOS capacitor structure is the heart of the MOSFET. A great deal of infurma- 
tion about the MOS device and the oxide-semiconductor in1erfaL.e can be obtain 
from the capacitance versus voltage or C-Vcharacteristics of the device. The capac 
itance of a device is defined as 

d Q c = -  
d V  

(11.30 

where d Q  is the magnitude of the differential change in charge on one plate as a 
function of the differential change in voltage dV across the capacitor. The capaci- 
tance is a small-signal or ac parameter and is measured by superinlposing a small ac 
voltage on an applied dc gate voltage. The capacitance, then, is measured as a func- 1 
tion of the applied dc gate voltage. 

11.2.1 Ideal C-V Characteristics 

First we will consider the ideal C-V characteristics of the MOS capacitor and then 
discuss some of the deviations that occur from these idealized results. We will ini- 
tially assume that there is zero charge trapped in the oxide and also that there is no 
charge trapped at the oxide-semiconductor interface. 

There are three operating conditions of interest in the MOS capacitor: accumu- 
lation, depletion, and inversion. Figure I I .24a shows the energy-band diagram of ao 
MOS capacitor with a p-type substrate for the case when a negative voltage is ap- 
plied to the gate, inducing an accumulation layer of holes in the semiconductor at the 
oxide-semiconductor interface. A small differential change in voltage across the 
MOS structure will cause a differential change in charge on the metal gate and also 
in the hole accumulation charge, as shown in Figure 11.24b. The differential changes 
in charge density occur at the edges of the oxide, as in a parallel-plate capacitor. The 
capacitance C' per unit area of the MOS capacitor for this accumulation mode is just 
the oxide capacitance, or 

I 
cox 

C'(acc) = C,, = - (11.31) 
fox 

Figure 11.25a shows the energy-hand diagram of the MOS device when a 
sniall positive voltage is applied to the gate, inducing a space charge region in the 

I 
semiconductor; Figure 11.25h shows the charge distribution through the device for 
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Metal Oxide p~typr semiconductor 

.-_________-_-- 

(a) (b) 

~i~~~~ 11.24 1 (a) ~ ~ ~ ~ ~ ~ - b ~ ~ d  diagram through an MOS capacitor for the accumulation mode. (b) Differential 
charge distribution at accumulation for a differential change in gate voltage. 

Metal Oxide p-type scrniconductor 

Figure 11.25 1 (a) Energy-band diagram through an MOS capacitor for the depletion mode. (b) ~ifferentidl 
charge distribution at depletion for 21 differential change in gate voltage. 

this condition. Thc oxide capacitance and the capacitance of the depletion region 
are in series. A small differential change in voltage across the capacitor will cause 
a differential change in the space charge width. The corresponding differential 
changes in charge densities are shown in the figure. The total capacitance of the se- 
ries combination is 
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Since C,, = t,,/t,, and C;, = t , / x d ,  Equation (I 1.32h) can be written as 

As the space charge width increases, the total capacitance C'(depl) decreases. 
We had defined the threshold inversion point to he the condition when the max. 

imum depletion width is reached but there is essentially zero inversion charge den- 
sity. This condition will yield a minimum capacitance Cki, which is given by 

Figure 11.26a shows the energy-band diagram of this MOS device for the inver~ 
sion condition. In the ideal case, a small incremental change in the voltage across the 
MOS capacitor will cause a differential change in the inversion layer charge densit) 
The space charge width does not change. If the inversion charge can respond to the 
change in capacitor voltage as indicated in Figure 11.26b, then the capacitance I. 
again just the oxide capacitance, or 

cox 
C1(inv) = C,, = - 

to, 

Figure 11.27 shows the ideal capacitance versus gate voltage, or C-V, character 
istics of the MOS capacitor with a p-type substrate. The three dashed segments cor 
respond to the three components Cox, C;,, and Cki,. The solid curve is the ideal net 
capacitance of the MOS capacitor. Moderate inversion, which is indicated in the fig- 
ure, is the transition region between the point when only the space charge densi 1 

Metal Oxide p-type semiconductor 

Figure 11.26 1 (a) Energy-band diagram through an MOS capacitor for the inversion mode. (b) Differential charge 
distribution at inversion for a low-frequency differential change in gate voltage. 
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Figure 11.27 1 Ideal low-frequency capacitance versus gate 
voltage of an MOS capacitor with a p-type substrate. 
Individual capacitance components are also shown. 

changes with gate voltage and when only the inversion charge density changes with 
gate voltage. 

The point on the curve that corresponds to the flat-band condition is of interest. 
The flat-band condition occurs between the accumulation and depletion conditions. 
The capacitance at flat band is given by 

€or c;, = 

.x + (5) 
We may note that the flat-band capacitance is a function of oxide thickness as well as 
semiconductor doping. The general location of this point on the C-Vplot is shown in 
Figure 11 27.  

Objective 1 EXAMPLE 11.7 

To calculate C,,, C:,,, , and C;, for an MOS capacitor. 
Consider a p-type silicon substrate at T = 300 K doped to N ,  = 1016 cm-'. The oxide is 

silicon dioxide with a thickness of 550 A and the gate is aluminum. 

Solution 
The oxide capacitance is 

c,, - (3.9)(8.85 x lo-") 
C,, = - - = 6.28 x ~lcrn' 

10, 550 x lo-" 

To find the minimum capacitance, we need to calculate 
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Then 

We may note that 

The Rat-hand capacitance i~ 

c;,  = 

 OX + (?) jm 

4 Comment 4 
The ratios of C:!,, to C,,, and of C;, to C,,, are typical values obtained in C-Vplots 

TEST YOUR UNDERSTANDING 

E11.12 For the device described in El 1.9. determine C; /C,,, and C;,/C,,. 
(9 tL .0  = '"3/":3'~62'0 = '",~/'''",'3 'suV) 

Typical values of channel length and width are 2 p m  and 20 pm. respectively. 
The total gate oxide capacitance for this example is then 

C,,,r = (6.28 x I0-')(2 x 10-"(20 x 10 .') = 0.025 x F = 0.025 pF 

The total oxide capacitance in a typical MOS device is quite small. 
The same typc of ideal C-V characteristics are obtained for an MOS capacitor 

with an n-type subsrrate by changing the sign of the voltage axis. The accumulation 
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inversion Accumulation 

Moderate 
inversion 

Figure 11.28 1 Ideal low-frequency capacitance versus gate 

I voltage of an MOS capacitor with an n-type substrate. 

condition is obtained for a positive gate bias and the inversion condition is obtained 
for a negative gate bias. This ideal curve is shown in Figure 11.28. 

I 11.2.2 Frequency Effects 

Figure 11.26a showed the MOS capacitor with a p-type substrate and biased in the 
inversion condition. We have argued that a differential change in the capacitor volt- 1 age in the ideal case causes a differential change in the inversion layer charge den- 

i sity. However, we must consider the source of electrons that produces a change in the 
inversion charge density. 

There are two sources of electrons that can change the charge density of the 
inversion layer. The first source is by diffusion of minority carrier electrons from the 
p-type substrate across the space charge region. This diffusion process is the same 
as that in a reverse-biased pn junction that generates the ideal reverse saturation 
current. The second source of electrons is by thermal generation of electron-hole 
pairs within the space charge region. This process is again the same as that in a 
reverse-biased pn junction generating the reverse-biased generation current. Both of 
these processes generate electrons at a particular rate. The electron concentration in 
the inversion layer. then, cannot change instantaneously. If the ac voltage across the 
MOS capacitor changes rapidly, the change in the inversion layer charge will not be 
able to respond. The C-Vcharacteristics will then be a function of the frequency of 
the ac signal used to measure the capacitance. 

In the limit of a very high frequency, the inversion layer charge will not respond 
to a differential change in capacitor voltage. Figure 11.29 shows the charge distribu- 
tion in the MOS capacitor with ap-type substrate. At a high-signal frequency, the dif- 
ferential change in charge occurs at the metal and in the space charge width in the 
semiconductor. The capacitance of the MOS capacitor is then Ck,,, which we dis- 
cussed earlien 

The high-frequency and low-frequency limits of the C-V characteristics are 
shown in Figure 11.30. In general, high frequency corresponds to a value on the order 
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Metal Oxide p-type \erniconductor 
I I 

Figure 11.29 I Dirfersntial charge distribution at inversion 
for a high-frequency differenlial change in gate valtage. 
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Figure 11.30 I Low-frequency and high-frequency capacitance 
versus gate voltage of an MOS capacitor with  a p-type substrate. 

of 1 MHz and low frequency correspond5 to values in the range of 5 to 100 Hz. Typ- 
ically, the high-frequency characteristics of the MOS capacitor are measured. 

11.2.3 Fixed Oxide and Interface Charge Effects 

In a11 of the discussion concerning C-Vcharacteristics so far, we have assumed an ideal 
oxide in which there are no fixed oxide or oxide-semiconductor interface charges. 
These two types of charge5 will change the C-Vcharacteristics. 

We previously discussed how the fixed oxide charge affects the threshold volt- 
age. This charge will also affect the flat-band voltage. The fiat-band voltage from 



Equation ( I  1.21) was given by 

where Q:, is the equivalent fixed oxide charge and m,,,, is the metal-semiconductor 
work function difference. The flat-band voltage shifts to more negative voltages for 
a positive lixed oxide charge. Since the oxide charge is not a function of gate voltage, 
the curves show a parallel shift with oxide charge. and the shape of the C-V curves 
remains the same as the ideal characteristics. Figure 1 I .3 1 shows the high-frequency 
characteristics of an MOS capacitor with a p-type substrate for several values of 
tixed positive oxide charge. 

The C-V characteristics can be used to determine the equivalent fixed oxide 
charge. For agiven MOS structure, @,,,, and C,, are known, so the ideal flat-band volt- 
age and flat-band capacitance can be calculated. The experimental value of flat-band 
voltage can be measured from the C-V curve and the value of fixed oxide charge can 
then be determined. The C-V measurements are a valuable diagnostic tool to charac- 
terize an MOS device. This characteriration is esl~ecially useful in the study of radia- 
tion effects on MOS devices, for example, which we will discuss in the next chapter. 

We first encountered oxide-semiconductor interfdce states in Chapter 9 in the 
discussion of Schottky barrier diodes. Figure 11.32 shows the energy-band diagram 
of a semiconductor at the oxide-semiconductor intertice. The periodic nature of the 
semiconductor is abruptly terminated :it the interface so that allowed electronic 
energy levels will exist within the forbidden handgap. These allowed energy states 
are referred to as interface states. Charge can flow between the semiconductor and 
interface states, in contrast to the fixed oxide charge. The net charge in these interface 
states is a function of the position of the Fermi level in the handgap. 

In general, acceptor states exist in the upper half of the bandgap and donor states 
exist in the lower half of the bandgap. An acceptor state is neutral if the Femi  level 

kigure 11.31 1 High-frequency capacitance versus gale 
vt~ltage of an MOS capacitor with a p-type substrate 
for several values of effective trapped oxide charge. 

.\ccrptor stares 
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ii 

states Donor ilatei 

4 

Figure 11.32 1 Schematic diagram 
showing interface states at the  oxide^ 
semiconductor interface. 
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is below the state, and becomes negatively charged if the Fermi level is above the 
state. A donor state is neutral if the Fermi level is above the state and becomes posi- 
tively charged if the Fermi level is below the state. The charge of the interface states 
is then a function of the gate voltage applied across the MOS capacitor. 

Figure 1 1  .%a shows the energy-band diagram in a p-type semiconductor of an 
MOS capacitor biased in the accumulation condition. In this case, there is a net pos- 
itive charge trapped i n  the donor states. Now let the gate voltage change to produce 
the energy-band diagram shown in Figure 11.33h. The Fermi level corresponds to 
the intrinsic Fermi level at the surface; thus, all interface states are neutral. This 

Neutral 
acceptors 

, - - -________________-- - - - -  
Neu,ral ( 

- - - - - - - - - - - - - - - - - - EF 
donors E" 

acceptors { , *-- 
- , - - - - - - - - - - - - - - - E  

Negatiic 
acceptor, 

Neutral 
donors 

Figure 11.33 1 Energy-band diagram in a p-type serni- 
conductor showing the charge trapped in the interface states 
when the MOS capacitor is biased (a) i n  accumulation, 
(b) at midgap, and (cJ at inversion. 
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ilitrrfacr hlidsap 
states 

Figure 11.34 1 High-frequency C-Vcharacteristics of an 
MOS capacitor showing effects of interface states. 

particular bias condition is known as midgop Figure 1 1 . 3 3 ~  shows the condition at 
inversion in which there is now a net negative charge in the acceptor states. 

The net charge in the interface states changes from positive to negative as the 
gate ~o l t age  sweeps from the accumulation, depletion, to the inversion condition. We 
noted that the C-Vcurves shifled in the negative gate voltage direction due to posi- 
tive fixed oxide charge. When interface states are present, the amount and direction 
of the shift changes as we sweep through the gate voltage, since the amount and sign 
of the interface trapped charge changes. The C-Vcurves now become "smeared out" 
as shown in Figure 1 1.34. 

Again, the C-Vmeasurements can be used as a diagnostic tool in semiconductor 
device process control. For a given MOS device, the ideal C-V curve can be deter- 
mined. Any "smearing out" in the experimental curve indicates the presence of in- 
terface states and any parallel shift indicates the presence of fixed oxide charge. The 
anrl~unt of smearing out can be used to determine the density of interfilce states. 
These types of measurement are extremely useful in the study of radiation effects on 
MOS devices, which we will consider in the next chapter. 

11.3 1 THE BASIC MOSFET OPERATION 
The current in an MOS field-effect transistor is due to the flow of charge in the inver- 
sion layer or channel region ad,jacent to the oxide-semiconductor interface. We have 
discussed the creation of the inversion layer charge in enhancement-type MOS ca- 
pacitors. We may 3150 have depletion-type devices in  which a channel already exists 
at 7ero gate voltage. 

11.3.1 MOSFET Structures 
/ There are four basic MOSFET device types. Figure 11.35 shows an n-channel 

enhancement mode MOSFET. Implicit in the enhancement mode notation is the idea 
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that the semiconductor substrate is not inverted directly under the oxide with zerogate 
voltage. Apositive gate voltage induces the electroil inversion layer, which then "con- ! 
nects" the n-type source and the n-type drain regions. The source terminal is the source 1 
of carriers that flow through the channel to the drain terminal. For this n-channel de-: 
vice, electrons flow from the source to the drain so the conventional current will cnter; 
the drain and leave the source. The conventional circuit symbol for this n-channel/ 
enhancement mode device is also shown in this figure. 

Figure 11.36 shows an n-channel depletion mode MOSFET. An n-channel re- 
gion exists under the oxide with zero volts applied to the gate. However, we have; 
shown that the threshold voltage of an MOS device with a p-type substrate may be: 

Snurcc (S) Gate (C)  Drain ID) 

? ? ? D 

- 
Subsliatr ut 

body (B) 

Figure 11.35 1 Cross section and circuit symbol for an 
n-channel enhancement-mode MOSFET. 

Source (S) Gate IG) Drain (Dl 

& 
Bod) IB) 

Figure 11.36 1 Cross sectiun and circuit symbol for an 
n-channel depletion-mode MOSFET. 
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negative; this means that an electron inversion layer already exists with zero gate 
voltage applied. Such a device is also considered to be a depletion mode device. The 
n-channel shown in this figure can be an electron inversion layer or an intentionally 
doped n-region. The conventional circuit symbol for the n-channel depletion mode 
MOSFET is also shown in the tigure. 

Figures 11.37a and 11.37h show a p-channel enhancement mode MOSFET and a 
p-channel depletion mode MOSFET. In the p-channel enhancement mode device, a 
negative gate voltage must he applied to create an inversion layer of holes that will 
"connect" thep-type source and drain regions. Holes flow from the source to the drain, 
so the conventional current will enter the source and leave the drain. A p-channel 
region exists in the depletion mode device even with zero gate voltage. The conven- 
tional circuit symbols are shown in the figure. 

Source (SJ Gate (GI Drain (Dl 
Q Q 

6 
Body (9) 

(a) 

Source (S) Gate ( G )  Drain (D) 
Q ? Q 

Figure 11.37 1 Cross section and circuit symbol for (a) a p-chanrlel en- 
hancement mode MOSFET and (b) a p-channel depletio~l rnode MOSFET 
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11.3.2 Current-Voltage Relationship-Concepts 

Figure 1 I .38a shows an n-channel enhancement mode MOSFET with a gate- 
source voltage that is less than the threshold voltage and with only a very srn 
drain-to-source voltage. The source and substrate, or body, terminals are held 
ground potential. With this bias configuration, there is no electron inversion lay 
the drain-to-substrate pn junction is reverse biased, and the drain current is zero (di 
regarding pn junction leakage currents). 

Figure 11.38b shows the same MOSFET with an applied gate voltage such 
Vr;s > VT. An electron inversion layer has been created so that, when a small dr 
voltage is applied, the electrons in the inversion layer will Row from the source to 
positive drain terminal. The conventional current enters the drain terminal and leav 
the source terminal. In this ideal case, there is no current through the oxide to the ga 
terminal. 

