

Introduction

Germplasm

- A germplasm is a collection of genetic resources for an organism.
- Germplasm is the genetic material of an individual that may be transmitted, sexually or somatically, from one generation to another.
- Plant or animal material (such as seeds, pollen, rootstock, or sperm) that
 is collected and stored chiefly for future use in breeding, conservation,
 or research.

Conservation of Germplasm

- In-situ preservation
- Preservation of the germplasm in their natural environment by establishing biosphere, national park.

- Ex-situ preservation
- In the form of seeds or invitro culture

In-situ conservation

Advantages

- Plants and animals conserved in their natural environment.
- Biodiversity permanently protected.
- Representative examples of ecosystems also permanently protected.
- Natural and cultural heritage protected permanently.
- Ecological integrity is maintained and managed.

Disadvantage

- Endangered habitats may be fragmented so the area may not be large enough to ensure the survival of these species.
- Genetic diversity may have already been dramatically decreased.
- Conditions that threatened the organisms in the area may still be present,
 e.g. disease or interspecific competition.

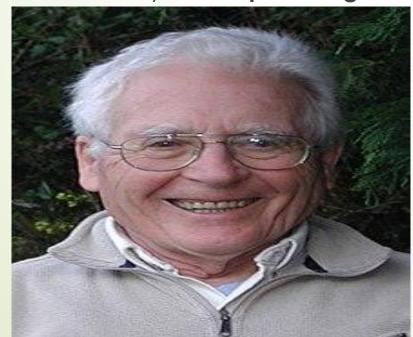
Ex-situ Conservation

Advantages

- Organisms are completely protected from predation and poaching
- Health of individuals can be monitored and medical assistance given as required
- Populations can be more effectively managed and divided if disaster strikes
- Genetic diversity of the population can be measured
- Selective breeding programs can be put into place

Disadvantages

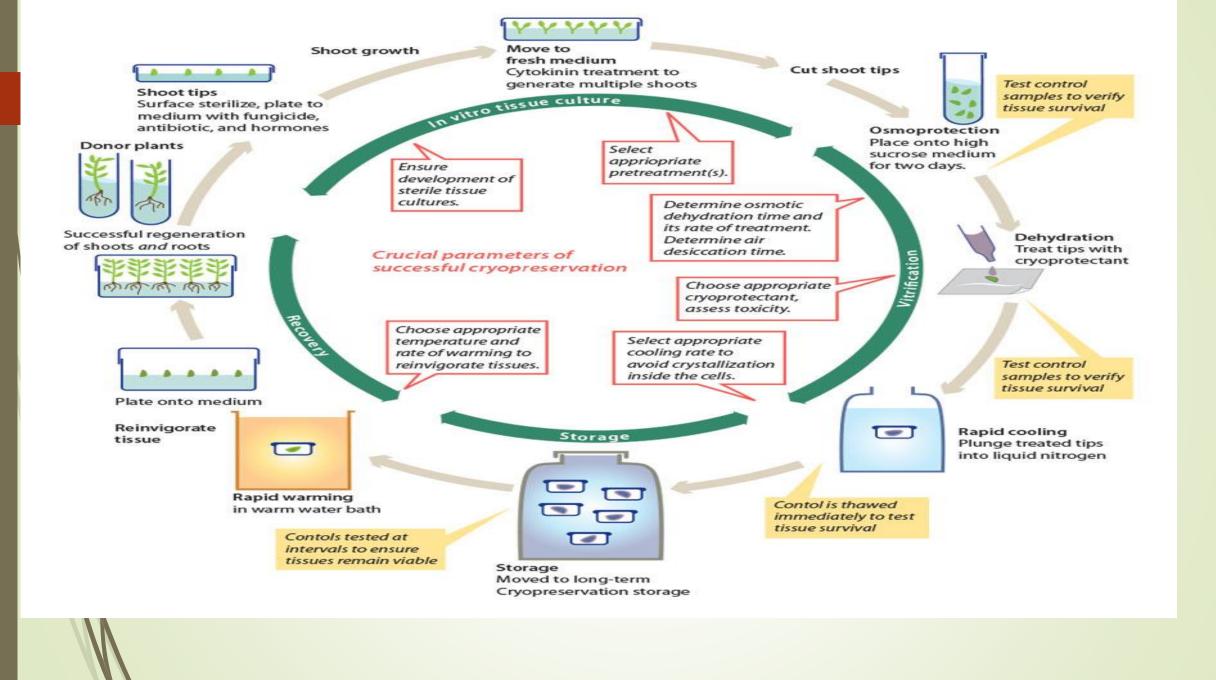
- Captive population have limited genetic diversity
- Animals can be exposed to a wide range of different diseases
- the organisms are living outside their natural habitat
- Nutritional issues may arise
- Animals may not behave as normal making reproduction difficult