For small V r ~ s  values, the channel region has the characteristics of a resistor, 
we can write 

where g d  is defined as the channel conductance in the limit as VfIs -t 0. The chann 
conductance is given by 

where w,, is the mobility of the electrons in the inversion layer and / Q:, 1 is the magI 
nitude of the inversion layer charge per unit area. The inversion layer charge is a 
function of the gate voltage; thus, the basic MOS transistor action is the modulation 
of the channel conductance by the gate voltage. The channel conductance. in t u .  
determines the drain current. We will initially assume that the mobility is aconstanc; 
we will discuss mobility effects and variations in the next chapter. 

Figure 11.38 1 The n-channel enhancement mode MOSFET (a) with an applied gate voltage Vc5 < V T ,  and (b) with an 
applied gate voltage VG5 > V,. 
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The i n  versus Vlls characteristics, for small values of VoS, are shown in Fig- 
ure 11.39. When VGs c VT, the drain current is zero. As VGS becomes larger than 
VT, channel inversion charge density increases, which increases the channel con- 
ductance. A larger value of g, produces a largcr initial slope of the ID versus VDS 
characteristic as shown in the figure. 

Figure 11.40a shows the basic MOS structure for the case when Vcs > V, and 
the applied VnS voltage is small. The thickness of the inversion channel layer in the 
figure qualitatively indicates the relative charge density, which is essentially constant 
along the entire channel length for this case. The corresponding In versus V11.i curve 
is shown in the figure. 

Figure 1 1.40b shows the situation when the Vos value increases. As the drain volt- 
age increases, the voltage drop across the oxide near the drain terminal decreases, 
which means that the induced inversion charge density near the drain also decreases. 
The incremental conductance of the channel at the drain decreases, which then means 
that the slope of the ID versus VDs curve will decrease. This effect is shown in the 
In versus VDS curve in the figure. 

When VDs increases to the point where the potential drop across the oxide at the 
drain terminal is equal to VT, the induced inversion charge density is zero at the drain 
terminal. This effect is schematically shown in Figure 11 40c. At this point, the in- 
cremental conductance at the drain is zero, which means that the slope of the I,, ver- 
sus Vns curve is zero. We can write 

VGS - V ~ ~ ( s a t )  = VT (1 1.39a) 

or 

where Vns(sat) is the drain-to-source voltage producing zero inversion charge den- 
sity at the drain terminal. 

Figure 11.39 1 I ,  versus Vns charac 
teristics for small values of V D S  at 
three VGs voltages. 



Depletlun 
reglo" 

v... 

OxlJr 

Channel 

Figure 11.40 1 Cmss section and l o  versus VZ,S curve when V c S  c V ,  fo,r(a) asmall  V,, 
value, (b) a larger VDS value, (c) a value of Vns = V[,/(sat), and (d) a value of VDs > VDs(sal). 
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When VDs becomes larger than the Vlls(sat) value, the point in the channel at 
which the inversion charge is just zero moves toward the source lerminal. In this 
case, electrons enter the channel at the source, travel through the channel toward the 
drain, and then, at the point where the charge goes to zero, the electrons are injected 
into the space charge region where they are swept hy the E-field to the drain contact. 
If we assume that the change in channel length AL is small compared to the original 
length L ,  then the drain current will be a constant for VDS > V~,(sat). The region of 
the ID versus V D ~  characteristic is referred to as the saturrrtion region. Figure 11.40d 
shows this region of operation. 

When VGs changes, the I,, versus Vr,s curve will change. We saw that. if VGs 
increases, the initial slope of ID versus V,I~ increases. We can also note from 
Equation (1 1.39b) that the value of Vm(sat) is a function of VGS. We can generate 
the family of curves for this n-channel enhancement mode MOSFET as shown in 
Figure 11.41. 

Figure 11.42 shows an n-channel depletion mode MOSFET. If the n-channel 
region is actually an induced electron inversion layer created by the metal- 
semiconductor work function difference and fixed charge in the oxide, the current- 
voltage characteristics are exactly the same as we have discussed, except that VT 
is a negative quantity. We may also consider the case when the n-channel region is 
actually an n-type semiconductor region. In this type of device, a negative gate 
voltage will induce a space charge region under the oxide, reducing the thickness 
of the n-channel region. The reduced thickness decreases the channel conductance, 
which reduces the drain current. A positive gate voltage will create an electron ac- 
cumulation layer, which increases the drain current. One basic requirement for this 
device is that the channel thickness I, must be less than the maximum induced 
space charge width in order to be able to turn the device off. The general In ver- 
sus i.'~s family of curves for an n-channel depletion mode MOSFET is shown in 
Figure 11.43. 

B 
Figure 11.41 I Family of I,, versus V,,.? 
curves fbr an n-channel enhancrment- Figure 11.42 1 Cross section of an 
mods MOSFET. n-channel depletion-mode MOSFET, 
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Figure 11.43 1 Family 01 I,, versus V D Y  
curves for an n-channel depletion-mode 
MOSFET. 

In the next section we will derive the ideal current-voltage relation for then- 
channel MOSFET. In the nonsaturation region, we will obtain 

WFr> Cur 
I D  = - 

2L 
[ 2 ( ~ t i s  - VT)V,IS - v&] 

and, in the saturation region, we will have 

I D  = -- (VGS - V T )  (11.41) 

The operation of a p-channel device is the same as that of the n-channel device. 
except the charge carrier is the hole and the conventional current direction and volt- 
age polarities are reversed. 

"11.3.3 Current-Voltage Relationship-Mathematical Derivation 

In the previous section, we qualitatively discussed the current-voltage characteris. 
tics. In this section, we will derive the ~nathematical relation between the drain cur- 
rent, the gate-to-source voltage, and the drain-to-source voltage. Figure 11.44 shows 
the geometry of the device that we will use in this derivation. 

In this analysis, we will make the following assumptions: 

1. The current in the channel is due to drift rather than diffusion. 

2. There is no current through the gate oxide. 

3. A gradual channel approximation is used in which aE?/ay >> aE.,/ax. 
This approximation means that Ex is essentially a constant. 

4. Any fixed oxide charge is an equivalent charge density at the oxide- 
semiconductor interface. 

5.  The carrier mobility in the channel is constant. 
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I 
Channel 

reglo" 

Figure 11.44 I Geometry of a MOSFET for I , ,  versus V D S  
derivation. 

We start the analysis with  ohm‘^ law, whlch can be written as 

where a is the channel conductivity and E, is the electric tield along the channel 
created by the drain-to-source voltage. The channel conductivity is given by a = 
e @ , , n ( y )  where I*, is the electron mobility and n(y) is the electron concentration in 
the inversion layer. 

The total channel current is found by integrating .I, over the cross-sectional area 
in they- and z-directions. Then 

We may write that 

where Q; is the inversion layer charge per unit area and is a negative quantity for this 
case. 

Equation (1 1.43) then becomes 

where Wis the channel width, the result of integrating over z .  
Two concepts we will use in the current-voltage derivation are charge neutrality 

and Gauss's law. Figure 11.45 shows the charge densities through the device for 
VGs > V T .  The charges are all given in terms of charge per unit area. Using the 
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Metal I Oxide / p-type semiconductor 

Oxid~Sem~conductor F~eld~Effect Transistor 

I I lnversiun/ 1 
layer charge Q,', 

Figure 11.45 1 Charge distribution in the 
n-channel enhancement mode MOSFET Figure 11.46 1 Geometry for applying 
for V,, > V , .  Gauss's law. 

concept of charge neutrality, we can write 

Qk + Q:, + Q:, + QiD(max) = 0 (11. 

The inversion layer charge and induced space charge w ~ l l  be negatlve for this 
channel device. 

Gauss's law can be wntten as 

FE,, CIS = Q r  (11.47) 

where the integral is over a closed surface. Qr is the total charge enclosed by the sur- 
face, and E,, is the outward directed normal component of the electric field crossing 
the surface S. Gauss's law will he applied to the surface defined in Figure 11.46. 
Since the surface must he enclosed, we must take into account the two end surfaces 
in the r-y plane. However, there is no i-component of the electric field so these two 
end surfaces do not contribute to the integral of Equation (1 1.47). 

Now consider the surfaces labeled 1 and 2 in Figure 11.46. From the gradual 
channel approximation, we will assume that E,is essentially a constant along the 
channel length. This assumption means that E, into surface 2 is the same as E, out of 
surface I .  Since the integral in Equation (1 1.47) involves the outward component of 
the E-field, the contributions of surfaces I and 2 cancel each other. Surface 3 is in the 
neutral p-region, so the electric field is zero at this surface. 

Surface 4 is the only surface that contributes to Equation ( 1  1.47). Taking into ac- 
count the direction of the electric field in the oxide, Equation (1  1.47) becomes 
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where to, is the permittivity of the oxide. The total charge enclosed is 

Combining Equations (11.48) and (1 I .49), we have 

We now need an expression for E,,. Figure 1 1.4721 shows the oxide and channel. 
We will assume that the source is at ground potential. The voltage V, is the potential 
in the channel at a point x along thc channel length. The potential difference across 
the oxide at x is a function of VGS. Vi, and the metal-semiconductor work function 
difference. 

The energy-band diagram through the MOS structure at point x is shown in Fig- 
ure 11.47b. The Fermi level in the p-type semiconductor is EF,, and the Fermi level 
in the metal is Eb,, . We have 

Considering the potential harriers, we can write 

which can a150 be wrltten as 

VGS - V, = VOx + 2$+Jfif,, + bm5 (11.53) 

where $+J,,, is the metal-semiconductor work function difference, and 4, = 24jP for 
the inversion condition. 

The electric field in the oxide is 

Figure 11.47 1 (a) Potentials at a point x along the channel. (b) Energy-band diagram through the MOS 
structure at the polnt x. 



C H A P T E R  11 Fundamentals of the Metal-Oxide-Semiconductor Field-Effect Transstor 

Combining Equations ( I  l.50), ( I  1.53). and (1 1.54). we find that 

€"X 
-toxEox = [ ( V c s  - V,) - (@,,?.% + 2@j,,Jl 

tax 

= Q:, + Q:, + Q;,(max) (11.55) 

The inversion charge density, Q:,, from Equation (1 1.55) can he substituted in 
Equation (1 1.45) and we obtain 

d Vx 
= t i  v,) VT] (11.5 

d r  

where E, = -dV,/dx and VT is the threshold voltage defined by Equation ( 1  1.27). 
We can now integrate Equation ( 1  1.56) over the length of the channel. We have; 

We are assuming a constant mobility p,. For the n-channel device, the drain current 
enters the drain terminal and is a constant along the entire channel length. Letting 
ID = I , ,  Equation (1 1.57) becomes 

I 
I 

Equation (I I .58) is valid for V(;s 2 VT and for 0 5 VDS 5 VD~-(sat). 1 
Figure 11.48 shows plots of Equation (I 1.58) as a function of VI,.~ for several 

values of V,,. We can find the value of Vr~s at the peak current value from 
aI,/aViI, = 0. Then, using Equation (1 1.58), the peak current occurs when 

VD5 = V,, - VT (1 1.59) 

This value of Vlls is just V,~~(sat) ,  the point at which saturation occurs. For Vns > 
V,~(sat), the ideal drain current is a constant and is equal to 

Figure 11.48 1 Plots of 1" versus V,II 
from Equation ( I  1.58) .  
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Using Equatiorl (1 1.59) for V~s(sa t ) ,  Equation ( I  1.60) becomes 

Equation (11.58) is the ideal current-voltage relationship of the n-channel 
MOSFET in the nonsaturation region for 0 V,,s 5 VDs(sat), and Equation (1 1.61) 
is the ideal current-voltage relationship of the n-channel MOSFET in the saturation 
region for VDs 2 VDs(sat). These I-V expressions were explicitly derived for an 
n-channel enhancement mode device. However, these same equations apply to an 
n-channel depletion mode MOSFET in which the threshold voltage VT is a negative 
quantity. 

Objective I DESIGN 
EXAMPLE 11.8 

To design the width of a lLlOSFET such that a specified currrnt is induced for a given applied 
- 

bias. z$& 
Consider an ideal n-channel MOSFET with parameters L = 1.25 pm, p,, = 650cm2N-s. - - 

C,, = 6.9 x ~lcm' .  and Vi = 0.65 V Design the channel width W  such that I,(sat) = 

4 m.4 for V,, = 5 V. 

H Solution 
We have, from Equation (I 1.61) 

Wp,, GX ID (sat) = -- 
2 L  

(VGS - 

Then 

W  = 11.8/rm 

H Comment 
The current capability of a MOSFET is directly proportional to the channel width W. The cur- 
rent handling capability can be increased by increasing W. 

TEST YOUR UNDERSTANDING 1 
E11.13 The parameters of an n-channel MOSFET are p, = 650 cm'N-s. I,, = 200 A, 

W I L  = 50, and V, = 0.40 V. If the transistor is biased in the saturation region, 
find the drain current for ITGs = I, 2, and 1 V. (V" 61 PUB '61'1 '10'1 = "I 'suV) 

E11.14 The n-channel MOSFET in E11.13 is to be redesigned by changing the W I L  ratio 
such that ID = 100,rA when the transistor is biased in the saturation region with 
V,, = 1.75 V. ( 9 ~ 6 0  = I / M  ' ~ u v )  
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, Very small Vijs 

r; 
+ I, 

Figure 11.49 1 (a) ID versus Vi. (for \mall VrjS ) for enhancement mode MOSFET. 
(b)  Idzal Jf;; versus VG5 i n  saturation region for enhancement mode (curve A) and 
depletion mode (curve 6)  n-channel MOSFETs. 

We can use the I-V relations to experimentally determine the mobility 
threshold voltage parameters. From Equation ( 1  I.%), we can write, for very sm 
values of V,)s, 

WP,, c o x  
I D  = - 

L 
(Vcs - Vi)Vr)s 

Figure 1 1.49a shows a plot of Equation ( I  I .62a) as a function of Vtis for constant Vo 
A straight line is fitted through the points. The deviation from the straight line at lo 
values of Vti, is due to subthreshold conduction and the deviation at higher values 
VGS is due to mobility being afunctionof gate voltage. Both of these effects will bec 
sidered in the next chapter. The extrapolation of the straight line to zero current giv 
the threshold voltage and the slope is proportional to the inversion carrier mobility. 

If we take the square root of Equation (I 1.61). we obtain 

Figure I I .49b is a plot of Equation ( I  1.62b). In the ideal case, we can obtain the same 
information from both curves. However, ah we will see in the next chapter. the thresh- 
oldvoltage may be afunction of VDS in short-channel devices. Since Equation (I I .62b) 
applies to devices biased in the saturation region. the V, parameter in this equation may 1 
differ from the extrapolated value determined in Figure 11.49a. In general, the nonsat- " 1 
uration current-voltagc characteristics will produce the more reliable data. 

EXAMPLE 11.9 I Objective 

To determine the inversion carrier mobility from expcrimcntal results. 
Consider an n-channcl MOSFET with W = IS pm, L = 2 urn. and C,,, = 6.9 x 
Flcm'. Assume that the drain current in the nonsaturation region for VIjs = 0.10 V is 

I, = 35 { ~ A a t  V , ,  = 1.5 V and I , ,  = 75 pAat VCjs = 2.5 V. 
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I Solution 
Fmm Equatlon ( I  I 62a). we can wrlte 

1 Wppr cclx 
I"> - I" ,  = ---- 

L 
(VG,, - V<,<lJV,>5 

so that 

I 75 x 10-" - 35 x I0 = p,,(6.Y x 10 '~(2 .5-  I.SJ(0.10J 

which yields 

p,, = 773 c m ? / ~ - s  

We can then determine 

V, = 0.625 V 

I Comment 
The mobility of carriers in the inversion layer is less than that in the bulk scrniconducr~r due 
to the surface scattering effect. We will discuss this effect in the next chapter. 

The current-voltage relationship of a p-channel device can be obtained by the 
same type of analysis. Figure 11.50 shows a p-channel enhancement mode MOSFET. 
The voltage polarities and current direction are the reverse of those in the 
n-channel device. We may note the change in the subscript notation for this device. 
For the current direction shown in the figure, the 1-V relations for the p-channel 
MOSFET are 

Figure 11.50 1 Cros~ section and bias 
configuration for a p-channel 
enhancement-mode MOSFET. 



C H A P T E R  11 Fundamentals of the Metal-Oxide-Semiconductor Field-Effect 

for 0 5 VSD 5 V.i~(sat), and 

for Vso > Vso(sat), where 

Note the change in the sign in front of VT and note that the mobility is now the mo- 

bility of the holes in the hole inversion layer charge. Keep in mind that V, is neg 
tive for a p-channel enhancement mode MOSFET and positive for a depletion m 
p-channel device. 

TEST YOUR UNDERSTANDING 1 
E11.15 The parameters of a p-channel MOSFET are p, = 3 10 cm'N-s, r,, = 220A, 

W / L  = 60. and VT = 0 . 4 0  V. If the transistor is biased in the saturation regi 
find the drain current for Vsc = 1 .  1.5. and 2 V. 
(VUPL'E PuQ LEI '9ZS'O = ' I  'sub') 

E11.16 The p-channel MOSFET in E11.15 is to be redesigned by changing the ( W I L )  
ratio such that I D  = 200 pA when the transistor is biased in the saturation region 
with Vs, = 1.25 V. (P' l l = 7 / ~  ' s u ~ )  

One assumption we made in the derivation of the current-voltage relationshid 
was that the charge neutrality condition given by Equation (1  1.46) was valid over the 
entire length of the channel. We implicitly assumed that Q;l,(max) was constan 
along the length of the channel. The space charge width, however, varies betwee 4 
source and drain due to the drain-to-source voltage; it is widest at the drain whea 
VDs > 0. Achange in the space charge density along the channel length must be bal- 
anced by a corresponding change in the inversion layer charge. An increase in the 
space charge width means that the inversion layer charge is reduced, implying that 
the drain current and drain-to-source saturation voltage are less than the ideal values. 
The actual saturation drain current may be as much as 20 percent less than the pre- 
dicted value due to this bulk charge effect. 1 
11.3.4 Transconductance 1 
The MOSFET transconductance is defined as the change in drain current with respect 
to the corresponding change in gate voltage, or 

The transconductance is sometimes referred to as the transistor gain. 
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If we consider an n-channel MOSFET operating in the nonsaturation region, 
thm. using Equation ( I  1.58). we have 

Thc transconductance increases linearly with V,, hut is independent of Vc, in the 
nonsaturation region. 

The I-V characteristics of an n-channel MOSFET in the saturation region were 
gibcn by Equation (I 1.6 I). The transconductance i n  this region of operation is given by 

In the saturation region, the transconductance is a linear function of V,;, and is inde- 
pendent of VDs.  

The transconductance is a function of the geometry of the device as well as of 
canier mobility and threshold voltage. The transconductance increases as the width 
of the dev~ce increases, and it also increases as the channel length and oxide rhick- 
ners decrease. In the design of MOSFET circuits, the sire of the transistor. in partic- 
ular the channel width W. is an important engineering design parameter. 

11.3.5 Substrate Bias Effects 

In all of our analyses so far, the substrate, or hody, has been connected to the source 
and held at ground potential. In MOSFET circuits. thc source and hody may not he 
at the same potential. Figure 11.51a shows an n-channel MOSFET and the associated 
douhle-subscripted voltage variahles. The source-to-substrate pn junction must al- 
ways he Lero or reverse biased, so V.YH must alwayh he greeter than or equal to zero. 

If V.SH = 0. threshold is defined as the condition when @, = 24,, as we 
dircussed previou~ly and as shown i n  Figure 11.5lh. When VSn > O the surface will 
still try to invert when @, = 24,.,,. However, these electrons ;ire at a higher potential 

Figure 11.51 1 (a)  Applied voltages on an n-channel MOSFET (b) Encrgy-band diagram at inversion 
point when V , ,  = 0. ( r )  Enerpy-hand diagram at inversion point when VT8 > 0 is applied. 
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energy than are the electrons in the source. The newly created electrons will mov? 
laterally and Row out of the source terminal. When @, = 2@f,, + Vsa. the surf 
reaches an equilibrium inversion condition. The energy-band diagram for this con 
tion is shown in Figure 11.5 lc. The curve represented as EFn  is the Fermi level fr 

contact. 

4 
the p substrate through the reverse-biased source-substrate junction to the source 

The space charge region width under the oxide increases from the original xdi  

value when a reverse-biased source-substrate junction voltage is applied. With an 

applied Vsa > 0, there is more charge associated with this region. Considering the 
charge neutrality condition through the MOS structure, the positive charge on the top 
metal gate must increase to compensate for the increased negative space charge in 
order to reach the threshold inversion point. So when Vs ,  > 0, the threshold voltage 
of the n-channel MOSFET increases. 

When Vsa = 0, we had 

Q;,(rnax) = -eNox,, = -J2e<,~,(24,,) (1 1.69) 

When Vse > 0, the space charge width increases and we now have 

Q>, = -eN,xd = -,/2e<,~,,(2@~,, + V S B )  (1 1.70) 

The change in the space charge density is then 

To reach the threshold condition, the applied gate voltage must be increased. The 
change in threshold voltage can be written as '¶ 

where AVr = V T ( V , ~ ,  > 0) - V T ( V S B  = 0). We may note that Vss must alwaysbe 
positive so that, for the n-channel device, AVT is always positive. The threshold volt- 
age of the n-channel MOSFET will increase as a function of the source-substrate 
junction voltage. 

EXbMPLE 11.10 1 Objective 

To calculate the change in the threshold voltage due to an applied source-to-body voltage. 
Consider an n-channel silicon MOSFET at T = 300 K. Assume the substrate is doped to 

N, = 3 x 1016 cm-3 and assume the oxide is silicon dioxide with a thickness of r,, = 500 A. 
Let V,, = I V. 

Solution 
We can calculate that 
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v,, (volts) + 
Figure 11.52 1 Plots of Jfl; versus 
V,, at several values of Vra for an 
n-channel MOSFET. 

We can also find 

t,, (3.9j(8.85 x lo-") 
Cox = - = = 6.9 x I K X  ~lcrn' 

10, 500 x 

Then from Equation ( I  1.72). we can obtain 

Comment 
Figure 11.52 shows plots of versus Vcs for various values of applied V S B .  The orig- 
inal threshold voltage, VTo, is 0.64 V. 

If a body or substrate bias is applied to a p-channel device, the threshold voltage 
is shifted to more negative values. Because the threshold voltage of a p-channel en- 
hancement mode MOSFET is negative, a body voltage will increase the applied neg- 
ative gate voltage required to create inversion. The same general observation was 
made for the n-channel MOSFET. 

TEST YOUR UNDERSTANDING 1 
E11.17 A silicon MOS device has the following parameters: No = los6 crn-' and 

r,, = 200A. Calculate (a )  the body-effect coefficient and (bj the change in 
threshold voltage for ( i )  Vr, = 1 V and (ii) V.Y, = 2V. 
rA69Z.0 = 'AV (?!I 'A 9EI'O = 'itV (?) (4) ' z l i ~  EEEO = A ("1 ' 8 ~ ~ 1  
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E11.18 Repeat exercise El 1.17 for a substrate impurity doping concentration of No = 
10" cm ' .  LA 8880'0 = 'AV (!!I 'A ZSOO = 'AV (!) (9) ';/,A 501'0 = A ("1 ' S  

11.4 1 FREQUENCY LIMITATIONS 1 
In many applications, the MOSFET is used in a linear amplifier circuit. A small-sig 
equivalent circuit for the MOSFET is needed in order to mathematically analyze 
electronic circuit. The equivalent circuit contains capacitances and resistances 
introduce frequency effects. We will initially develop a small-signal equivalent circ 
and then discuss the physical factors that limit the frequency response of 
MOSFET. A transistor cutoff frequency, which is a figure of merit, will then be defin 
and an expression derived for this factor. 

11.4.1 Small-Signal Equivalent Circuit 1 
The small-signal equivalent circuit of the MOSFET is constructed from the basi 
MOSFET geometry. A model based on the inherent capacitances and resistan 
within the transistor structure, along with elements that represent the basic de 
equations, is shown in Figure 11.53. One simplifying assunlption we will makein 
equivalent circuit is that the source and substrate are both tied to ground potential. 

Two of the capacitances connected to the gate are inherent in the device. The 
capacitances are C,, and Cgd,  which represent the interaction between the gate an 
the channel charge near the source and drain terminals, respectively. The remain' 
two gate capacitances, Cp,, and CS+, are parasitic or overlap capacitances. In r 
devices, the gate oxide will overlap the source and drain contacts because of to 
ance or fabrication factors. As we will see, the drain overlap capacitance-Csdp. 
particular-will lower the frequency response of the device. The parameter Cd., is 

Figure 11.53 1 Inherent resistances and capacitances in the 
n-channel MOSFET structure. I 
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drain-to-substrate pn junction capacitance, and r, and r,j are the series resistances as- 
sociated with the source and drain terminals. The small-signal channel current is con- 
trolled by the internal gate-to-source voltage through the transconductance. 

The small-signal equivalent circuit for the n-channel common-source MOSFET 
is shown in Figure 11.54. The voltage VA:, is the internal gate-to-source voltage that 
controls the channel current. The parameters Csr7 and Cgdr are the total gate-to- 
source and total gate-to-drain capacitances. One parameter, rd,. shown in  Fig- 
ure 11.54, is not shown in Figure 11.53. This resistance is associated with the slope 
lo versus V D ~ .  In the ideal MOSFET biased in the saturation region, lo is indepen- 
dent of VDs so that rd, would be infinite. In short-channel-length devices, in particu- 
lar, r d ,  is finite because of channel length modulation, which we will consider in the 
next chapter. 

A simplified small-signal equivalent circuit valid at low frequency is shown in 
Figure 11.55. The series resistances, r ,  and r,,, have been neglected, so the drain cur- 
rent is essentially only a function of the gate-to-source voltage through the transcon- 
ductance. The input gate impedance is infinite in this simplified model. 

The source resistance r ,  can have a significant effect on the transistor character- 
istics. Figure 11.56 shows a simplified, low-frequency equivalent circuit including r,  
but neglecting rd,. The drain current is given by 

Figure 11.54 1 Small-signal equivalent circuit of a common- 
source n-channel MOSFET. 

Figure 11.55 1 Simplified, low-frequency 
~rnall-signal equivalent circuit of a 
common-source n-channel MOSFET. 
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Figure 11.56 I Simplified, low- 
frequency small-signal equivalent circuit 
of common-source n-channel MOSFET 
including source resistance r, 

and the relation between V,, and Vd, can be found from 

V,, = V,', +(~,.Vb.,)r., = (1 +g,,,r,)V,', (I  1.74) 

The drain current from Equation (I 1.73) can now be written as I 
The source resistance reduces the effective transconductance or transistor gain. 

The equivalent circuit of the p-channel MOSFET is exactly the same as that of 
the n-channel except that all voltage polarities and current directions are reversed. 
The same capacitances and resistances that are i n  the n-channel model apply to the 
p-channel model. 

11.4.2 Frequency Limitation Factors and CutotTFrequency 1 
There are two basic frequency limitation factors in the MOSFET. The first factor is , 
the channel transit time. If we assume that carriers are traveling at their saturation 
drift velocity u,,,, then the transit time is r, = Llu,,, where L is the channel length. 
If us,, = 10' cmls and L = I prn, then 7, = I0 ps, which translates into a maximum 
frequency of 100 GHz. This frequency is n~uch larger than the typical maximum fre- 1 
quency response of a MOSFET. The transit time of carriers through the channel is 
usually not the limiting factor in the frequency responses of MOSFETs. 

The second limiting factor is the gate or capacitance charging time. If we neglect 
r , ,  r d ,  r d , ,  and C d , .  the resulting equivalent small-signal circuit is shown in Fig- 
ure 11.57 where RL is a load resistance. 

The input gate impedance in this equivalent circuil is no longer infinite. Sum- 
ming currents at the input gate node, we have 1 
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- 
Figure 11.57 I High-frequency small- 
signal equivalent circuit of common- Figure 11.58 1 Small-signal equivalent 
source n-channel MOSFET. circuit including Miller capacitance. 

where I, is the input current. Likewise, summing currents at the output drain node, 
we have 

Combining Equations (1 1.76) and (I 1.77) to eliminate the voltage variable V,,, we 
can determine the input current as 

Normally, OJRLC,?,,T is much less than unity: therefore we may neglect the 
(~ORLC~, , , , )  term in the denominator. Equation (11.78) then simplities to 

Figure 11.58 shows theequivalent circuit with theequivalent input impedancede- 
scribed by Equation ( I  1.79). The parameter C M  is the Miller capacitance and is given by 

The serious effect of the drain overlap capacitance now becomes apparent. When the 
transistor is operating in the saturation region, C,?,, essentially becomes zero, but 
Cgdp is a constant. This parasitic capacitance is multiplied by the gain of the transis- 
tor and can become a significant factor in the input impedance. 

The cutoff frequency fr is defined to he the frequency at which the magnitude 
of the current gain of the device is unity, or when the magnitude of the input current 
Ii is equal to the ideal load current I,?. From Figure 11.58, we can see that 

1, = j ~ ( C , , r  + C M ) V ~ ,  (11.81) 

and the ideal load current is 

I,/ = w. v,, (11.82j 

The magnitude of the current gain is then 
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Setting the magnitude of the current gain equal to unity at the cutoff frequency, 
find 

g m  - - grn 
f r  = 

2 n ( C g s r + C ~ )  2 ~ C c  

where Cc is the equivalent input gate capacitance. 
In the ideal MOSFET, the overlap o r  parasitic capacitances, C,,, and Cgdp, 

tion (1 1.68) as 

Wwn c o x  
gn,., = - L (VGS - VT) 

Then, for this ideal case, the cutoff frequency is 

zero. Also, when the transistor is biased in the saturation region, Cgd approaches zero 
and C,, is approximately C,, WL. The transconductance of the ideal MOSFET bi- 
ased in the saturation region and assuming a constant mobility was given by Equa-, 

WiL,Cox 

- 
(VG" - v ~ )  p,(Vcs - VT) f r  = -- - (11.85)' I 

2nCc 2n(CoxWL) 2nL2 

EXAMPLE 11.11 ( Objective 

To calculate the cutoff frequency of an ideal MOSFET with a constant mobility. 
Assume that the electron mobility in an n-channel device is F,, = 400cm2/V-s and that 

the channel length is L = 4 urn. Also assume that VT = I V and let Vcs = 3 V. 

Solution 
From Equation ( 1  1.851, the cutoff frequency is I 

Comment 4 
In an actual MOSFET, the effect of the parasitic capacitance will substantially reduce the cut- 
off frequency from that calculated in thls example. 

( TEST YOUR UNDERSTANDING 

E11.19 An n-channel MOSFET has the following parameters: p, = 400 cm2N-s, tux = 
200 A, W I L  = 20. and Vr = 0.4 V. The transistor is biased at VGs = 2.5 V in the 
saturation region and is connected to an effective load of RL = 100 kQ. Calculate 
the ratio of Miller capacitance CM to gate-to-drain capacitance Cldi .  (262 'Sub') 

E11.20 An n-channel MOSFET has the same parameters as described in El 1.19. The 
channel length is L = 0.5 um. Determine the cutoff freauencv. ('H9 S'ES 'SUV) 
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"11.5 1 THE CMOS TECHNOLOGY 
The primary objective of this text is topresent the basic physics of semiconductormate- 
rials and devices without considering in detail the various fabrication processes; this 
important subject is left to other texts. However, there is one MOS technology that is 
usedextensively, for which the basic fabrication techniques must be considered in order 
tounderstand essential characteristics of these devices andcircuits. Theone MOS tech- 
nology we will consider briefly is the complementaly MOS, or CMOS, process. 

We have considered the physics of both n-channel and p-channel enhancement 
mode MOSFETs. Both devices are used in a CMOS inverter, which is the basis of 
CMOS digital logic circuits. The dc power dissipation in a digital circuit can he re- 
duced to very low levels by using a complementary p-channel and n-channel pair. 

It is necessary to form electrically isolated p- and n-substrate regions in an inte- 
grated circuit to accommodate the n- and p-channel transistors. The p-well process 
has been a commonly used technique for CMOS circuits. The process starts with a 
fairly low doped n-type silicon substrate in which the p-channel MOSFET will be 
fabricated. A diffused p-region, called a p well, is formed in which the n-channel 
MOSFET will be fabricated. In most cases. the p-type substrate doping level must be 
larger than the n-type substrate doping level to obtain the desired threshold voltages. 
The larger p doping can easily compensate the initial n doping to form the p well. A 
simplified cross section of the p-well CMOS structure is shown in Figure I1.59a. The 

Poly-Si gate- {Poiy~Si gate \ 

/Poly~Si gate- 

p o r n  aub\trats 

Figure 11.59 1 CMOS structures: (a) p well, (b) n well, and (c) twin well 
(Fmm E u r ~  /2//  1 
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p channel 

Input Output 

n channel 

- 
notation FOX stands for field oxide, which is a relatively thick oxide separating the 
devices. The field oxide prevents either the n or p substrate from becoming inverted 
and helps maintain isolation between the two devices. In practice, additional pro. 
cessing steps must he included; for example, providing connections so that thq 
p well and n suhstrate can be electrically connected to the appropriate voltages. Thd 
n substrate must always be at a higher potential than the p well; therefore, this pn 
junction will always be reverse biased. 

With ion implantation now being extensively used for threshold voltage control, 
both the n-well CMOS process and twin-well CMOS process can be used. The n-weU 
CMOS process, shown in Figure 11.59h. starls with an optimized p-type suhstrate 
that is used to form the n-channel MOSFETs. (The n-channel MOSFETs, in general, 
have superior characteristics, so this starting point should yield excellent n-channel 
devices.) The n well is then added, in which the p-channel devices are fahricated.The 
n-well doping can be controlled by ion implantation. 