Cryopreservation

- Cryopreservation is a non lethal storage of biological material at ultra –low temperature.
- Cryopreservation is the use of very low temperatures to preserve structurally intact living cells and tissues.
- At a temperature of liquid nitrogen (-196c) almost all metabolic activities are ceased and the sample can preserved in such state for extended periods.

HISTORY

- One early theoretician of cryopreservation was James Lovelock. In 1953, he suggested that damage to red blood cells during freezing was due to osmotic stress.
- In the mid-1950s he experimented with the cryopreservation of rodents.
- Cryopreservation was applied to human materials beginning in 1954 with three pregnancies resulting from the insemination of previously frozen sperm.
- Fowl sperm was cryopreserved in 1957 by a team of scientists in the UK directed by Christopher Polge.


Steps of cryopreservation

The technique followed by the regeneration of plants involves the following steps.

- Selection of Material: the selection of proper plant material is important.
- Addition of Cryoprotectants: The chemical material is important as it prevents cryo destruction. Eg alcohol, proline dimethyl sulfoxide.
- **Freezing:** Different species of plants show different types of sensitivity to low temperatures. They are different types of methods.
- Slow Freezing Method- In this process, the tissue or plant material is slowly frozen at a slow cooling rate.
- Rapid Freezing Method The vials are plunged in liquid nitrogen.
- Dry Freezing Method In this method hydrated cells and seeds are stored.

Steps of cryopreservation

- Storage in Liquid Nitrogen: It is also important for the maintenance of the sale or material at a specific temperature. (to - 196°C.)
- **Thawing:** The thawing process is usually carried out by plunging the vials into a warm water bath with vigorous swirling. It also causes the vials to get transferred or move to another bath at 0 °C
- Washing & Reculturing: The preserved material is washed to remove the Cryoprotectants. Furthermore, the material is recultured in a fresh medium.
- Measurement of Viability: Due to storage stress, there is a possibility of cell death. The presence of viability can be seen in most cases.
- It is calculated by the formula:
 (no of cells growing/no of cells thawed)×100
- Regeneration of Plants: After that, the viable seeds are cultured on a non-specific growth medium. Suitable environmental conditions are maintained.

Merits of Cryopreservation

- Effective means to conserve the germ plasm of endangered species.
- Fertility preservation.
- Methods to reduce multiple pregnancies
- Larger range of stocks available.
- Easy disease- free exchange of stocks, nationally and internationally.
- Stocks remain viable indefinitely.
- Safety from disease, genetic contamination and breeding failure.

Demerits of Cryopreservation

- Does not work efficiently for all strains
- Formation ice crystals inside the cells cause injury to the organelles and the cell.
- High intracellular concentration of solutes can be very damaging to cells.
- Sometimes, certain solutes from the cell may leak out during freezing.
- Cryoprotectants also affect the viability of cells.
- Migration of water, causing extracellular ice formation, can also cause cellular dehydration. The associated stresses on the cell can cause damage directly.
- The physiological status of the plant material is also important.

THANK YOU