The twin-well CMOS process, shown in Figure 11.59~. allows both thep-wellan 
n-well regions to be optimally doped to control the threshold voltage and transcon- 
ductance of each transistor. The twin-well process allows a higher packing density 
because of self-aligned channel stops. 

One major problem in CMOS circuits has been latch-up. Latch-up refers to a 
high-current, low-voltage condition that may occur in a four-layer pnpn structure. 
Figure 11.60a shows the circuit of aCMOS inverter and Figure 11.60b shows a simpli- 
fied integrated circuit layout of the inverter circuit. In the CMOS layout, thep+-source 
to n-substrate to p-well to n+-source forms such a four-layer structure. 

The equivalent circuit of this four-layer structure is shown in Figure 1 1  61.  The 
silicon controlled rectifier action involves the interaction of the parasitic pnp and npn 
transistors. The npn transistor corresponds to the vertical nt source top  well ton sub 
strate structure and the pnp transistor corresponds to the lateral p-well to n-substrate 
to pt-source structure. Under normal CMOS operation, both parasitic bipolar tran- 
sistors are cut off. However, under ceaain conditions, avalanche breakdown may 
occur in the p-well to n-substrate junction, driving both bipolar transistors into satu- 

.- 

Figure 11.60 1 (a) CMOS inverter circuit. (b) Simplified integrated circuit cross section of CMOS inverter. 

, 
ration. This high-current, low-voltage condition-latch-up-can sustain itself by/ 
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Figure 11.61 1 (a) The splitting of the basic pnpn structure. (b) The 
two-transistor equivalent circuit of the four-layered pnpn device. 

positive feedback. The condition can prevent the CMOS circuit from operating and 
can also cause permanent damage and hum-out of the circuit. 

Latch-up can be prevented if the product fi,,p,, is less than unity at all times, 
where /i,, and b,, are the common-emitter current gains of the npn and pnp parasitic 
bipolar transistors, respectively. One method of preventing latch-up is to "kill" the 
minority carrier lifetime. Minority carrier lifetime degradation can be accomplished 
by gold doping or neutron irradiation. either of which introduces deep traps within 
the semiconductor. The deep traps increase the excess minority carrier recombina- 
tion rate and reduce current gain. A second method of preventing latch-up is by using 
proper circuit layout techniques. If the two bipolar transistors can he effectively 
decoupled, then latch-up can be minimized or prevented. The two parasitic bipolar 
transistors can also be decoupled by using a different fabrication technology. The 
silicon-on-insulator technology, for example, allows the n-channel and the p-channel 
MOSFETs to be isolated from each other by an insulator. This isolation decouples the 
parasitic bipolar transistors. 

11.6 1 SUMMARY 
I The fundamental physics and characteristics of the metalkoxide-semiconductor field- 

effect transistor (MOSFET) have been considered in this chapter 
I The heart u i  the MOSFET is thc MOS capacitor. The energy hands in the semiconductor 

adjacent to the oxide-semiconductor interface bend, depending upon the voltage applied 
across the MOS capacitor. The position of the conduction and valence bands relative to 
the Fermi level at the surface is a function of the MOS capacitor voltage. 

I The semiconductor surface at the oxide-semiconductor interface can be inverted from 
p type ton type by applying a positive gate voltage, or from n type top type by applying 
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a negative gate voltage. Thus, an inverslol~ layer o f  mobile charge can be created 
adjacent to the oxide. The basic MOS field-effect action is the modulation of the 
inversion charge density, or channel conductance. by the gatc vultape. 
The CVcharacter~htics of tllc MOS capacitor were ct~nsidered. The alnount of equival 
oxide trapped charge and the density of intcrfa~r. states, f<lr example. can be determin 
from the C-Vmea\urcrncnts. 
Two hasic types of MOSFETs are then channrl. in which current is due to the flow of 
electrons in the inversion layrr. and the p channrl. in which current i s  due to the flow 
of holes in the inversion layer Each of thcsc devices can be either cnhancmmnt mode, 
i n  which the device i s  nornlally "off" and i s  turned on by applying a gate voltage. or 
depletion mode. in which thc device i s  nonually "on" and i r  turned ott hy applying a 
gatc vo l ta~r .  
The flat-band voltiige i\ the gale voltage that must be applied to achieve the flat-band 
condition, in which the conduction and \almce bands ~n the scrniuunducalr do not be 
and there is no space charge region in thc ~cmiconduutor. The Hat-hand vultage i s  a 
function of the n~rtal-oxide barrier height. the semiconductur-c~xide harrier height, an 
the amourlt of fixed trapped oxide churge. 1 
The thrrshold vultage i s  the applied gate voltage rcquired ta reach the threshold 
inversion ooint. which is the condition at which the inversion charee densitv i s  eaual . , 

in magnitude to the semiconductor doping concentration. The threshold voltage i s  a 
function of the flat-band voltage. semiconductor doping n,nccntralion, and oxide 
thichncss. 

I 
The current in a MOSFE1'is due lo the flow of carriers In the inversion layrr between j 
the source and drain terminals. The inversion layer charge density and channel ' 
cortdu~.tiioce are contrr,lled by the gate vultagc. which means that the channel current i s !  
also controlled by the gate voltage. 
When the transistor i s  biased in the nonsaturati<~n rrgiun (Vijs < Vos(sat)), the i 
inversion charge extends completely across the channel from the source to the drain 1 
terminals. The drain current i s  a function of bath the gate-to-source and drain-to-source 
voltages. When the transistor i s  biased in the saturation region (V,,, > Vi,.5(sat)),the 
inversion charee densitv i s  oinched off near the drain terminal. and the ideal drain , . 
current is only a function of thc gate-to-sourcc voltage. 

The MOSFET i s  actually a four-terminal dev~oc. with the ~ubstratc I N  body being the : 
fourth terminal. As the magnitude of the irverse-hlas \ouroz-to-substrate voltage 
incrrases. the magnitude o f  the threhhuld voltage incrrases. The subht~atc bias effect 
may hecn~ne impunanl in integrated circulli in which the source and w~hstratc are not 
electrically tied together. 
A small-signal equivalent circuit. including capacitances, of the MOSFET was develod 
The variour physical facarrs in the MOSFET that affect the frequency limitations were 
considered. In partiuul~r. the drain overlap capilcitancc may be a lirnitlng fictor in the 
frequency response of the MOSFET because of the Miller effect. The cutllff frequency, 
a figure of nierit for the frequency response of the device. is inversely prt~purtional to 
channel lmgth: thus. n rcduclion in channel length results in an incrra~ed frequency I 

capability of the MOSFET. 
The CMOS technology, in which both n-channel and p-channel devices are fabricated 
in the same scmio<mductor chip, was briefly considered. Electrically isolated p- and 
n-substrate regions arc required tu acconimodatc the two types of transistors. Various 
orocesses are used to fabricate this structure. One oatential ~rublenl  encountered in the 
CMOS structure i c  latch-up-the high-currcnt. low-voltage conditian that may occur in 
a tbur-layer pnpn \tructure. 
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GLOSSARY OF IMPORTANT TERMS 
accumulation layer chargc The induced charge directly under an oxide that is in excess of 

/ the themai-equilibrium majority carrier concentration. 

' bulk charge effect The deviation in drain current from the ideal due to the space charge 
width variation along the channel length caused by a drain-to-source voltage. 

channel conductance The ratio uf drain current to drain-to-source voltage in the limit as 
v,,, -t 0. 

channel conductance modulation The pnlcess whereby the channel conductance varies 
with gate-to-source voltage. 

CMOS Complementary MOS; the technology that uses both p- and n-channel devices in an 
electn,nic circuit fabricated in a single semiconductor chip. 

cutoff frequency The signal frequency at which the input ac gate current is equal to the out- 
put ac drain current. 

depletion mode MOSFET The type of MOSFET in which a gate voltage must be applied 
to turn the device off. 

enhancement mode MOSFET The type of MOSFET in which a gate voltage must he ap- 
plied to turn the device on. 

equivalent fined oxide charge The effective fixed charge in the oxide, Q:,, directly adja- 
cent to the oxide-semiconductor interface. 

Aat-hand voltage The gate voltage that must be applied to create the flat-band condition in 
which there is no space charge region in the semiconductor under the oxide. 

gate capacitance charging time The time during which the input gate capacitance is being 
charged or discharged because of a step change in the gate signal. 

interface states The allowed electronic energy states within the bandgap energy at the 
onide-semiconductor interface. 

inversion lager charge The induced charge directly under the oxide, which is the opposite 
type compared with the semiconductor doping. 

inrersion layer mobility The mohility of carriers in the inversion layer. 

latch-up The high-current, low-voltage condition that may accur in a four-layer pnpn struc- 
ture such as in CMOS. 

maximum induced space charge width The width of the induced space charge region 
under the oxide at the threshold inversion condition. 

metal-semiconductor n o r k  function difference The parameter 4,,,, . a function of the dif- 
ference between the metal work function and semiconductor electron affinity. 

moderate inversion The condition in which the induced space charge width is changing 
slightly when the gate voltage i s  at or near the threshold voltage and the inversion charge 
density is of the same magnitude as the semiconductor doping concentration. 

oxide capacitance The ratio of oxide permittivity to oxide thickness, which is the capaci- 
tance per unit area, Cox 

saturalion The a~ndition in which the inversion charge density is zero at the drain and the 
drain current is no longer a function of the drain-to-source voltage. 

strong inversion The condition in  which the inversion charge density is larger than the mag- 
nitude of the semiconductor doping concentration. 

threshold inversion point The condition in which the inversion charge density is equal in 
magnitude to the semiconductor doping concentration. 
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threshold voltage The gate voltage that must be applied to achieve the threshold inversl 
point. 

1 
transconductance The ratio of an incremental change in drain current to the correspon@ 

incremental change in gate voltage. 

weak inversion The condition in which the inversion charge density is less than the 
tude of the semiconductor doping concentration. 

CHECKPOINT 
After studying this chapter, the reader should have the ability to: 

various bias conditions. 
W Describe the process by which an inversion layer of charge is created in an MOS 

capacitor. 

1 
W Sketch the energy band diagrams in the semiconductr)r of the MOS capacitor under 

W Discuss the reason the space charge width reaches a maximum value vnce the invenioa 
layer is formed. 

W Discuss what is meant by the metal-sen~icanductor work function difference, and 
discuss why this value is different between aluminum. n+ polysilicon, and pi 

polysilicon gates. 
W Describe what is meant by flat-band voltage. 
W Define threshold voltage. 
W Sketch the C-Vcharacteristics oSan MOS capacitor with p-type and n-type 

semictrnducror ~ubstrates under high-frequency and low-frequency conditions. 
Discuss the effects of fixed trapped oxide charge and inte1f.i~~ states on the C-V 
characteristics. 

J 
W Sketch the cross-sections of n-channel and p-channel MOSFET structures. 
W Explain the basic operation of the MOSFET. 
W Discuss the I-V characteristics of the MOSFET when biased in the nonsaturatinn and 

I 
saturation regions. 

W Describe the substrate bias effects on the threshold voltage. 
W Sketch the small-signal equivalent circuit. including capacitances, of the MOSFET, and 

explain the physical origin of each capacitance. 
W Discuss the condition that defines the cutoff frequency of a MOSFET. 
W Sketch the cross section of a CMOS structure. 
W Discuss what is meant by latch-up in a CMOS structure. 

S 

REVIEW QUESTIONS 
-t 

1. Sketch the energy band diagrams in an MOS capacitor with an n-type substrate in 
accumulatinn, deplniun, and inversion mode?. 

2. Dcscrihe what is meant by an inversion layer of charge. Describe haw an inversion 
layer of charge can be formed in an MOS capacitor with a p-type substrate. 

3. Why does the spacc-charge region in the semicunductor of an MOS capacitor reach a 
maximum width once the inversion layer is formed? 

4. Define electron affinity in the semiconductor of an MOS capacitor 

5. Sketch thc energy band diagram through an MOS structure with a p-type substrate and 
an nt polysilicon gate under rem bias. 



6. Deiine the Rat-band voltage. 

7. Define the threshold voltage. 

8. Sketch the C-Vcharacteriitics of an MOS capacitor with an n-type substrate under the 
low-frequency condition. How do the characteristics change for the high-frequency 
condition? 

9. indicate the approximate capacitance at flat-band on the C-Vcharacteristic of an hlOS 
capacitor with a p-type suhstrate under the high-frequency condition. 

10. What is the effect on the C-Vcharacteristics of an MOS capacitrlr with 21 p-type 
substrate if the amount of positive trapped oxide charge increases? 

11. Qualitatively sketch the inversion charge density in the channel region when the tran- 
sistor is biased in the nonsaturdtion region. Repeat for the case when the transistor is 
biased in the saturation region. 

12. Define Vas(sat). 

13. Define enhancement mode and depletion mode fbr both n-channel and p-channel devices. 

14. Skctch the charge distribution through an MOS capacitor with a p-type substrate when 
biased in the inversion mode. Write the charge neutrality equation. 

15. Discuss why the threshold voltage changes when a reverse-biased source-to-substrate 
voltage is applied ton  MOSFET. 

PROBLEMS 
(Nore: In the following problems, assume the semiconductor and oxide in the MOS system 
are silicon and silicon dioxide, respectively. and assume the temperature is T = 300 K un- 
less otherwise stated. Use Figure 11.15 to determine the metal-sc~niconductor work func- 
tion difference.) 

Section 11.1 The Two-Terminal MOS Structure 

11.1 The dc charge distributions of four ideal MOS capacitors are shown in Figure 11.62. 
For each case: ( u )  Is the sernicor~ductor n- or p-type? (13) Is the device biased in the 
accumulation. depletion. or inversion mode'? (c) Draw the energy-band diagram in 
the semiconductor region. 

11.2 ( a )  Calculate the maxilnunl space charge width .rCii and the maximum space charge 
density IQ;D(max)( in p-type silicon. gallium arsenide. and germanium semiconduc- 
tors of an MOS structure. Let T = 300 K and asqume N,, = 10" c m ' .  (h )  Repeat 
Tart ( a )  if T = 200 K. 

11.3 ( a )  Consider n-type silicon in an MOS structure. Let T = 300 K .  Determine the 
semiconductor doping so that (Q;,(max)l = 7.5 x I V Y  Clcm'. (b)  Determine the 
sud-ace potential that results in the maximum space charge width. 

11.4 Determine the n~etal-semiconductor work function difference $,,,, in an MOS 
structure with p-type silicon for the case when the gate is ( u )  aluminum. ( h )  n+ 
pr,lysilicon. and (c) pt polysilicon. Let N ,  = 6 x 10" cm-' 

11.5 Cunsider an MOS structure with n-type silicun. A metal-semiconductor work function 
difference of #,,,, = -0.35 V is required. Determine the silicon doping required to 
meet this specification when the gats is ( 0 )  n' polysilicun, ( h )  p' polysilican. and 
( c )  aluminum. If a particular gate cannot meet this requirement, explain why. 
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Figure 11.62 1 Figure for Problem 11.1 

11.6 Consider an n+ polysilicon-silicon dioxide-n-type silicon MOS capacitor. Let 
Nd = 1015 ~ m - ~ .  Calculate the &at-band vohage for (a) I,, = 500 A when Q:, is 
(i) 10" cm-', (ii) 10" cm-', and (iii) 5 x 10" ~ m - ~ .  (b) Repeat pan ( a )  when 
t, = 250 A. 

11.7 Consider an aluminum gate-silicon dioxide-p-type silicon MOS structure with 
to, = 450 A. The silicon doping is No = 2 x 1016 ~ m - ~  and the flat-band voltage 
is VF8 = - I  .0 V Determine the fixed oxide charge Q:, . 

11.8 An MOS transistor is fabricatedon a p-type silicon substrate with N, = 2 x IOlS cm-'. 
Theoxide thickness is to, = 450 A and the equivalent fixed oxide charge is Q:, = 
2 x LO" c w 2 .  Calculate the threshold voltage for ( a )  an aluminum gate, (b) an ni 
polysilicon gate, and (c) a p+ polysilicon gate. 

11.9 Repeat Problem 11.8 for an n-type silicon substrate with Nd = 10'' cm-'. 

11.10 A400 A oxide is grown on p-type silicon with N,, = 5 x 10'' cm-'. The flat-band 
voltage is 0 . 9  V. Calculate the surface potential at the threshold inversion point 
as well as the threshold voltage assuming negligible oxide charge. Also find the 
maximum space charge width for this device. 

*11.11 An MOS transistor with an aluminum gate is fabricated on a p-type silicon substrate. 
The oxide thickness is r,, = 750 A, and the equivalent fixed oxide charge is Q:, = 
10" c K 2 .  The measured threshold voltage is V,  = +0.80 V. Determine the p-type 
doping concentration. 



*11.12 Kepeat Problem I I .  I I for an n-type silicon substrate if the measured threshold 
voltage is VT /r -1.50 V. Determine the n-type doping concentmtion. 

11.13 An Al-silicon dioxide-silicon MOS capacitor has an oxide thickness of 450 A and 
a doping of N ,  = 10'' cm-). The oxide charge density is Q:, = 1 x 10" cm-'. 
Calculate (a) the flat-band voltage and (b) the thrrshold voltage. Sketch the electric 
field through the structure a1 the onset uf inversion. 

11.14 An n-channel depletion mode MOSFET with an n+ polysilicon gate is shown in 
Figure 11.42. The n-channel doping is Nd = 10" cm-', and the oxide thickness is 
to, = 500 A. The equivalent fixed oxide charge is Q:, = 10"' cm-'. The n-channel 
thickness r, is equal to the maximum induced space charge width. (Disregard the space 
charge region at the n-channel-p-substrate junction.) ( a )  Determine the channel thick- 
ness I , .  and (6) calculate the threshold voltage. 

11.15 Consider an MOS capacitor with an n '  polyrilicon gate and n-type silicon substrate. 
Assume N, = loL6 ~ m - ~  and let E F  - E,  = 0.2 eV in the n+ polysilicon. Assume 
the oxide has a thickness of I,,, = 300 A. Also assume that X '  (polysilicon) = X '  
(single-crystal silicon). (o) Sketch the energy-band diagrams ( i )  for VG = 0 and 
(ii) at flat band. (h) Calculate the metal-semiconductar work function difference. 
(c) Calculate the threshold voltage for the ideal case of zero fixed oxide charge and 
zero interface states. 

11.16 The threshold voltage of an n-channel MOSFET is given by Equation (11.27). Plot - 
VT versus temperature over the range 200 5 T 5 450 K. Consider both an alu- 

of temperature and use device parameters similar to those in  Example 11.4. 

:b 
minnm gate and an nt polysilicon gate. Assume the work functions are independent 

11.17 Plot the threshold voltage of an n-channel MOSFET versu? p-type substrate doping e= 

concentration similar to Figure I 1 2 0  Consider hoth n and p- polysilicon gales. .b 
Use reasonable device parametzrs. =- - ~ 

11.18 Plot the threshold voltage of a p-channel MOSFET versus n-type substrate doping - - 
concentration similar to Figure 11.21. Consider both n '  and p+ polysilicon gates. :& 
Use reasonable device parameters. 2- - 

11.19 Consider an NMOS device with the parameters given in Problem 11.10 Plot V,  - - 

versus r,, over the range 20 5 f,,, 5 500 A. Qu - 
< - 

Section 11.2 Capacitance-Voltage Characteristics 

11.20 An ideal MOS capacitor with an aluminum gate has a silican dioxide thickness of 
I,, = 400 A on a p-type silicon substrate doped with an acceptor concentration of 
N, = 10'%cmi. Determine the capacitances C,,, C;,, C,,". and C'(inv) at 
(a) f = 1 Hz and (b) f = I MHz. ( c )  Determine V F ,  and V T .  Sketch C'/C,l, 
versus Vr for parts la) and (h).  

11.21 Repeat Pnlblem 11.20 for  an n-type silicon substrate duped with a danor concentra- 
tion of N,, = 5 x 10" cm-' . 

*11.22 Using superposition, show that the shift in the Rat-band voltage due to a fixed charge 
distribution p ( r )  in the oxide is given by 

*11.23 Using the results of Problem 1 1  22. calculate the shift in the flat-band voltage for 
the following oxide charge distributions: ( a )  Q:, = 5 x 10" cm-' is entirely 
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located at the oxide-semiconductor interface. Let to, = 750 A. (h)  Q:, = 
5 x 10" cm-Z is uniformly distributed throughout the oxide. which has a thickn 
of r,, = 750 A. ( c )  Q' = 5 x 10'' cm-' forms a triangular distribution with the 

jSj 

peak at x = I,, = 750 A (the oxide-semiconductor interface) and which goes to 
zero at x = 0 (the metal-xide interface). 

11.24 An ideal MOS capacitor is fabricated by using intrinsic silicon and an n+ polysilic 
gate. (a) Sketch the energy-band diagram thmugh the MOS structure under flat-b 
conditions. (b) Sketch the low-frequency C-Vcharacteristics from negative to 
positive gate voltage. 

11.25 Consider an MOS capacitor with a p-type substrate. Assume that donor-type 
interface traps exist only at midgap (i.e., at E F , ) .  Sketch the high-frequency C-V 
curve from accumulation to inversion. Compare this sketch to the ideal C-Vplot. 

I 
11.26 Consider an SOS capacitor as shown in Figure 11.63. Assume the SiOl is ideal (no 

trapped charge) and has a thickness of I,>, = 500 A.  The doping concentrations are 
N, = 1016 cm-' and Nu = 1016 cm-), (a) Sketch the energy band diagram through 
the device for (i)  flat-band, (ii) Vc = +3 V, and (iii) VG = -3 V. (b)  Calculate the 
flat-band voltage. (c )  Estimate the voltage across the oxide for (i) VG = +3 V and 
(ii) VG = 3 V .  (d) Sketch the high-frequency C-Vcharacteristic curve. 

11.27 The high-frequency C-Vcharacteristic curve of an MOS capacitor is shown in 
Figure 11.64. The area of the device is 2 x 10-' cm'. The metal-semiconductor 
work function difference is @,, = -0.50 V, the oxide is S i02 ,  the semiconductor 
is silicon, and the semiconductor doping concentration is 2 x IO1%m3.  (a) Is the 

Figure 11.63 I Figure for Problem 11.26. I 

Figure 11.64 1 Figure for Problem 11 2 7  



Figure 11.65 I Figure for Prohlem 11.28 

semiconductor n ar p type'? (b) What is the oxide thickness? ( r )  What is the 
equivalent trapped oxide charge density? ( d )  Determine the flat-hand capacitance. 

11.28 Consider the high-frequency C-Vplot shown in Figure 11.65. (a) Indicate which 
points correspond to flat-band, inversion, accumulation, threshold, and depletion 
mode. (b) Sketch the energy band diagram in the semiconductor for each condition 

Section 11.3 The Basic MOSFET Operation 

11.29 An expression that includes the inversion charge density was given by Equa- 
tion (1 1.55). Consider the definition of threshold voltage and show that the inversion 
charge density goes to zero at the drain terminal at saturation. (Hint: Let Vx = VDs = 

V~s(sat)-) 
11.30 An ideal n-channel MOSFET has the following parameters: 

W = 30 urn w,, = 450 cm2/V-s 

L = 2 w m  t,,. = 350 A 

V, = +0.80 V 

(a)Plot I ,  versus VDS forO 5 VDS 5 Vandfor VGS = 0. I ,  2. 3.4, and 5 V. 
Indicate on each curve the VlIs(sat) point. (b) Plot m v e r s u s  V G ~  for 0 5 
VGs 5 5V. (c) Plot lo versus VGS for Vos = 0.1 VandforO 5 VGS 5 5V. 

11.31 An ideal p-channel MOSFET has the following parameters: 

W = 15 u m  I*, = 300 cm2/v-s 

~ = 1 . 5 ~ r n  t , ,=350A 

Vr = 0 . 8 0  V 

(a) Plot I" versus Vso for 0 5 VSD 5 5 V and for Vsc = 0, 1 , 2 , 3 , 4 ,  and 5 V. 
Indicate on each cunre the V S D ( S ~ ~ )  point. (h)  Plot I!, versus VxG for VsD = 0.1 V 
and for 0 5 V,, 5 5 V. 

11.32 Consider an n-channel MOSFET with the same parameters as given in Problem 11.30 
except that Vr = -2.0 V. (a) Plot I D  versus Vnc forO 5 Vo3 5 5 V and for VcS = 
-2. -1.0, + I ,  and +2 V (b) Plot v%(% versus VG.S for 2 5 Vcs 5 +3 V. 
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Figure 11.66 1 Figure for Problem 11 3 3  

Figure 11.67 I Figure for Problem 11.34 

11.33 Consider an n-channel enhancement mode MOSFET biased as shown in Figure 11.66. 
Sketch the current-voltage characteristics, l ~ v e r s u s  Vns, for (u )  Vtiu = 0, (h)  VGo = 
Vi/2, and (c)  VGD = 2VT.  

11.34 Figure 11.67 shows the cross section of an NMOS device that includes source and 
drain resistances. These resistances take into account the bulk ni semiconductor 
resistance and the ohmic contact resistance. The current-voltage relations can be 
generated by replacing Vcs by VG - lnRs and VLls by VL, - I,(Rs + Rn) i n  the 
ideal equations. Assume transistor parameters of VT = I V and K,, = 1 mAN2 
(a) Plot the following curves on the same graph: ID versus Vn for VG = 2 V and 
VG = 3 V over the range 0 5 VU 5 5 V for (i) Rs = RD = 0 and (ii) Rs = RO = 
1 ka. (b) Plot the following curves on the same graph: versus VC; for 
V D = 0 . 1 V a n d V n = 5 V o v e r t h e r a n g e O ~ I D  5 I r n A f o r ( i ) R s = R o = O a n d  
(ii) Rr = RD = 1 kR. 

11.35 An n-channel MOSFET has the same parameters as given in Problem 11.30. The gate 
tenninal is connected to the drain terminal. Plot ID versus VDS for 0 5 Vos 5 5 V. 
Determine the range of VL,s over which the transistor is biased i n  the nonsaturation 
and saturatiun regions. 



Figure 11.68 1 Figure for Problem 11.37. 

11.36 The channel conduclance for a p-channel MOSFET is defined as 

Plot the channel conductance for the p-channel MOSFET in Problem 11.31 for 
0 5 V s c 5 S V .  

1137 The experimental characteristics of an ideal n-channel MOSFET biased in the 
saturation region are shown in Figure 11.68. If W I L  = 10 and t , ,  = 425 A, 
determine V7 and F,, . 

11.38 One curve of an n-channel MOSFET is characterized by the following parameters: 
["(sat) = 2  x lo-' A, V ~ ~ ( s a t )  = 4 V,  and VT = 0.8 V. 

(a) What is the gate voltage? 

(b) What is the value of the conduction parameter? 
(c) If Vc = 2  V  and VD = 2 V ,  determine lo. 
( d )  If VG = 3 V and VDS = 1 V, determine ID 
(e) For each of the conditions given in (c) and (d), sketch the inversion charge 

density and depletion region through the channel. 

11.39 (a )  An ideal n-channel MOSFET has an inversion carrier mobility F,, = 525 cm2N-s, 
a threshold voltage VT = +0.75 V, and an oxide thickness to, = 400 A. When biased 
in the saturation region, the required rated current is In(sat) = 6 mA when VGX = 
5 V. Determine the required W / L  ratio. (hj  Ap-channel MOSFET has the same 

11.40 Consider the transistor described in Problem 11.30. ( a )  Calculate g,,,, for V,,.7 = 0.5 V. 
(b) Calculate g,, for VGS = 4 V. 

11.41 Consider the transistor described in Problem 11.31. (a) Calculate g,,,, for V X D  = 0.5 V 
(b) Calculate g,", for Vsc = 4 V. 
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11.42 An n-channel MOSFET has the following parameters: 

r,, = 400 A N,, = 5 x 1 0 ' ~  cmr' 

VF, = 0 . 5  V L = 2 / ~ m  

W = 10 ,m ( I ' .  = 450 crn'1V-s 

Plot Jf;; versus VGs over the range 0 5 10 5 I mA when the transistor is biased 
the saturation region for the following values of sourcc-to-body voltage: Vsx = 0. 1, 
and 4 V. 

11.43 Consider a p-channel MOSFET w,ith I,,, = h00A and rV,, = 5 x 10" cm-'. 
Determine the body-to-sourcc \'olvage. V x s .  such that the shift in threshold voltage. 
AV,, from the V,, = 0 curve i~ AVr = 1 . 5  V. 

11.44 An NMOS device has the following parameters: n+ poly gate, I,,, = 400 A. N,, = 
10" cm-'. and Q:, = 5 x 10"' cm-'. (0) Determine VT. (b) Is i t  possible to apply 
a VI,  voltage such that V, = O? If so, what is the value of Vsg'! 

- -- e 11.45 Investigate the threshold voltage shift due to substrate hias Thc threshold shift is 
given by Equation (11.72). Plat AV, versus V3" over the range 0 5 V s n  5 5 Vfor 

< - several values of N,, and I,,, . Determine the conditionc for which A V, is limited to a 
maximum value of 0.7 V over the range of V,,, 

Section 11.4 Frequency Limitations 

11.46 Consider an ideal n-channel MOSFET with a width-to-length ratio of (WII,) = 10, 
an electron mohility of {I,, = 400 cm21V-s, an oxide thickness of I,, = 475 A, anda 
threshold voltage <lf VT = +0.65 V. (a) Determine the maximum value of source 
resistance so that the saturation transconductance g,,,, is reduced by no more than 
20percent from it\ ideal valuc when \%s = 5 V. (b! Using the value uf r, calculat 
in part (u). how much is g,,,, reduccd from itc ideal value when V,;, = 1 V'! 

11.47 An n-channel MOSFET has the following parameters: 

w,, = 400 c m 2 1 ~ - s  I,,, = 500 A 

L = 2j im W = 20 lrm 

V, = f0 .75 V 

Assume the tmnsistor is biased in the saturation regian at V,; 5 = 4 V. (01 Calculate 
the ideal cutoff frequency. (b) Assume that the gate oxide uverlaps both the source 
and drain contacts by 0.75 um. If a laad resistance o l  K L  = I0 kR is connected to the 
output. calculate the cutoff frequency. 

11.48 Repeat Problem I I .J7 for the case when thc elecu-r~ns are traveling at a saturation 
vclociry of o,,, = 4 x 10' cmls. 

1 
Summary and Review 1 

*11.49 Design an ideal silicon n-channel MOSFET with a polysilicon gate to have a threhhold 
volta_ee of VT = 0.65 V Assume an oxide thickness of I,,, = 300 A. a channel length + of L = 1.25 ~m.andanominalvalueof  Q:, = 1.5 x 10" cm-'.ltisdesiredtohave / 
a drain current of I,> = 50 ~ A a t  VC = 2.5 V and V,, = 0. I V. Determine the 
substrate doping concentration. channel width. and type of gale required. 

i 



*11.50 Design an ideal silicon n-channel deplctii~n mode MOSFET with a pnlysilicon gate to 
havc a threshold voltage of Vi = 0 . 6 5  V. Assume an oxide thickness of I,,, = 300 A, . - ~= 

a channel length of L = 1.25 pm. and a nominal \,zilue uf = 1.5 x 10" cm '. It 
is desired to havc a drain current of l ,> (~a t )  = 50 p A  at VCjs = 0. Determine the type 
usgate, substrate doping cancentration, and channel width required. 

'11.51 Consider the CMOS invertercircuit shown in Figure 1 I .6Oa, Ideal n- and p-channel 
devices arc to bedesigned with channel lengths of L = 2.5 pmand oxide thicknesses 
of I,,, = 450A. Acsumc the inversion channel m<~bilities an: one-halithe bulk values. 
Thc threshold \,oltagcsof the n a n d  p-channcl transistors arc to be +0.5V and 0 . 5 V .  
rcspeutively. The draincurrent is to be I D  = 0256mA when the input voltage to the 
inverter is 1.5 V and 1.5 V with V,, = 5 V  The gate material is to be the same in each 
dcvics. Determine the type of gate, substrate doping concentrations, andchannel widths. 

*ll.52 Acumplemcnrary pair of ideal n-channcl and p-channel MOSFETs are to be 
designed to produce the same I-Vcharactel-istics when they are equivalently biased. 
The devices are to ha\,e the same oxide thickness of 250 1\ and thc sane  channel - 

< <~ 

length of L = 2 jrm. Assume the SiO? layer is ideal. The n-channel device is tu have 
a channel width of W = 20 jrm. .4ssume const3nt inversion layer mobilities of o,, = 
600 cm'IV-s and p,, = 220 cm3N-s. ( ( 1 )  Determine p-type and n-type substrate 
doping concentrations. (h)  What are the threshold valtages? ( c )  What is the width 
of thc p-channel dcvicr? 

READING LIST 
1. 'Dimitrijcv. S. Uridenrtoiiding Srmico,~rluctor Dwices.  New York: Oxford University 

Press. 2000. 

2. Kano. K. S~,nico,~~/~,ct~,rDe~~ice.r. Upper Saddle River, NJ: Prentice Hall, 1998. 

3. Mullcr. K. S., and 7. 1. Kamins. Device E/'ircrmr~ics,for 1,ltegrated Circuits. 2nd ed. 
New Yr~rk: Wiley, 1986. 

4. Ng. K. K .  C,ir,rj~/err Guidc to Srmico,~ducror Det,iccs. New York: McCraw-Hill. 1995. 

5. Nicollian, E. H., and J. R. Brews. M0SPhy.ric.s md Te~:hnnlng?. Nee, York: Wiley, 
1982. 

6.  Ong. D. G. Modern MOS Technolofi?.: Prucrrcs,  Devices, nnd Desig,,. New York: 
MuGraw-Hill, 1984. 

7. Pirrret. R .  F. .Se,nicoridarlor Devkr  Fut~dar,rrnrol.~ Reading. MA: Addison-Wesley. 
1996. 

8. Roulston. D. J. A,, i,irroducrio,z to the Physic q/'Srmicoriducror Driircr. New York: 
Oxford University Press, 1999. 

9. Schroder. D. K. Advur~ced MOS Dr~~iccs .  Modular Series on Solid Srure Deoices. 
Reading. MA: Addison-Wesley. 1987. 

10. Shur, M. Inr,ndi~tiun lo Elrcrrorlic Dcr,ice,s. New York: John Wiley & Sons. Inc ,  1996. 

* I I .  Shur. M. Physics ofSenliconducror Devices. Englewood Cliffc. NJ: Prentice Hall, 1990. 

12. Singh. J .  Semiconductor Devices: An Introductio,~. New York: McCraw-Hill, 1994. 

13. Singh, J. Sonicortductor Devices: Basic Principles. New York: Wiley, 2001 

14. Streetman, B. G.. and S. Banerjee. SoiidSrntr Elerrro~~ir Devices. 5th ed. Uppcr 
Saddle Ri\,er. NJ: Prentice Hall. 2000. 



CHAPTER 11 Fundamentals of the MetaIWxlde-Semiconductor Field~Effect Transistor 

15. Sze, S. M. High-speed Semiconductor Devices. New York: Wiley. 1990. 

16. Sze, S. M. Physics ofSemiconductor Devices. 2nd ed. New York: Wiley, 1981. 

*17. Taur, Y., and T. H. Ning. Fundamentals of Modem VLSI Devices. New York: 
Cambridge University Press, 1998. 

*18. Tsividis, Y. Operation and Modeling of the MOS Transi.rmr 2nd ed. Burr Ridge, IL.: 
McGraw-Hill, 1999. 1 

, , 
pp. 769-75. 

20. Yamaguchi, T., S. Monmoto, G. H. Kawamoto, and J. C. DeLacy. "Process and Device 

Electron Devices ED-31 (February 1984). pp. 205-14. 

"I Performance of 1 ~m-Channel  n-Well CMOS Technology." IEEE Transactions on 

21. Yang, E. S. Microelectronic Devices. New York: McGraw-Hill, 1988. 



& 
A P P E N D I X  

Selected List of Symbols 

T his list does not include some symbols that are defined and used specifically in 
only one section. Some symbols have more than one meaning; however, the 

context in which the symbol is used should make the mealling unambiguous. The 
usual unit associated with each symbol is given. 

Unit cell dimension (A), potential well width, acceleration, 
gradient of impurity concentration, channel thickness of a 
one-sided JFET (cm) 
Bohr radius (A) 
Speed of light (cmls) 
Distance (cm) 
Electronic charge (magnitude) (C), Napierian base 

Frequency (Hz) 
Fermi-Dirac probability function 
Cutoff frequency (Hz) 
Generation rate ( ~ m - ~  s-I) 
Generation rate of excess carriers (cm-' s -' ) 
Density of states function ( c w 3  eV-I) 
Density of states function in the conduction band and 
valence band (cm-' eV-I) 
Channel conductance (S), small-signal d~ffusion 
conductance (S) 
Transconductance (AIV) 
Generation rate for electrons and holes (cm-'s-') 
Planck's constant (J-s), induced space charge width in a 
JFET (cm) 
Modified Planck's constant ( h / 2 n )  
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Small-signal common emitter current gain 

Imaginary constant, a 
Boltzmann's constant (JIK), wavenumber (cm-I) 

Conduction parameter (A/V2) 

Mass (kg) 

Rest mass of the electron (kg) 

Effective mass (kg) 

Effective mass of an electron and hole (kg) 

Integer 
Quantum numbers 

Electron and hole concentration (cm-') 

Index of refraction 
Constants related to the trap energy (cm-') 

Thermal-equilibrium minority carrier electron 
concentration in the base and minority carrier hole 
concentration i n  the emitter and collector (cm-') 

Density of electrons in the donor energy level (cm-') 

Intrinsic concentration of electrons (cm-') 

Thermal-equilibrium concentration of electrons 
and holes (cm-j) 

Minority camier electron and minority carrier hole 
concentration (cm-') 

Thermal-equilibrium minority carrier electron and 
minority carrier hole concentration (cm-j) 

Density of a two-dimensional electron gas (cm-?) 

Momentum 

Density of boles in the acceptor energy level (cm-') 
Intrinsic hole concentration (= ni)(cm-') 

Charge (C) 

Spherical coordinates 
Small-signal diffusion resistance ( Q j  

Small-signal drain-to-source resistance (Q)  

Surface recombination velocity (cmls) 

Time (s) 

Delay time (s) 

Gate oxide thickness (cm or A) 

Storage time (s )  

Periodic wave function 

Velocity (cmls) 

Canier drift velocity (cmls) 
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AE,, AE, 

Carrier saturation drift velocity (cmls) 
Cartesian coordinates 
Mole fraction in compound semiconductors 
Neutral base, emitter, and collector region widths (cm) 
Induced space charge width (cm) 
Maximum space charge width (cm) 
Depletion width from the metallurgical junction into n-type 
and p-type semiconductor regions (cm) 
Area (crn2) 
Effective Richardson constant ( ~ I K ~ l c m ~ )  
Magnetic flux density (wblm2) 
Base, emitter, and collector 
Breakdown voltage of collector-base junction with emitter 
open (volt) 
Breakdown voltage of collector-emitter 
with base open (volt) 

Capacitance (F) 
Capacitance per unit area (F/cm2) 
Diffusion capacitance (F) 
Flat-band capacitance (F) 
Gate-source, gate-drain, and drain-source capacitance (F) 
Junction capacitance per unit area (F/cmZ) 
Miller capacitance (F) 
Constants related to capture rate of electrons and holes 
Gate oxide capacitance per unit area (F/cmZ) 
Reverse-biased B-C junction capacitance (F) 
Drain, source, and gate of an FET 
Ambipolar diffusion coefficient ( c d s )  
Base, emitter, and collector minority canier diffusion 
coefficients (cm2/s) 
Density of intertace states (#lev-cm3) 
Minority carrier electron and minority carrier hole 
diffusion coefficient (cm21s) 
Energy (joule or eV) 
Acceptor energy level (eV) 
Energy at the bottom edge of the conduction band and top 
edge of the valence band (eV) 
Difference in conduction band energies and valence band 
energies at a heterojunction (eV) 
Donor energy level (eV) 
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Fermi energy (eV) 
Intrinsic Fermi energy (eV) 
Quasi-Fermi energy levels for electrons and holes (eV) 
Bandgap energy (eV) 
Bandgap narrowing factor (eV), difference in bandgap 
energies at a heterojunction (eV) 
Trap energy level (eV) 
Force ( N )  
Electron and hole particle flux ( ~ m - ~  s-I) 
Fermi-Dirac integral function 

Generation rate of electron-hole pairs (cm-' s- ') 
Excess canier generation rate ( ~ m - ~  s-'1 
Thermal equilibrium generation rate for electrons and 
holes ( C I I - ~  s-I) 
Conductance (S) 
Current (A) 
Anode current (A) 
Base, emitter, and collector current (A) 

Reverse-bias collector-base junction current with 
emitter open (A) 
Reverse-bias collector-emitter current with base open (A) 
Diode current (A), drain current (A) 
Saturation drain current (A) 
Photocurrent (A) 
Pinchoff current (A) 

Ideal reverse-bias saturation current (A) 
Short-circuit current (A) 
Photon intensity (energy/cm2/s) 
Electric current density ( ~ / c m ~ )  
Generation current density ( ~ / c m ' )  
Photocurrent density (A/cm2) 
Electron and hole electric current density (A/cm2) 
Electron and hole particle current density ( ~ r n - ~  s - ' )  
Recombination current density ( ~ / c m ~ )  
Zero-bias recombination current density (A/cm2) 
Reverse-bias current density ( ~ l c m ~ )  
Ideal reverse-bias saturation current density (A/cm2) 
Ideal reverse saturation current density in a 
Schottky diode (A/cm2) 
Length (cm), inductance (H), channel length (cm) 
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Channel length modulation factor (cm) 
Minority carrier diffusion length in the base, emitter, 
and collector (cm) 
Debye length (cm) 
Minority carrier electron and hole diffusion length (cm) 
Multiplication constant 

Number density ( ~ r n - ~ )  
Density of acceptor impurity atoms ( ~ m - ~ )  
Base, emitter, and collector doping concentrations ( ~ r n - ~ )  
Effective density of states function in the conduction band 
and valence band (cm-') 
Density of donor impurity atoms ( ~ m - ~ )  
Interface state density (ern?) 
Trap density ( ~ m - ~ )  
Power (watt) 

Probability density function 
Charge (C) 
Charge per unit area (C/cm2) 
Gate controlled bulk charge (C) 
Inversion channel charge density per unit area (C/cm2) 
Signal charge density per unit area (C/cm2) 
Maximum space charge density per unit area (c/cm2) 
Equivalent trapped oxide charge per unit area (C/cm2) 
Reflection coefficient, recombination rate (cm-j s-I), 
resistance (52) 
Radial wave function 
Specific contact resistance (52-cm2) 
Capture rate for electrons and holes (cm-? s-I) 
Emission rate for electrons and holes ( ~ m - ~  s-I) 
Recombination rate for electrons and holes ( ~ m - ~  s-') 
Thermal equilibrium recombination rate of electrons 
and holes (cm-i s ' )  

Temperature (K), kinetic energy (J or eV), 
transmission coefficient 
Potential (volt), potential energy (J or eV) 
Applied forward-bias voltage (volt) 
Early voltage (volt), anode voltage (volt) 
Built-in potential barrier (volt) 
Breakdown voltage (volt) 
Breakdown voltage at the drain (volt) 
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VCF Base-emitter, collector-base, and collector-emitter 
voltage (volt) 
Drain-source and gate-source voltage (volt) 
Drain-source saturation voltage (volt) 
Flat-band voltage (volt) 
Gate voltage (volt) 
Hall voltage (volt) 
Open-circuit voltage (volt) 
Potential difference across an oxide (volt) 
Pinchoff voltage (volt) 
Punch-through voltage (volt) 
Applied reverse-bias voltage (volt) 
Source-body voltage (volt) 
Thermal voltage ( k T / e )  
Threshold voltage (volt) 
Threshold voltage shift (volt) 
Total space charge width (cm), channel width (cm) 
Metallurgical base width (cm) 
Admittance 
Photon absorption coefficient (cm-'1. ac common 
base current gain 
Electron and hole ionization rates (cm-') 
dc common base current gain 
Base transport factor 
Common-emitter current gain 
Emitter injection efficiency factor 
Recombination factor 
Excess electron and hole concentration (cm-') 
Excess minority carrier electron and excess minority 
carrier hole concentration ( ~ m - ~ )  
Permittivity (F/cm2) 
Permittivity of free space (F/cm2) 
Permittivity of an oxide (F/cm2) 
Relative permittivity or dielectric constant 
Permittivity of a semiconductor (F/cm2) 
Wavelength (cm or wrn) 
Permeability (H/cm) 
Ambipolar mobility ( c m 2 / ~ - s )  
Electron and hole mobility (cm2/V-s) 
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Permeability of free space (Hlcm) 
Frequency (Hz) 
Resistivity (R-cm), volume charge density (C/cm3) 
Conductivity (fi-' cm-I) 
Photoconductivity (R-I c m ' )  
Intrinsic conductivity (R-' cm-') 

Conductivity of n-type and p-type semiconductor ( W 1  cm-') 
Lifetime (s) 

Electron and hole lifetime (s) 
Excess minority carrier electron and hole lifetime (s) 

Lifetime in space charge region (s) 
Potential (volt) 
Time-dependent wave function 
Schottky barrier lowering potential (volt) 
Schottky barrier height (volt) 
Ideal Schottky barrier height (volt) 
Potential difference (magnitude) between EFi and Er 
in n-type and p-type semiconductor (volt) 
Potential difference (with sign) between Eri and Er 
in n-type and p-type semiconductor (volt) 
Metal work function (volt) 
Modified metal work function (volt) 
Metal-semiconductor work function difference (volt) 

Potential difference (magnitude) between E, and E )  
in n-type and between E ,  and E F  in p-type 
semiconductor (volt) 
Semiconductor work function (volt). surface potential (volt) 
Electron affinity (volt) 
Modified electron affinity (volt) 
Time-independent wave function 
Radian frequency (s-') 
Reflection coefficient 
Electric field (Vlcm) 
Hall electric field (Vlcm) 

Critical electric field at breakdown (Vlcm) 
Angular wave function 
Photon flux ( ~ r n - ~  s-I) 
Angular wave function 
Total wave function 



System of Units, 
Conversion Factors, 

and General Constants 

Table H.1 I International system of units* 

Quantity Unit Svmbol Dimension 

Length 
Mass 
Time 
Temperature 
Current 
Frequency 
Force 
Pressure 
Energy 
Power 
Electric charge 
Potential 
Conductance 
Resistance 
Capacitance 
Magnetic flux 
Magnetic flux density 
Inductance 

meter 
kilogram 
second 
kelvin 
ampere 
hertz 
newton 
pascal 
joule 
watt 
coulomb 
volt 
siemens 
ohm 
farad 
webet 
tesla 
henrv 

m 
kg 
s or sec 
K 
A 

l/s 
k g - d s 2  
~ / m '  
N-m 
J/s 
A-s 
J/C 
AN 
V/A 
C N  
v-s 
Wb/m2 
WbIA 

*The cm is the common unit of leneth and the electron-volt is the common unit of enerev - u, 

(see Appendix F) used in the study of semiconductors. However. the joule and in same 
cases the meter should be uhcd i n  moat formulas. 
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Table B.2 I Conversion factors 

Prefixes 

I A (angstrom) = IO-' cm = 10-" m 10~15 
1 prn (micron) = 10.' cm lo-]? 

1 mil = lo-' in. = 25.4 fim 
2.54 cm = 1 in. 10." 
1 eV = 1.6 x J lo-) 
1 J =  107erg lo+) 

lo f6  
lot9 

- 
femto- 
pico- 
nano- 
micro- 
milli- 
kilo- 
mega- 
giga- 
tera 

Table B.3 I Physical constants 

Avogadro's number 

Baltrmann's constant 

Electronic charge 
(magnitude) 
Free electron rest mass 
Permeability of free space 
Permittivity of free space 

Planck's constant 

Proton rest mass 

Speed of light in \'acuum 

Thermal voltage (T = 300 K) 

N I  = 6.02 x 10''' 
atoms per gram 
molecular weight 

mo =9.11 x 10 " kg 
uu = 4n x lo-' Wm 
F,, = 8.85 x lo-'' Flcm 

= 8.85 x lo-" Flm 
h = 6.625 x lo-" J-s 

= 4.135 x l o 1 '  eV-s 
h 
- - - h = 1.054 x I-s 
2n 

M = 1.67 x 10-" kg 

c = 2.998 x 10" cmls 

k T 
V, = - = 0.0259 volt 

e 
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Table 8.4 1 Silicon, gallium arsenide, and germanium properties ( T =  300 K) 

Property Si GaAs Ge 

Atoms (cm-') 5.0 x 10" 4.42 x loz2 4.42 x loz2 
Atomic weight 28.09 144.63 72.60 
Crystal structure Diamond Zincblende Diamond 
Density ( g / c m ~ i )  2.33 5.32 5.33 
Lattice constant (A) 5.43 5.65 5.65 
Melting point ('C) 1415 1238 937 
Dielectric constant 11.7 13.1 16.0 
Bandgap energy (eV) 1.12 1.42 0.66 
Electron affinity. x (volts) 4.01 4.07 4.13 
Effective density of states in 2.8 1019 4.7 x 10" 1.04 x 10" 
conduction band, N, (cm-') 
Effective density of states in 1.04 x 10'' 7.0 x lo'* 6.0 x 10" 
valence band. N, (cm-') 
Intrinsic carricr concentration (cm-') 1.5 x 10"' 1.8 x 10' 2.4 x 10" 
Mobility (cm2N-s) 

Electron, &, 1350 8500 3900 
Hole, P, 480 400 1900 

Effective mass - 

Electrons 
(...I 

m;  = 0.98 0.067 1.64 
rn; = 0.19 0.082 

Holes m;,, = 0.16 0.082 0.044 
rn;, = 0.49 0.45 0.28 

Effective mass (density of states) 

Electrons -' (:::: ) 1 .ox 0.067 0.55 

Holes (2)  0.56 0.48 0.37 

Table R.5 I Other semiconductor parameters 

a (A) Material E, (eV) 6, X n 

Aluminum arsenide 2.16 5.66 12.0 3.5 2.97 
Gallium phosphide 2.26 5.45 10 4.3 3.37 
Aluminum phosphide 2.43 5.46 9.8 3.0 
Indium phosphide 1.35 5.87 12.1 4.35 3.37 
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Table R.6 I Properties of SiO, and Si,N, (T = 300K) 

P N J P ~ ~ ~ Y  SiO, Si,N, 
Crystal structure [Amorphous for most integrated 

circuit applications] 
Atomic or molecular 2.2 x loz2 1.48 x loz2 
density (cm-') 
Density (g-cm-') 2.2 3.4 

Energy gap = 9  ev 4.7 eV 
Dielectric constant 3.9 7.5 
Melting point ("C) = 1700 =I900 



The Periodic Table 

1W.2 193.1 195.2 

Rare earths 

V I  

57-71 

57La 58Ce 5 9 R  60Nd 61 Pm 62 Sm 63 Eu M Gd 657b 66Dy 67 Ho 68 Er 69Tm 70Yb 71 Lu 
138.92 140.13 140.92 144.27 147 150.43 152.0 156.9 159.2 162.46 IMYO 167.2 169.4 173.04 174.59 

The numbers in front of the symbols of the elements denote the atomic numbers; the numbers underneath are the atomic weights. 
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The Error Function 



"Derivation" of Schrodinger's 
Wave Equation 

S chrodinger's wave equation was stated in Equation (2 .6) .  The time-independent 
form of Schrodinger's wave equation was then developed and given by Equa- 

tion (2.13) .  The time-independent Schrodinger's wave equation can also be devel- 
oped from the classical wave equation. We may think of this development more in 
terms of a justification of the Schrodineer's time-independent wave equation rather 
than a strict derivation. 

The time-independent classical wave equation, in terms of voltage, is given as 

where o is the radian frequency and up is the phase velocity. 
If we make a change of variable and let @ ( x )  = V(x ) ,  then we have 

We can write that 

where v and A are the wave frequency and wavelength, respectively. 
From the wave-particle duality principle, we can relate the wavelength and 

momentum as 

Then 
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h 
and since li = -, we can write 

2n 

Now 

where T, E ,  and V are the kinetic energy, total energy, and potential energy terms. 
respectively. 

We can then write 

Substituting Equation (E.8) into Equation (E.2), we have 

which is the one-dimensional, time-independent Schrodinger's wave equation 



Unit of Energy-The 
Electron-Volt 

he electron-volt (eV) is a unit of energy that is used constantly in the study of 
sem~conductor physics and devices. This short discussion may help in "petting T. 

a feel" for the electron-volt. 
Consider a parallel plate capacitor with an applied voltage as shown in Fig- 

ure E l .  Assume that an electron is released at .r = 0 at time r = 0. We may write 

where e is the magnitude of the electronic charge and E is the magnitude of the electric 
field as shown. Upon integrating, the velocity and distance versus time are given by 

Figure F.1 I Parallel plate 
capacitor. 
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and 

where we have assumed that u = 0 at t = 0. 
Assume that at t = ti, the electron reaches the positive plate of the capacitor so 

that x = d. Then 

The velocity of the electron when it reaches the positive plate of the capacitor is 

The kinetic energy of the electron at this time is 

The electric field is 

so  that the energy is 

T = e . V  lF.8) 

If an electron is accelerated through a potential of 1 volt, then the energy is 

T = e .  V = (1.6 x l ~ - ' ~ ) ( l j  = 1.6 x 10-lY joule (F.9) 

The electron-volt (eV) unit of energy is defined as 

joule 
Electron-volt = - (F. 10) 

e 

Then, the electron that is accelerated through a potential of 1 volt will have an energy 
of 

or 1 eV. 
We may note that the magnitude of the potential ( 1  volt) and the magnitude of 

the electron energy (1 eV) are the same. However, it is important to keep in mind that 
the unit associated with each number is different. 



A P P E N  7 1  X 

A N S W E R S  T O  S E L E C T E D  P R O B L E M S  

Chapter 1 

1.1 ( a )  4 atoms. (h) 2 atoms, lci 8 atoms 
1.3 ( u )  52.4 percent, (h) 74 percent. (c) 68 percent, 

id)  34 percent 
1.5 (a)  2.36 A. (b) 5 x loz2 atomsicm3 
1.7 (b) u = 2.8 A, (c )  2.28 x cm-' for both Na 

and C1, Id) 2.21 gmlcm' 
1.9 (a)  3.31 x loL4 atomslcm'; Same for A atoms and 

B atoms. (b )  Same as (a) .  ( c )  Same material. 

1.13 (01 5.63 A, (h)  3.98 A. (c) 3.25 A 
1.15 ( 0 )  6.78 x 10" cm-'. (b) 9.59 x 10" cm-'. 

(c) 7.83 x IOl4 cm-' 
1.17 2 x 10'' cm-' 

1.19 In) 4 x 10 ' percent. (b) 2 x 10-' percent 
1.21 d = 7.94 x 10 %m o r d l r i ~  = 146 

Chapter 2 

2.5 i = 0.254 jrm (gold). ). = 0.654 jrm lcesiuml 
2.7 E,,, = 0.01727 eV, 

P ,,, = 7.1 x kg-mls. i = 93.3 A 

2.9 (01 E = 1.14 x 10 ' eV. 
11 = 1.82 x 10-'Qg-mls, A = 364 A 
(b) p = 5.3 x 10-" k g - d s .  
u = 5.82 x 10' cmls. E = 9.64 x lo-' eV 

2.11 ( a )  Ap = 1.054 x 10-" k g - d s  
(b)  A E  = 0.198 rV 

2.13 ( a )  A p  = 8.78 x k g - d s  
(hi A E  = 4.82 x lo-' eV 

2.15 (a1 Ap = 1.054 x 10-'4 k g - d s  
( h )  Ar = 6.6 x s 

2.17 I A ' = I . o r A = + 1 . I . + ; . - ;  
2.19 ( a )  P = 0.393. (hi P = 0.239, (c)  P = 0.865 
2.21 Q( .r . r )=Aexp[ - j (kx+or) lwhere  

k = 6.27 x 10% and 
w = 2.28 x 10" radls 

2.23 ( a )  E l  = 0.261 eV. E ,  = 1.04 eV, 
(bi A = I 5 9  urn 

2.25 El = 2.06 x 10' eV (neutron). 
E ,  = 3.76 x 10' eV (electron) 

2.29 (h) (i) A E  = 3.85 x lo-' cV, 
( i i )  A E  = 2.46 x lo-' '  eV 

2.31 (a) P = 0.118 percent. 
( b )  P = 1.9 x 10-" percent 

2.33 (a )  T = 0.138, (b) T = 1.27 x lo-' 

2.38 E l  = 1 3 . 5 8  eV. E2 = -3.395 eV, 
E3 = -151 eV, E4 = -0.849 eV 

Chapter 3 
3.9 (a) A E  = 0.488 eV, (b) A E  = 1.87 eV, 

(c )  A E  = 3.83 eV. (d)  A E  = 6.27 eV 
3.11 ( r r )  A E  = 0.638 eV. ( b )  A €  = 2.36 eV. 

(c) A E  = 4.73 eV, (d) A E  = 7.39 eV 
3.13 m* (A) < rn" (B) 
3.15 A, B: velocity = x :  C, D: velocity = +n; 

B. C: positive mass; A, D: negative mass 
3.17 A: rn/rnii = 0.476; B: m/,no = 0.0953 
3.23 g = 3.28 x 10'' ~ r n - ~  
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0.15 eV, g, = 2.96 x lo2 '  em-' eV-'; 4.29 (a)  po = 2.95 x 10" ern-'. 
0.20eV, g, = 3.41 x 10" em-' eV-', no = 1.95 x lo'' em-', (h) nu = 5 x 10'' cm-', 

(b) At E,, g, = 0, pi, = 1.15 x 10" ern ' 
-0.05 eV. r ,  = 0.637 x 10" em-' eV-': 4.31 ( 0 ) n " = 2 x  10 ' scm- ' ,p , ,=  1 . 1 2 5 ~  10'cm-', ... 
-0.10 ev, g, = 0.901 x 10" em-' CV- ' ;  (b) po = 10'%m-~.  no = 2.25 x lo4 em-', 
-0.15 CV, y, = 1.10 x lo2' em-' eV-I; ( c )  no = p" = 7 1 ,  = 1.5 x 10'" em-', 
-00.20 eV, g, = 1.27 x lo2' em-' eV-' (d) po = 1.0 x 10'' em- ' ,  

3.29 (a)  f ( E )  = 0.269, (b)  l - f (E)  = 0269  n,, = 5.66 x 10"' cm-', 
3.31 ( a )  l - f (E) = 0.269, (e)no = 1.49 x 101%m3,  

( b ) l  - f ( E ) = 6 . 6 9  x lo-', po = 4.89 x IO" em-' 
(c) I - f ( ~ )  = 4.54 x lo-5 4.33 ( a )  I, type, (h) Si: yo = I .5 x 10" em-', 

3.37 ( a )  f (E)  = 6.43 x lo-' percent, 
(b) f ( E )  = 4.53 percent, ( c )  T zz 756 K 

3.39 ( r i )  Far E = E l .  f ( E )  = 9.3 x l W 6 ;  
F a r E = E 2 , 1  - f ( E ) = 1 . 7 8 x  IO-", 
(b) For E = E l ,  f (E)  = 8.45 x 1 0  " ; 
For E = E2. 1 - f (E) = 1 .Y6 x lo-' 

3.43 T % 461 K 

Chapter 4 
4.1 (a )  n ,  = 7.68 x 104 cm-': 2.38 x 10" emr3; 

9.74 x lo i4  em-', 

(c)n ,  = 1.38 ern-?; 3.28 x lo9 cm-'; 
5.72 x 10'' emr' 

kT kT 
4.5 (a)  E = E, + , (b) E = EL - - 

2 2 

EF, - Emidgap = -0.0128 eV (Si) 
EF,  - Emidsap = -0.0077 eV (Ge) 
E - Emldgap = +0.038 eV (GaAs) 

E,, E m l d p r p  = -851 1neV.-17.0meV. 
-25.5 meV 
r ,  = 104 A, E = 0.0053 eV 
pn = 2 1 3  x 10" em-'.no = 2.27 x 104cm-' 
E, - E F  = 0.88 eV, no = 4.9 x lo4 cm-' 
(a) p,, = 1.33 x l0I2 em-', 
(b) EF,  - E r  = 0.207 eV, 
(c) For (a) n,  = 2.44 ern-'; 
For (b)  n,, = 8.09 x 106 cm-' 
E, - EF = -0.034 eV 
( a )  no = 2.45 x 10" em-', 
PO = 9.12 x 101%m-', 
(b) no = 1.87 x loL6 em-', 
p, = 9.20 x 1016 em-' 

. .. 
no = 1.5 x 10' em-', . 
Ge: pi, = 3.26 x l0" cm-', 
no = 1.77 x 10'' cm-', GaAs: 
po = 1.5 x I O l 3  em-', no = 0.216 cm-? 

4.35 nu = 1.125 x 10" em-', n-type 
4.41 (a) n type; no = IOzh cm-', 

p,, = 2.25 x lo4 cm-'. (b) p-type; 
po = 2.8 x 10" em-'. no = 8.04 x lo3 em-' 

4.43 T = 200 K + EF,  - Ei = 0.1855 eV 
T = 400 K + E,, - E ,  = 0.01898 eV 
T = 600 K + E,, - E, = 0.000674 eV 

4.45 T = 762 K 
4.49 N, = 1.2 x 1O1\m-' 
4.51 (a) EF - E i ,  = 0.2877 eV. 

(b) Ei, - Er = 0.2877 eV. ( c )  For (a)  
n ,  = 10" cm-'. For ( h )  no = 2.25 x loS em-' 

4.53 (a )  E F  - E F ,  = 0.3056 eV, 
(b) EF, - E F  = 0.3473 eV, 
( c ) E F = E , . , . ( d ) E F , - E ,  =0.1291eV. 
( e )  E,. - E r ,  = 0.0024 eV 

4.55 p type, E,, - E, = 0.3294 eV 

Chapter 5 
5.1 (01 no = 1 0 ~ ~ c m 3 .  = 3.24 x 10-"m-' 

(b) p,, zz 7500 cm2/V-s so 
J = 120 .wcm2, ( c )  (i) po = IO'Gm-', 
no = 3.24 x em-'; 
(ii) f i ,  zz 310 crnZN-s 
so J = 4.96 A/cm2 

5.3 (a) 1 = 0.44 mA, (b) I = 4.4 mA, 

( c )  For ( a )  ud = 5.5 x 10' c d s ,  
For (b) ud = 5.5 x LOS cm/s 

5.5 ( a )  w. = 3333 cm2N-s. 
(h )  u , ~  = 2.4 x 10' cmls 

5.7 (010; = 4.39 x 1 0 ~ '  (R-em)-', 
(b) 0, = 1.03 x 10-' (=em)-' 
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5.9 11,(300K)=3.91xIO~cm-' ,E,=1.122eV; 
n ,  (500 K) = 2.27 x 10" cm-', 
~ ( 5 0 0  K) = 5.81 x 1 0  (R-cm)-' 

5.11 (a) Nd = 9.26 x l0I4 cm-'. 
(b) p(200 K) = 2.7 R-cm, 
p = 9.64 Q-cm 

5.13 ( a )  7 = 5.6 x eV, (b) T = 5.6 x lo-' eV 
5.17 F = 316 c rn2 /~-s  
5.19 @ = 167 cm2N-s 
5.23 1 = 18 mA 
5.25 J = 16 A/cm2 

5.27 J,, = 3.41 exp - Aicm' 
( ~ ~ 5 )  

(3 5.29 (a) ~ i , . d , f  = 1.6 exp - A/cm2, 

lb) Jr.d,, = 4.8 - 1.6 exp ($) ~ / c r n >  

5.31 ( u ) n  = n ,  exp 

0.4 - 2.5 x 10's 
(b) J, = -5.79 x lo-' exp [ 0.0259 

5.35 Nd(x) = A exp (-ax) where 
cr = 3.86 x lo4 cm-' 

5.39 (a) V H  = 2.19 mV, (b )  E, = 0.219 Vlcm 
5.41 (a)  p type, (b) p = 8.08 x cm-', 

(b) F,, = 387 cm2lV-s 
5.43 ( a )  n type, (b) n = 8.68 x 10'' ~ m - ~ ,  

(c) f i r ,  = 8182 crn'N-s, 

l d )  p = 0.88 Q-cm 

Chapter 6 
6.1 R' = 5 x lO" c '  s-' 

6.3 (a)  r , , ~  = 8.89 x IOLh s, 
(b) G = 1.125 x lo9 cm-' s', 
(c) G = R = 1.125 x 10' cm-' s-' 
a F; 

6.7 = -2 x 10'' cm-'s-' 
C I S  

6.11 a = 8 + 0.1 l4(1 - eC"+o). r,,, = lo-' s 

6.13 I = (54 + 220e-'l'no) mA, rPo = 3 x lo-' s 
6.15 (a)  R,/R,,II = 4.44 x lo9. 

(b) r,, = 2.25 x l W 7  s 
6.17 (a) For0  < r < 2 x 

Sn = 10'4(1 - e-'l'm") where r,,,, = 10V ss: 
Fort  > T = 2 x  

Sn = 0.865 x 10'* exp -- [-':;. "I 
6.19 (a)  n,,o = 2.25 x 10' cm-', 

(b) Sn(0) = n,,,, = -2.25 x 10' em-', 
(c) Sn = -n,,,,ec'lL,' 

ChL 
ForL e x  < 3 L . S p = - ( 3 L - x ) ;  

DP 

6.29 E,,, - E , ,  = 0.3498 eV, 
EF,  - E F ,  = 0.2877 eV 

6.31 S n  = Sp = 5 x cm-', 
(a) E F , ~  - EF = 0.0025 eV, 
(b) E , ,  - EF,  = 0.5632 eV 

6.33 (a )  Sp = 5 x 10" cm-', 
lhl EF,, - E , ,  = 0.1505 eV 

R I 
6.37 ( a )  For n-type, - = - = 10'' s - '  , 

Sn r , ~  
R 1 

(h) For intrinsic, - = - 
Sn r,a + rno 

= I 6 7  x lo6 s r '  

Sno sinh[(W -.r)/L,r] 
6.39 (a )  Sn = 

sinhl WIL,,] ~, 

6n0 = 10" cm-' and L,, = 35.4 urn. 

7.1 ( a )  For Nd = 10'' cm-'; (i) Vb, = 0.575 V, 
(ii) 0.635 V, (iii) 0.695 V. (i1.1 0.754 V, 
(b) For Nd = IOIX cmr'; (i) 0.754 V, 
(ii) 0.814 V, (iii) 0.874 V, (iv) 0.933 V 
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.5 ( a )  n side. E ,  - E,., = 0.3294 e V  (c) p,, = 3.42 x 10"' cm-', 
p side. E,,  - E ,  = 0.4070 eV (d )  1" = 3.43 A 
(b )  Vb, = 0.3294 + 0.4070 = 0.7364 V 8.13 (a) V, = 0.253 V, (b )  V, = 0.535 V 
(c) V,,, = 0.7363 V 8.15 Ex? = 0.769 eV 

( d ) x ,  = 0.426fim.x,, = 0.0213 lim. 8.18 T,,, % 519 K 
IE,,I = 3.29 x 10' Vlcm 8.20 For 300 K, VD = 0.60 V; For 3 I0 K,  

7.7 (b)  (n region), no = Nsf = 8.43 x IOl5 cm-', VD = 0.5827 V; For 320 K. V ,  = 0.5653 V 
(p  region), p,, = N,, = 9.97 x lU'5 an- ' ,  8.23 For 10 kHz, Z = 25.9 - j0.0814: 
((.I V,>; = 0.690 V 

7.9 ( a )  K,, = 0.635 V, ( h )  x,, = 0.864 Jim. 
x, = 0.0864 fim. 
( d )  E,,,I = 1.34 x 10' Vlcm 

7.11 ( a )  Vi,, = 0.8556 V, (h )  T = 302.4 K 
7.13 (0) V,,,; = 0.456 V, (b)  x,, = 2.43 x lo-' cm, 

(c )  x,, = 2.43 x LO-' cm, 
( d )  E x  1 = 3.75 x 10' Vlcm 

7.17 (0) Vt', = 0.856 V, 
(h)  W = 0.301 x 10-' cm, 
(c) Emax = 3.89 x lo5 Vlcm, 
( d )  C = 3.44 pF 

7.19 ( a )  Neglecting change in Vb,. 41.4 percent 
increase; (b) 17.95 mV increase 

7.21 (u )  VR = 73 V, (b)  Vn = 7.18 V, 
(c) VR = 0.570 V 

7.23 Vf l l  = 18.6 V 
7.25 N,# = 3.24 x 10'' c m  ' 
7.27 ( ( 1 )  V,, = 0.557 V, (bj x,, = 5.32 x 10-"m, 

I,, = 2.66 x 10-I cm, (c)  VR  = 70.3 V 
7.29 (a )  ( i l  C = 1.14 DF, ( i i )  C = 0.521 DF. 

7.33 ( a )  E(x = 0) = 7.73 x I O ~ I c m ,  

(c) V R  = 23.2 V 
7.35 o = l 1 x 10"' cm-' 

Chapter 8 

8.1 (a)  60 mV, (b) 120 mV 

8.7 N,,/N,i = 0.083 
8.9 Is = 2.91 x lo-' A, (01 1 = 6.55 UA, 

(h )  I = 2 . 9 1  nA 
8.11 (ul  I,,,, = 4.02 x A. 

(b)  /,,(I = 6.74 x 10-" A, 

For 100 kHz, Z = 25.9- j0.814: 
For 1 MH7.. 2 = 23.6 - i7.41: 
For 10 MH/, Z = 2.38 - j7.49 

8.25 r,,, = 1.3 x lo-' s; C,, = 2.5 x F 
8.27 (a) R = 72.3 n. I  = 1.38 mA 
8.29 I/,, = 0.443 V 
8.31 JS = 8.57 x 10~'%Am'. 

J,,, = 1.93 x lo-' Alcm2 
8.33 ( a )  For V., = 0.3 V, I  = 7.96 x 10-" A; 

For V,, = 0.5 V. I  = 3.36 x A 
8.39 Vl j  = 0.548 V 
8.41 N, ;. 3 x IO" A = 1.99 x em' 
8.43 V ,  = 19.9 V 
8.45 VR = 5.54 V 
8.47 V ,  = 15 V 
8.49 IR/IF = 1.1 I. t 2 / rp0  % 0.65 
8.51 W = h l 9 A  

Chapter 9 
9.1 ( ~ ) $ , , = 0 . 2 0 6 V , @ ~ ~ ~ = 0 . 2 7 V ,  

V,, = 0.064V, IE .,,, 1 = 1.41 x 10"Icm. 
(d)r,hR,, = 0 . 5 5 V , E  ,,,, 1 = 1 . 2 6 x  104V/cm 

9.3 (u) r,hse = 1.03 V, (bl @,, = 0.058 V, 
(c )  Vb, = 0.972 V, (d l  .rd = 0.416 Wm, 
(el IE,,,, 1 = 2.87 x I@ Vlcm 

9.5 (a) C = 4.75 pF. (6 )  C = 15 pF 
9.7 ( n ) V i , , = 0 . 3 3 4 V . r ~ = 0 . 2 1 1 j r m ,  

IE,,,, I = 3.26 x 10' Vlcm. 
(h) A@ = 20 mV. x,,, = 0.307 x 10-Qm. 

(c) lE ,,,,, 1 = 1.16 x 1 0  Vlcm, 
A@ = 37.8 mV,x,,, = 0.163 x lo-"  cm 

9.9 (a)l/i,,=0.612V,x~=0.153fim, 
IE,,,, / = 1.06 x 105 Vicm, 
(h)  VR = 7.47 V 

9.11 (a) r$uo = 1.13 V, (b)  @a,, = 0.858 V. 
(<)  @no = 0.43 V. $R,, = 0.733 V 

9.13 (a)  @,, = 0.206 V, 
(b)  V),, = 0.684 V. 
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(c) J ~ ,  = 1.3 x I n - X  ~ I c m ~ ,  
(d) V,, = 0.488 V 

9.15 ( a )  V, = 0.603 V, (b) AV, = 18 mV 
9.17 1 / , ,=0 .474V, (a ) I , ,=1 .52~10-~A,  

(6) In2 = 1.86 x A 

9.19 For Schottky diode, V, = 0.467 V; for pn diode. 
V., = 0.705 V 

9.21 (a) For Schottky diode, I % 0.5 x lo-' A; 
for pn diode, I = 1.02 x 10@A: (6) for 
Schottky diode. V, = 0.239 V, for pn diode, 
V" = 0.519 v 

9.25 (b )  Nd = 1.24 x 1016 cm-', (c) 0.20 V 

9.27 (b) @,o = @,, = 0.138 V 

Chapter 10 
10.3 ( a )  Is = 3.2 x A; (6) (i) ic = 7.75 @A, 

(ii) ic = 0.368 mA. (iii) ir = 17.5 mA 
10.5 (a )  = 85, a = 0.9884. ii = 516 &A: 

(6) fl = 53 .a  = 0.9815, i~ = 2.70 mA 
10.7 (b) 1' = 4.7 mA 
10.9 (a) pill = 4.5 x 10' cm-', 

n ~ o  = 2.25 x 10' ~ m - ~ ,  
pa = 2.25 x lo5 cm-', 
(6) nn(0) = 6.80 x 101%m-', 
pb (0) = 1.36 x 10" cm-) 

10.11 Assume e x p ( V ~ ~ /  V,) >> cosh(x~/Ln) ,  
( a )  0.9950, (b)  0.648, (c) 9.08 x 10.' 

10.15 (c) Forx, << L R ,  J ( x ~ ) / J i 0 )  = I ;  
Fors, = Ln = 10 Um, 
J(XR)/J(O) = 0.648 

10.17 (a) V,, = 0.70 V, (6) V ~ ~ ( s a t )  = 0.05 V, 
(c )  3.41 x 10" holes/cm2, 
(d) 8.82 x LO'' electrons/cm2 

10.19 Vc, = 0.48 V 
10.21 (o)  1, = 17.4 FA. (6) a = 0.9067. 

Ic = 1.36 mA, (c )  Ic = 19.4 @A 

Y ~ B )  - Nno DE XB 10.23 (a) ii) - - 1  
y (A)  Nc Ds XE 

a r ( B )  = I : (b) (i)- ( i i )  - = 1, 
y(A) CT (A) 
a,(') 1 XBO 

(ii) -- = I + - . -; (c) neglect 
ur (A) 2 LB 

changes in space charge width, 
V R E  

SiB) 
(i) - % 1 - 

SiA) - eDnnzii ' 

18 

(d) Device C 
10.25 ( b ) l C  = 1.19mA. IE =0.829mA 

S 
(b)B = - , (c) for VBE < 0.4 V. 1 - 8  
recombination factor will be the limiting factor in 
current gain. 

10.29 ( a )  x" = 0.742 @m, (b) S = 0.9999994 
10.35 (a) V,4 = 47.8 V, (b) V, = 33.4 V, 

(c) VA = 19.0 V 

10.39 (a) R = 893 n, (b) V = 8.93 mV, 
1 ~ )  70.8 oercent 

(c.) Total solution is 

E 
where A = - V. and 

10.43 BV~~,., = 221 V, NC = 1.5 x 1015 cnl-l, 
xc = 6.75 @m 

10.45 ( a )  V,, = 295 V: however, junction breakdown 
for these doping concentrations is VR % 70 V, SO 

punchthrough will not be reached. 
10.47 ( a )  I, = 0.105 mA. (6) I, = 11.9 uA, 

(c )  I" = 10.14 /LA 
10.53 f, = 509 MHz 

Chapter 11 
11.1 (a)  p type, inversion; (6) p type, depletion; 

( c )  p type. accumulation: (d)  n type, inversion 
11.3 (a) By trial and error, 

Nd = 3.27 x 10'%mi,  
(b)@, = -0.518V 

11.5 (a) N,, = 4.98 x 10" cm-', (b )  cannot use p+ 
poly gate, (c) N, = 3.43 x 1014 cm-' 

11.7 Q : , / e  = 1.2 x 1 0 ' " c m - ~  
11.9 Vip = -1.44+&,5,(a) Vir =-1.76V. 

(b )  VTP = -1.71 V, ( L . )  VTP = -0.592 V 
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By trial and error, N,, = 1.7 1 x 1016 cm-j 
(0) V F ~  = - 1.52 V. (b) Vi = -0.764 V 
( b , , , .  = 1 . 1 1  V,(c) ViW =+0 .0012v  
( a )  C,,, = 8.63 x 10-' ~Icm',  
C;, = 3.42 x 10-"lcm2, 
C;,,,, = 0.797 x 10-"/cm2, 
C'linv) = C,, 
(h) Same as la) except C'(inv) = C:," 
( L . )  VrP = -0.989 V 
(a) AVFR = -1.74 V, 
(h) AVFB = -0.869 V. 
I < )  AVFR = 1 . 1 6  V 
(a )  n type, (b) r,, = 345 A, 
(c) Q:,  = 1.875 x 10" ern-', 
(d )  C,." = 15h pF 
V.S, = 1 V, /"(sat) = 0.00592 mA: 
V.sc = 3 V, /,,(sat) = 0.716 mA; 
VS, = 5 V. /,(sat) = 2.61 m.4 
VT -2 0.2 V. pn = 342 cmZN-s 
(a) WIL = 14.7, (b) WIL = 25.7 
(a )&, , ,  =0.148 mS,(b)g ,,,$ = 0.917 mS 
VBx = 7.92 V 

iri) = 5.17 GHL. (b) f, = 1.0 GHz 

Chapter I2  

12.1 lo = 10-l5 exp ( - ) I = ( I O ~ ) ~ , .  

P = IT . v,,,>: for VGS = 0.5 V, 

ID = 9.83 PA, IT = 9.83 pA. 
P = 49.2 p W  for Vc;.T = 0.7 V, 
I,, = 0.388 nA, IT = 0.388 mA. 
P = 1.94 mW, for VGs = 0.9 V, 
I,, = 15.4 nA. IT = 15.4 mA, P = 77 mW 

12.3 ( a )  AV,, = l V, AL = 0.0451 pm; 
AV,, = 3 V, AL = 0.122 p m ;  
A'V',,.~ = 5 V , A L  =0.188jrm;  
(h) L = 1.88 Arm 

12.7 In) Assume V,,(sat) = I V then 
L = 3 lrm 3 E,,, = 3.33 x 10' Vlcm 
L = I p m  + E,,, = 104 Vlcm 
L = 0.5 p m  3 E,,, = 2 x 10'VIcm 
(b) Assume jr,, = 500 cm2/V-s, 

v = w,E,.,t. 
L = 3 p m + v = 1 . 6 7 x  IOhcm/s 

L = I ~ ~ m + v = 5 x 1 0 ~ c m / s  
L 5 0.5 Um + r, ;. 10' cmls 

12.13 ( a )  Both bias conditions. ID k l , , .  
(b) P = k 2P 

12.15 (a) (i) I, = 1.764 mA; 
( i i )  I n  = 0.807 mA: 
(b) (i) P = 8.82 mW, (ii) P = 2.42 mW. 
l r )  current: 0.457; power: 0.274 

12.17 L = 1.59 jrm 
12.23 AVT=+0.118V 
12.27 (a) VB, = IS V, (b) V, = 5 V 
12.31 L = 0.844 p m  
12.33 ( a )  V, = -0.478 V, (b) implant acceptors. 

D, = 4.25 x 10" cm-? 
12.35 (a) V, = -0.624 V, (b) implant acceptors, 

Di = 4.37 x 10" ~ r n - ~ ,  (c) VT = 1.24 V 
12.37 ( a )  V, = - 1.53 V; enhancement PMOS, 

(b) implant acceptors, 
D, = 4.13 x 10" cm-2 

12.39 AV, = -2.09 V 

Chapter 13 
13.3 ( a )  Vp = 4.91 V. (b) for VGs - l V, 

(i) a - h = 0.215 wm. 
(ii) a - h = 0.0653 pm,  
(iii) a - h = -0.045 p m  (zero depletion width) 

13.5 (a) Vpcj = 15.5 V. (b) V,, = 4 . 6 6  V 
13.7 (a) Vpo = 1.863 V, V, = 0.511 V; 

(b )  (i) a - h = 4.45 x cm, 
(ii) a - h = 1.70 x LO-' cm 

13.9 1a)For V,, = 0. V,, = -1.125 V: 

(b) For V,,, = 1 V. VGx = -0.125 V 
13.11 VGs = 0, gd = 0.523 x lW3:  Vcs = -0.53 V, 

g,j = 0.236 x lo-'; V(; = -1.06 V, p,, = 0 
13.13 g,,,(rnax) = 1.31 mS1mm 
13.15 (a) VPO = 2.59 V, Vr = -1  7 8  V, 

(b)  depletion mode 
13.17 VD., = 0. a - 1, = 0.716 &m; 

VD.~ = 2 V, u - h = 0.545 p m ;  
Vlls = 5 V, n - h = 0.410 p m  

13.19 N, -2 5.45 x IO'l cm-' 
13.21 (0) Vh, = 0.612 V, V,.O = 2.47 V, 

VT = -1.86 V, VoS(sat) = 0.858 V, 
(b) add donors. N,, = 1.64 x I0l6 ern-? 
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Vi,, = 0.628 V, V, = 3 . 8 7  V, 

VjlS(sa1) = 2.87 V 
13.23 ( a )  W = 2h.4 j ~ m :  (b) for VG, = 0.4 V 

I,, = 78.8 uA; for VGS = 0.65 V. 

I,,, (sat) = 0.56 mA 
13.29 (a) With velocity saturation. 

ID, (sat) = 4.86 mA; without velocity 

saturation, I D ,  (sat) = 18.2 mA 
13.31 ( ( I )  1%) = 20 ps, (b) rd = 20 ps 
13.33 (0 )  g ,,,, = 2.82 mS, (b) r ,  = 88.7 Q. 

(c) L = 0.67 i(m 

13.35 ( a )  f ,  = 755 GHr, (b) f i  = 15.9 GHz 
13.37 ( a )  g,,,/ W = 502 mSImni. 

(b) I,, (sat)/ W = 537 mAlrnm 

Chapter 14 
14.1 (a )  j. = 1.24/E 

(i) E = 0.66 =+ A = 1.88 jLm 
(ii) E = l.I?=$ A = 1.11 urn 
(iii) E = 1.42 + A = 0.873 i(m 
(h )  (i) A = 570 nm =) E = 2.18 c\i 

(it) A = 700 nm + E = 1.77 eV 

14.3 6 n  = g ' i  = 1.44 x 10" cm-' 
14.5 (n) r = 1.98 Urn. (b) x = 0.41 wm 
14.11 I L  = 500 mA. V,,, = 0.577 V, 

I,, = 478.3 mA. P,,, = 276 mW 
14.13 For hv = 1.7 eV. .r = 2.3 Urn; 

For hv = 2.0 eV, r = 0.23 prn 

14.15 (o )  61, = 6n = 10" crn-'. 
(b) Ao = 1.32 x lo-' (Q-cm)-'. 
(c) I L  = 0.66 mA. (d)  TPa = 4.13 

14.17 ( a )  JLI = 9.92 m~lcrn',  
(b) J L  = 0.528 Alcm' 

14.19 W = I i(m =$ J ,  = 4. 15 mA. 
W = 10 u m  =+ J L  = 15.2 mA. 
W = 1 0 0 u m +  J L  = IhmA,  

14.21 0.625 5 A. 5 0.871 @m 
14.23 (0) 8.83 percent, (b)  5.95 percent 

Chapter 15 
15.1 I, = 5.33A 
15.7 Vc,- = 25 V 

15.9 (o)  I, = 1.84 A, I> = 1.66 A, 13 = 1.51 A: 
P, = 6.09 W, P2 = 5.48 W, Pi = 4.98 W 
(b) I, = 2.16 A, I2 = 1.08 A, I i  = 1.77 A; 
PI = 8.38 W. P2 = 4.19 W, f i  = 6.85 W 

15.11 (b) 

(i) VGs = 5 V. I n  = 0.25 A. V,,s = 37.5 V, 
P = 9.38 W 
(ii) VcS = 6 V, ID = 1.0 A, V,,, = 30 V, 
P = 3 0 W  
(ii i) VGS = 7 V, lo = 2.25 A. V D . ~  = 17.5 V, 
P = 39.4 W 


